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Abstract This paper explores the relationships between geometric constructabil-

ity, numbers, shapes and shape grammars. Shapes are based on compositional

constructs in geometry, which rely upon drawing instruments. Implementing shape

grammars relies upon numeric encodings, properties of which specify whether

shape algorithms are decidable and/or tractable.

Introduction

Nothing fundamentally new, just a different look at geometry and numbers, shapes

and rules, which I hope appeals to Lionel.

We are often surprised by some of the intricate geometric forms produced in

software. In a cognitive and aesthetic sense these surprises are real. I am interested

in a different kind of surprise, a surprise of the mechanistic kind, where one

questions whether forms produced by digital means are really radically distinct from

those drawn by hand. What is surprising to me is how difficult it is to get a computer

to achieve exactly what we intend it to do. It is in this context that I explore

geometric constructability and shape grammars by comparing the construction of

shapes through analogue and digital devices; in short, I connect Euclid (1956),

Descartes (1954) and Stiny-Gips (1972). Euclid gave us mechanical drawing

instruments, namely, the straightedge and compass; Descartes, an algebraic

mechanism, namely, the coordinate system; and Stiny-Gips, an automaton, a
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system of rules, namely, the shape grammar. Of particular interest is the

classification of shapes and shape grammars: that is, the relationship between

tractable shape grammar computation and geometric constructability, in other

words, between shapes based on a number system and shapes based on specific

drawing instruments. In this paper, shapes are restricted to planar geometrical

figures made up of finite lines.

The gist of this article is as follows. In principle, a computer system for geometry

specifies a universe of constructible shapes. Compositional constructs in such

systems are based on encodings of Euclidean constructs, which rely on drawing

instruments to aid manual construction. Thus, we can classify shapes according to

their constructive device.1 Encodings are based on numbers, which can be classified

according to specific properties. There is an association between number systems

and drawing instruments through the Cartesian coordinate system. Thus, we can

classify shapes according to their numeric properties. Shape grammars are

compositional systems that can be used to specify particular languages of shape.

Implementing shapes precisely in a computer system depends upon determinate

processes; practical implementation relies upon the tractability of such algorithms.

In writing this article, to make for a compelling narrative, I include succinct

summaries of known work instead of being content to just cite references.

Sections ‘‘Drawing Instruments’’ through ‘‘Geometric Construction’’ draw heavily

upon established material and information.

Drawing Instruments

In the process, classes of shapes that can be produced using ‘mechanical’ drawing

instruments are examined, translating the mechanics of geometric construction into

algorithms and procedures. When doing so, one arrives at a classification of shapes

(and hence, shape grammars) in terms of their constructive devices.

Euclidean geometry relates to construction restricted to the straightedge (ruler)

and compass. With a ruler one can construct a (infinite) line, which passes through

two given points; with a compass one can construct a circle (or circular arc) centred

on one point and passing through another; lines and circles may intersect and in

doing so result in new points from which new lines and new circles can likewise be

constructed. Shapes are defined as made up of finite lines, that is, segments, with

end-points specified by such constructed points.

In Euclidean geometry, geometric figures are either constructible or otherwise.

Of the latter category, three celebrated problems are squaring the circle, doubling

the cube and trisecting an angle. The first construction is impossible; the latter two

are solvable by verging or the insertion principle.2 Viète’s construction for trisecting

an angle centred at O is given in Fig. 1.

1 Geometric entities such as NURBS, splines and other constructive curves do exactly this.
2 Given two curves and a point, the line touching the two curves at points corresponding to marked

locations on a straightedge verging through the given point, is said to be drawn by the insertion principle,

which was discovered by Fançois Viète in 1593.
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Notation The notation –AB…–, AB…–, AB, A(B), A(r), \AOB, \O and DABC

represent a line, a ray through points A, B, …, a line segment between points A and

B, a circle centred at A passing through B, a circle of radius r centred at A, angles

centred at O and a triangle with points A, B and C. When context is understood, AB

and \ also represent distance and angle measure.

The proof is straightforward (OM = OB, from triangles DBMC and DOBM angle

calculations show \AOD = x, that is, an angle trisection). As seen in the figure, the

construction requires a ‘marked’ straightedge, where distance CM (=OB) is marked

on the straightedge. This is distinct from normal Euclidean constructions, which rely

solely on a compass and an unmarked straightedge as the constructions for the

perpendicular lines –AB– and –BC– clearly show. In this construction, the

straightedge has to be aligned so that the marked points C and M are coincident with

respectively the horizontal line and the circular arc centred at B. Note that the

alignment of points is non-determinate although the fact that the points can be

aligned is certain.

For purposes of this paper, Euclid’s original devices will be augmented with two

other drawing instruments: divider and marked ruler. The former adapts a compass

for transferring distance whilst the latter extends the straightedge with two

designated marked points. The four devices—ruler, compass, divider and marked

ruler—are referred to as the standard drawing instruments.

The insertion principle, of course, suggests that one might consider a range of

drawing implements as part of the standard toolkit. However, analogue drawing

tools such as the rusty compass (fixed circle), double or parallel ruler, right angle,

cannon, stick (fixed divider), tomahawk (trisector), cissoid (a cubic curve used to

duplicate a cube), paper-folds (or origami folds), etc., constructively used either

singly or in combination are equivalent to the standard instruments.

Lastly, congruence can be established by three or fewer reflections and similarity

is congruence with scaling (see Sect. ‘‘Scale Transformation and Reflections’’).

Reflection and scale can be accomplished by ruler-compass constructions. The

constructions are illustrated in Fig. 2. Consequently, for any pair of corresponding

points, it is always possible to construct two possible pairings of similar triangles

Fig. 1 Trisecting an angle using a ‘marked’ straightedge
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formed by three potentially corresponding points. It then follows that testing for

similarity between shapes given two corresponding points is Euclidean con-

structible. Note that—apropos our motivation—such constructions are independent

of any numeric specification for points.

Constructible Numbers

George Martin, in his book, Geometric Constructions (1998) examines the

connection between (combinations of) standard drawing instruments and spaces

of constructible numbers, each satisfying the properties of an algebraic field, and

each based on the union of extensions of the space of rational numbers. Shapes are

based on points, which are specified by coordinates with values from these

constructible numbers. Geometric transformations between shapes defined over any

specific field of constructible numbers are shown to have coefficients in the same

field. Decidability of shape grammars then hinges upon whether these constructible

numbers can be represented so as to ensure determinate equality checking. The

constructible numbers form a sequence from the space of rational numbers to the

space of real numbers, each a subspace of the next space in the sequence. In this

way, shapes can be classified in terms of their standard drawing instruments, and

shape grammar computation is closed within the number fields represented by these

instruments. The material below is chiefly taken from Martin.

Fig. 2 A similarity is an isometry composed with a scale. An isometry is specified by no more than three
reflections (triangles DABC and DP’Q’R are congruent). 1, 2 and 3 represent the axes of reflection.
Triangles DPQR and DP’Q’R are similar by a scale about R. Some ruler-compass compass constructions
are indicated.
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Number Fields

The coordinates of a point satisfy the properties of an algebraic field, which is a

subset of the real numbers closed under addition and multiplication with an additive

and multiplicative inverse, 0 and 1. Whenever a, b, c = 0, are in field F, a ? b,

a - b, ab and a/c are also in F.3 A subfield is a subset of a field that satisfies the

properties of a field. The real numbers, R, form a field, as do its subfield of rational

numbers, Q. The set of integers, Z does not, although it is a subset of every number

field. That is, if F is a number field, Z , F.

Quadratic Extension

Suppose c is a positive number in F but Hc is not in F. The set

F(Hc) = {a ? bHcja and b in F} is termed a quadratic extension of F. F(Hc) is

a field.4 Quadratic extensions have the following sum of squares properties:

1. For all a, b and c are in F with Hc not in F, a ? bHc is a sum of squares in

F(Hc) if and only if a - bHc is a sum of squares in F(Hc).

2. For all a, b and c = 0 that are sums of squares in F, then so too are a ± b, ab,

and a/c.

If F1 = F(Hc1), F2 = F1(Hc2), …, Fn = Fn-1(Hcn), we write Fn = F(Hc1,

Hc2, …, Hcn). Each of F1, F2, …, Fn is an iterated quadratic extension of F. Each

Fi can be shown to be a field: that is, Fi is closed under ?, –, 9 and 7. Moreover,

Fi is closed under H(.), namely, quadratic extension.

Consider a tower of fields over fields Fi, i = 0, 1, …, n built by an iterated

quadratic extension of the rational numbers, Q:

F0 ¼ Q;F1 ¼ Qðpc1Þ; . . .;Fi ¼ Qðpc1;
p

c2; . . .;
p

ciÞ:; . . .;Fn

¼ Qðpc1;
p

c2; . . .;
p

cnÞ:
That is, one can write such numbers using just integers and the symbols ?, –, 9 ,

7 and H. An example of such radical expressions is:

123

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4567
ffiffiffiffiffi

89
pq

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

5�
ffiffiffi

6
pq

þ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10�3
ffiffiffiffiffi

11
pq

r

:

Euclidean Field

A field F is Euclidean whenever a in F and a[ 0 implies that Ha is in F. That is,

every positive number in a Euclidean field is a square in the field.

Let E denote the union of all iterated quadratic extensions of Q. E is a field. By

definition, E is Euclidean. As Q is the smallest rational field, E is closed under

3 Fields are also associative, commutative and distributive.
4 F(Hc) contains 0 and 1. If p = a ? bHc and q = d ? eHc, then p ± q = (a ± d) ? (b ± d)Hc are

in F(Hc). Likewise, pq = (ad ? bec) ? (bd ? ae)Hc is in F(Hc). Consider q-1 = (d – eHc)/(d2

– ec) = f ? gHc, where f and g are again in F. q–1 is in F(Hc) and therefore, p/q = pq–1 is in F(Hc).
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quadratic extension, and therefore, E is the smallest Euclidean field. A number is

Euclidean if it is in E.

Pythagorean Field

A field F is Pythagorean whenever a, b in F implies that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

is in F. That is,

the sum of squares in the field is a square in the field. Equivalently, if a = 0,

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðb=aÞ2
q

is in F.

Suppose a, b are in F, but Hc is not in F where c is the sum of two squares. Then,

F(Hc) = {a ? bHcja and b in F} is a Pythagorean extension of F. F(Hc) can be

shown to be a field. If Fi?1 denotes a Pythagorean extension of Fi for i = 0, 1, 2,…,

n-1, then F1, F2, …, Fn are each termed an iterated Pythagorean extension of

F (= F0). Note that a Pythagorean extension is a quadratic extension with the

following additional sum of squares properties.

3. Whenever d in F is a sum of squares in its Pythagorean extension F(Hc), d is a

sum of squares in F

4. Whenever d in F is a sum of squares in the iterated Pythagorean extension

F(Hc1, Hc2, …, Hcn), d is a sum of squares in F

Let P denote the union of all iterated Pythagorean extensions of Q. P is a field.

Note that is in P for every a and b in P. For every c1, c2, …, cn-1, cn, we have:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c21 þ c22 þ � � � þ c2n�1 þ c2n

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc21 þ c22 þ . . .þ c2n�1Þ
2

q

þ c2n

r

:

That is, the sum of every square in P is a square in P. Whence, P is a Pythagorean

field. As Q is the smallest rational field, P has no Pythagorean extension, and

therefore, P is the smallest Pythagorean field. Note that P is closed under quadratic

extension. A number is Pythagorean if it is in P.
A Euclidean field is necessarily Pythagorean as the sum of squares is

nonnegative; however, the converse is not the case.5 That is, P = E and

Z , Q , P , E , R.

Dioclesian, Glotin and Vietean Fields

There are other number fields that sit between E and R. Consider the roots of cubic
equations. If a cubic equation ax3 ? bx2 ? cx ? d = 0 has no rational root, then

none of its roots are in E. The equation x3 - 3x2 - 2 cos 3t = 0 has roots: 2 cos t,

2 cos (t ? 2p/3), 2 cos (t ? 4p/3). When t = p/3, cos t = �, its roots are in E.
When t is a third this, that is, t = p/9, none of its roots are rational, thus, not

Euclidean, although all its roots are real On the other hand, x3 - 2 = 0 has only one

real root from which it follows that
ffiffiffi

23
p

is not Euclidean A Dioclesian6 field F is

5 1 ? H5 is in both P and E whereas
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffi

5
pp

is in E but not in P.
6 Named for Diocles (circa 180 BC) who invented the cissoid.
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closed under cube root if x in F implies
ffiffiffi

x3
p

is in F. A Glotin7 field F is closed under

trisection if cos 3t in F implies cos t is in F. A Euclidean field is Vietean if it is

closed under cube root and trisection. Let V be the smallest Vietean field closed

under cube root and trisection. Likewise, let G and D denote the smallest Euclidean

fields that are closed under, respectively, trisection and cube root.

E , V , R. Moreover, V = G [ D, D \ G = Ø. V includes the real roots of

all quartic and cubic equations. If an equation has only one real root it is in D;
otherwise, it is in G.

Geometry

The standard drawing instruments produce lines and circles. We now examine them

in relation to algebraic fields. The constructions described in this paper are

registered in the Cartesian plane.

Terminology Suppose coordinates of points are defined in field F. A point is an F-

point if it has all its coordinates in field F. An F-line is specified by two F-points.

An F-circle has an F-point for its centre and an F-point on its circumference. We

extend the terminology to include shapes and shape grammars, namely, an F-shape

is specified by a set of maximal F-lines and an F-shape grammar is defined on F-

shapes. In this way, appropriately, we may classify points, lines circles, shapes and

shape grammars as rational, Pythagorean, Euclidean, Glotin, Dioclesian, Vietean,

real, etc.

Lines and Circles

The equation of a line passing through two F-points (x1, y1) and (x2, y2) is given by:

X y2 � y1ð Þ � Y x2 � x1ð Þ þ x2y1 � x1y2ð Þ ¼ 0:

As the equation depends only on the definition of a field, it follows then that the

coefficients are also in F. That is, F-lines have equations with coefficients defined in

F.

A similar argument is given for circles. The general equation of a circle with

centre (x1, y1) and passing through (x2, y2) is given by:

X � x1ð Þ2þ Y � y1ð Þ2¼ x2 � x1ð Þ2þ y2 � y1ð Þ2;
or,

X2 þ Y2 þ �2x1ð ÞX þ �2y1ð ÞY þ x2 2x1 � x2ð Þ þ y2 2y1 � y2ð Þð Þ ¼ 0:

As the above expression depends only on the definition of a field, it follows then

that the coefficients are also in F. That is, F-circles have equations with coefficients

defined in F.

7 Named for Pierre Glotin who in 1863 made the first serious study of the trisector.
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Intersections

Next, consider the intersection of lines and circles.

Suppose two lines have equations a1X ? b1Y ? c1 = 0 and a2X ? b2Y

? c2 = 0.

The point of intersection of the two lines is given by (xint, yint) where

xint ¼ b1c2 � b2c1ð Þ= a1b2 � a2b1ð Þ and yint ¼ a2c1 � a1c2ð Þ= a1b2 � a2b1ð Þ;
provided that (a1b2 - a2b1) = 0.

However, when (a1b2 - a2b1) = 0, the lines are parallel and therefore, do not

intersect. The coordinates of the points of intersection thus depend only on the

definition of a field. That is, F-lines intersect at F-points.

Line with equation aX ? bY ? c = 0 and circle with equation X2 ? Y2 ?

fX ? gY ? h = 0 intersect at the points (xint, yint) where

d ¼ fb � agð Þ2þ4cðaf þ gb � cÞ � 4hða2 þ b2Þ

xint ¼ ðabg � 2ac � b2f � b
p

dÞ= 2 a2 þ b2
� �� �

yint ¼ ðabf � 2bc � a2g � ð�a
p

dÞÞ= 2 a2 þ b2
� �� �

Without loss in generality, suppose that the coefficients a, b, c, f, g and h are in

F. For the line and circle to intersect, d must be nonnegative. There are two

possibilities: either d is square in which the points of intersection are in F, or else, if

d is not square in F, then at least one of xint or yint is not in F, since both a and

b cannot simultaneously be zero. That is, xint and yint are both in F(Hd), a quadratic

extension of F.

When a number field F is closed under quadratic extension, it follows that F-lines

and F-circles intersect F-points. Since Q is not closed under quadratic extension,

rational circles do not necessarily intersect rational lines at rational points.

Lastly, the pair of equations:

X2 þ Y2 þ aX þ bY þ c ¼ 0

X2 þ Y2 þ fX þ gY þ h ¼ 0

is equivalent to the pair of equations:

a�fð ÞX þ b � gð ÞY þ c � hð Þ ¼ 0

X2 þ Y2 þ fX þ gY þ h ¼ 0

This system of equations has solutions either in F or in a quadratic extension of

F.

Points on a Perpendicular

Consider the line through two F-points (x1, y1) and (x2, y2). Consider the line

perpendicular at (x2, y2). Consider the expressions:
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x3; x4 ¼ x2 � y1 � y2ð Þ and y3; y4 ¼ y2 � x2 � x1ð Þ:
(x3, y3) and (x4, y4) represent two points on the perpendicular, which are

equidistant from (x2, y2) as (x2, y2) is from (x1, y1). Clearly, (x3, y3) and (x4, y4) are

F-points.

Again, consider the line through two F-points (x1, y1) and (x2, y2). The foot of the

perpendicular from an F-point (x3, y3) not coincident with the line satisfies:

xfoot ¼ b2x3 þ aby3 � ac
� �

= a2 þ b2
� �

and yfoot ¼ abx3 þ a2y3 þ bc
� �

= a2 þ b2
� �

;

where a = (y2 - y1), b = (x2 - x1), and c = (x2y1 - x1y2). As the equations

depend only on the definition of a field, it follows that (xfoot, xfoot) is an F-

point.

Scale Transformation and Reflections

When computing with a shape grammar, there may be multiple possible sub-shapes

to which a rule applies. Each sub-shape corresponds to a similarity transformation

that maps a shape (the left side of a rule) to the sub-shape in the given (current)

shape. A similarity transformation can always be specified by a scale transformation

and an isometry (Martin 1982: 141).

Let aX ? bY ? c = 0 be the equation of a line with coefficients in field F. The

reflection of any point (x, y) in this line is given by (x’, y’):

x0 ¼ x � 2a ax þ by þ cð Þ= a2 þ b2
� �

y0 ¼ y � 2b ax þ by þ cð Þ= a2 þ b2
� �

Suppose (x, y) is an F-point. Then, the reflected point (x’, y’) is also an F-point.

The midpoint of two points (x1, y1) and (x2, y2) defined over F has coordinates in

F. Let aX ? bY ? c = 0 be the equation of a line passing through these two points,

where a, b and c are in F. The equation of a line perpendicular to this line has

equation bX - aY ? d = 0. If this line passes through the midpoint, then d is in

F. That is, the line perpendicular to the line joining two F-points at their midpoint is

an F-point. This line is the axis of reflection, which maps (x1, y1) onto (x2, y2) and

vice versa.

By the definition of a field, compositions of reflections have coefficients in F.

Two congruent figures are related by an isometry, which can always be defined by

composing three or fewer reflections (Martin and George 1982: 35). That is, if the

coefficients of reflection are in defined in F, then so too are the coefficients of the

isometry that specifies the congruence. A similarity transformation corresponds to a

scale composed with an isometry. If similar triangles are defined by F-points, then

the scale factor is in F. That is, coefficients of a similarity transformation are defined

in F.
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Geometric Construction

Each specific set of drawing instruments is associated with a number field. Lines

and circles are basic geometric constructions and each requires two points for their

definition. Accordingly, we have a starter set S with at least two points in the

Cartesian plane.

Let M denote a drawing machine, that is, a subset of the standard drawing

instruments.

We define a M-point to be the last in a finite sequence P1, P2, …, Pn of points

such that each point Pi is in S or is obtained in the following possible ways, termed

an M-intersection:

(i) Intersection of two lines each passing through two points that appear earlier in

the sequence;

(ii) Point of intersection of a line that pass through two points that appear earlier in

the sequence and a circle centred at an earlier point and passing through an

earlier point;

(iii) Point of intersection of two circles, each centred at an earlier point and each

passing through an earlier point;

(iv) Point Pi is on a line –AB–, A = B, such that APi = CD where A, B, C and

D are points that appear earlier in the sequence;

(v) Either one of two points that are one unit apart, that are collinear with a point

that appears earlier in the sequence, and that are such that each lies on a

different line through two earlier points in the sequence.

In each case, the construction depends on specific drawing instruments. For

instance, (i) through (iii) require both ruler and compass with (i) requiring just a

ruler and (iii) just a compass. Rule (iv) accounts for the divider, and (v) for the

marked ruler. Similar M-intersection rules can be enunciated for other drawing

instruments, for instance, the stick, parallel-ruler, right angle, tomahawk, cissoid,

paper-fold, etc.

By convention, points in the starter set are considered M-points.

An M-line passes through two M-points. An M-circle is a circle centred at an M-

point passing through an M-point. A number (or measure) x is a M-number if and

only if (x, 0) is a M-point, that is, if (x, 0) is M-constructible. Note the terminology

can be naturally extended to include M-shapes and M-shape grammars as shapes

and shape grammars that are M-constructible.

M-numbers form a field; this can be demonstrated by constructions for the

arithmetic operations. If M includes the compass, an M-number can be extended by

a quadratic by constructing the square root of the M-number. The following

inductive argument illustrates how M-numbers can be constructed.

Consider the coordinates of any M-point, P. By definition, P is the last point in a

sequence P1, P2, …, Pn. Each Pi is in S, or is obtained as the M-intersection of two

points that appear earlier in the sequence. We can associate P1 with a rational

number. By the arguments presented in Sect. ‘‘Quadratic Extension’’, each point Pi,

R. Krishnamurti



i[ 1, can be associated with a field Fi, which either equals Fi-1 or else, if possible,

is a quadratic extension of Fi-1.

In the case of ruler-compass constructions we choose a starter set with two points

a unit apart, say S = {(0, 0), (1, 0)}. Figure 3 gives constructions for a ruler-

compass point, and for arithmetic and square root operations. The ruler-compass

numbers form the Euclidean field E.
Consider using just a ruler to produce shapes. As a single line cannot intersect

itself, we need at least two lines. Alternatively, we start with a quadrilateral from

which new points can be constructed. Given two parallel lines we can bisect a line

using just a ruler. Likewise, given a line and its midpoint we can construct a line

parallel to it through a given point again just using a ruler. These simple

constructions are known as the trapezoid theorem.

By definition, the intersection of two ruler-lines is a ruler point. Figure 4 shows

construction of ruler points from the starter set, say, S = {(0, 1), (1, 0), (2, 0), (0,

2)} using the trapezoid theorem.

The trapezoid theorem can be adapted to show that the midpoint of two ruler-

points is a ruler-point, and the line through a ruler-point parallel to a ruler-line is a

Fig. 3 The ruler-compass numbers form a field and its quadratic extensions
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ruler-line. A ruler-line contains at least three ruler-points. This construction is

particularly useful in the arsenal of ruler construction techniques as it justifies the

existence of ruler points on or off particular constructed lines. An immediate

consequence is that all integer points in the set {(± n, 0), (0, ± n) | n is an integer}

are ruler points.

Two variations of a ‘push-up pull-down’ construction show that ruler-numbers

form a field. Suppose a, b and c are ruler-numbers. That is, OA = a, OB = b,

OC = c. D is a ruler-point off the X-axis. The line through D parallel to –OA– is a

ruler-line.

In the first variation B is pushed onto the ruler line through D off the X-axis and

pulled back onto the X-axis to produce ruler points X such that BX = OA. That is, if

a and b are ruler numbers, then so too are a ? b and a - b. In the second variation,

there is a point E on the ruler-line through D such that neither –BE– nor –CE– are

parallel to –OD–. The construction lines –OD– and –BE– intersect at F, –DE– and –

AF– at G, –CE– and –OD– at H, and –HG– and –OB– at X. X is a ruler-point and

OB/OA = OC/OX. By choosing c = 1, we have OX = a/b. By choosing

OC = b and OB = 1, we have OX = ab. Since integers are ruler-numbers, by

the above construction it follows that rational numbers are also ruler-numbers. That

is, the field of the ruler numbers is Q.

Fig. 4 Construction of ruler points from a starter set {(1,0), (0,1), (2,0), (0,2)}
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Ruler and divider constructions subsume ruler constructions. O = (0, 0) and

(0, 1) are ruler-divider points. Suppose P = (a, b) is a ruler divider point. By (iv)

there is a ruler-divider point X = (0, x) such OX = OP. That is, x =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

. The

field of ruler-divider numbers is thus Pythagorean.

Marked ruler constructions subsume ruler constructions with an added verging

construction. Figure 5 shows four possible ways of verging with point V between

lines r and s, Verging produces points the coordinates of which are solutions to

polynomial equations of degree at most four with coefficients in V.
In a similar manner one can establish relationships between specific drawing

tools and specific number fields for example, the tomahawk and cissoid

constructions are equivalent to the Glotin and Dicoclesian fields respectively.8

Both are subfields of the Vietean field and as previously stated such constructions

are equivalent to marked-ruler constructions.

M-constructible Shape Grammars

Computing with shapes is central to shape grammar research (Stiny 2006); I have

previously written on the subject (Krishnamurti 1980, 1981; with Giraud 1986; with

Stouffs 1993). One way of looking at shapes is through the manner by which they

are created—typically, through a process of manipulation and change of basic

geometric forms. A shape grammar computation is expressed by the equation:

v ¼ u�f að Þ þ f bð Þ with f að Þ � u:

Fig. 5 Four possible ways of verging with a point

8 There are a number of celebrated results relating to construction by specific drawing tools. For

example, Georg Mohr in 1672 (and independently discovered in 1797 by Lorenzo Mascheroni) showed

that every ruler-compass point is a compass point and conversely. Jean-Victor Poncelet suggested in 1822

and Jakob Steiner proved in 1833 that every ruler-compass point is equivalent to a ruler-fixed circle point.

A ruler construction is also known as Steiner construction. August Adler in 1890 showed the equivalence

of ruler-compass and parallel-ruler constructions. Sundara Row (1893) introduced paper-fold construc-

tions; subsequently, in 1945 Yates proved their equivalence to marked-ruler constructions. In 1939,

Dawson introduced matchstick geometry, which turns out to be equivalent to ruler-compass

constructions. See Eves (1972) and Martin (1998).
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Variables v, u, a, and b represent shapes, in particular, a, and b specify the shape

rule a ? b, and f is a geometric transformation which maps a to some part of u. The

symbol B denotes the part or sub-shape relationship.

There are two issues to consider: shape arithmetic and determining f. Stiny, in his

thesis (1975) lays out the complete theoretical foundation for doing shape arithmetic

and the recognition of sub-shapes, upon which all subsequent worthwhile9

implementations are based.

Doing arithmetic on shapes is a process of producing maximal lines using

‘reduction’ rules (Stiny 1975, 2006; Krishnamurti and Stouffs 2004). Under addition,

collinear point-wise non-disjoint lines are combined to form longer lines; likewise,

under subtraction, such lines are combined to produce shorter, even empty, lines.

Determinacy of f depends upon a (Krishnamurti 1981). For line shapes in the

plane, when there are at least two distinguished points in a, it is always possible to

find all possible geometric transformations f, for which f(a) B u. A point in a shape

is distinguished if it is possible to find a corresponding point in the other shape that

preserves the same spatial relationship under the transformation. For example, the

point of intersection of two lines in a shape is distinguished if it is mapped to the

point of intersection of two corresponding lines in the other shape. Likewise, the

foot of the perpendicular from a distinguished point to a line in the shape is

distinguished. In the absence of such distinguished points, f is defined by a set of

representative transformations from which all possible indeterminate f’s can be

generated. Distinguished points are closed within a number field (see Sect. ‘‘Points

on a Perpendicular’’).

Decidability of shape computation depends on whether two shapes can be

checked for equality. This requires encoding of shapes; that is, by embedding shapes

within a coordinate system (Stiny 1975). When shapes are specified in terms of

rational coordinates, then such computations are always decidable (Krishnamurti

1981). The question explored here is whether for other classes of shapes similar

computations are decidable and practically possible.

Implementing arbitrary shape grammars have proven difficult. In many ways this

has to with our ability to exactly compute shape rule application, which requires the

encoding of points as definite numerical expressions. Exact computation requires

the facility to performing exact arithmetic and comparing numbers for equality.

Shape arithmetic on shapes takes time linear in the number of its maximal lines

(Stouffs and Krishnamurti 1993). That is, the time complexity of an algorithm

depends on the complexity of doing numerical calculations.

Arithmetic on rational numbers is straightforward. So too is comparing pairs of

rational numbers a/b, c/d for equality, which is easily determined by testing whether

ad - bc equals zero. These require unit time.

In general, constructible numbers involve radical expressions, which can be

parenthesized and thus data-structured as trees. As quartic equations are solvable

algebraically, it should be possible to represent Euclidean and Vietean numbers in

this manner. Comparing trees for equality is straightforward—a simple in-order tree

traversal achieves this in linear time. On the other hand, ensuring that a radical

9 Computer implementations that intrinsically deal with ambiguity in shape rule application.
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expression is irreducible is not.10 Reducing radical expressions is neither intuitive

nor straightforward. There are illustrative examples in the literature: for instance,

determining something as simple as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5þ 2
ffiffiffi

6
pq

¼
ffiffiffi

2
p

þ
ffiffiffi

3
p

;

or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2
ffiffiffi

3
pq

¼ 1

4

ffiffiffiffiffi

12
4
p

ð2þ
ffiffiffiffiffi

12
p

Þ

can be hard.

Radical expressions can be nested to arbitrary depth, for example,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16�2
ffiffiffiffiffi

29
p

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

55�10
ffiffiffiffiffi

29
pq

r

¼
ffiffiffi

5
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11�2
ffiffiffiffiffi

29
pq

:

Expressions can be more deeply nested such as the doubly nested expression below:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð112þ 70
ffiffiffi

2
p

Þ þ ð46þ 34
ffiffiffi

2
p

Þ
ffiffiffi

5
pq

¼ ð5þ 4
ffiffiffi

2
p

Þ�ð3þ
ffiffiffi

2
p

Þ
ffiffiffi

5
p

:

Irreducible radical expressions in combination can be reduced further:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffi

3
pq

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 3
ffiffiffi

3
pq

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10þ 6
ffiffiffi

3
pq

¼ 0:

Reducing a radical expression to its irreducible form is termed denesting (Landau

1994). The best-known algorithms to denest certain kinds of radical expressions

take exponential time (Landau 1992; Borodin et al. 1985). The Borodin algorithm is

specifically directed at denesting expressions involving just square roots. Euclidean

numbers fall into this classification. Consequently, while it may be possible to deal

with exact shape grammar computation for certain Euclidean or Pythagorean

numbers, it is not essentially tractable and therefore, unlikely to yield practical

implementations for Euclidean or Pythagorean shape grammar interpreters. Con-

structing Vietean numbers by mechanical means is a ‘trial and error’ process –

essentially a procedure. Whether one can do so precisely by analytic means remains

an open question.

Sticks

In 1980 Lionel (mainly) and I (in a minor way) wrote a research proposal to The

Leverhulme Trust entitled, A New Grammar of Ornament, ‘‘the purpose of which is

to carry out preparatory design work which will be constructively defined through

‘the principles beyond appearance,’ which are now known to us.’’ In the spirit of

that proposal I would like to conclude this paper by exploring an aspect of shapes

made up of ‘matchstick’ lines specified by ‘matchstick’ points.

10 Tongue in cheek, unless one can impersonate the famous Indian mathematician Srinivasa Ramanujan

who made the subject popular by producing with some astonishing results on continued fractions and

radical expressions. See (Berndt and Bruce 1998).
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Imagine having an unlimited supply of sticks of unit length. Endpoints of sticks

are stick points; others arise as a result of intersecting sticks. We can place sticks on

known stick points to create new stick points. There are four possible ways—say

rules—as illustrated in Fig. 6 where the open node represents the new stick point.

From the starting stick points, two are assumed, say: {(0, 0), (�, 0)}. By just

these first two rules we can produce overlaying triangular tilings. By rule 4 we

create stick-points where sticks overlap (see Fig. 7). The stick points have

coordinates as indicated, namely, of the form (2m 1/4, 2n H3/4) or ((2m ? 1) 1/4,

(2n ? 1) H3/4). That is, (2m, 2n), (2m ? 1, 2n ? 1) where the x- and y- axes are

scaled by 1/4 and H3/4, respectively. Computing with such radicals is simple and

computationally tractable. Term the set of stick points generated as S1 = {(2m, 2n),

(2m ? 1, 2n ? 1) | m, n are integers}.

As a result of further overlaying two rhombic tilings as shown in Fig. 8 we can

generate stick-points of intersection by applying rules 2 and 4 repeatedly. Here

S2 ¼ S1 [ 2m � 1�p
5ð Þ1=4; 2n þ 1ð Þ

p
3=4

� �

;
n

p
5þ 4m�1ð Þ1=8; 4n þ 1ð Þ p

5� 1ð Þ
p
3=8

� �

;

4m þ 5�p
5ð Þ1=8; 4n þ 1ð Þ p

5� 1ð Þ
p
3=8

� �

jm; n are integers
o

:

Again, computation with such radical numbers, although tedious, will still be

tractable.

The set grows exponentially. The rapidity with which the number of stick points

is produced at each generation depends on the start set. Any start set with two points

that are less than a stick’s length apart will suffice.

We could repeat this process ad infinitum. In the limit, limn?? Sn = E, the
Euclidean numbers and the best known denesting algorithms are computationally

intractable. In fact anything that is ruler-compass constructible is stick constructible,

which is an interesting result in its own right. See (Dawson 1939; Martin 1998: Ch.

8) for a proof as well as for interesting examples of stick constructions. The point at

which the process breaks down from a tractable set of stick numbers to an

intractable set of stick numbers is an open question. However, with enough stick

points we can make interesting stick shapes and consequently interesting stick shape

grammars, which are computationally tractable.

Fig. 6 Rules for constructing a new stick point from known
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An Ending

A lack of time renders this article necessarily incomplete. I began in hopes of

solving a problem that has long vexed me, namely, of being able to explain how to

do on a machine what one can do naturally and with ease by hand; more generally to

Fig. 7 Constructing a set of stick points by overlaying two triangular tilings created by using rules 1, 2
and 4. The x- and y-coordinates are scaled by 1/4 and

H3/4 respectively

Fig. 8 Constructing more stick-points by further overlaying two rhombic tilings produced by applying
rules 2 and 4
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specify the universe of shapes constructed by various classes of machine. For me it

has been a journey of discovery … about numbers and geometry. I implemented the

prototypical shape grammar interpreter that catered for ambiguity (Krishnamurti

1982); at the time I gravitated towards working with rational shapes not from a

consideration of number fields, but because such shapes supported precise

calculation, and also from a general dislike of the floating point. Numbers

expressed as p and e have an aesthetic in the way that 3.14159… or 2.71828… do

not.

Over the years I have looked at this problem and many a time have put it aside.

Memories of a youthful dexterity with the aptly named surds ineluctably induced

long hours in attempts to denest arbitrary radical expressions, a feat that has bested

better, more agile minds. I had also hoped to illustrate this paper with examples of

an exotic kind of shape grammar, say, for origami forms using shape rules that

embody paper-folds. Settling upon matchsticks, I can claim to commune with

Euclid. Lionel would approve.

Forty years ago Lionel took me under his wing and introduced me to the world of

combinatorial configurations—my first attempt was an algorithm to generate ‘poly-

animals’ on regular tilings; this led to exploring designs on Archimedean

tessellations (Krishnamurti and Roe 1979). Parametric modellers have provided

the modern designer with an easy means of working with Vornonoi and other

popular tilings, which are normally defined over a set of simple fixed-point

coordinates. Configurations on such tilings are readily rational and shape grammars

defined thereupon decidedly tractable. Emulating Owen Jones still remains a goal: A

Grammar of Ornament (Jones 1856) presents an imagery of patterns, symmetries

and colours drawn upon from various cultures. There are contained these

challenges: What is an image? What is a pixel? What is its shape? Conventionally,

an image no matter its resolution is always a rational shape made up of rectangular

pixels located at rational points. Imagine instead a more interesting world of

Pythagorean images made up of Pythagorean pixels located at Pythagorean points.11

In many ways Lionel’s own fascination with numbers, shapes, rules, symmetry,

colour, and in general, geometry has captured my wonderment and for that I thank

him. Hopefully, this paper encourages others to explore this fascinating world of

geometry, numbers, rules and shapes.
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