
Environment and Planning B: Planning and Design 2014, volume 41, pages 110 – 137

doi:10.1068/b39107

A paradigm for interpreting tractable shape grammars

Kui Yue
Microsoft Inc., Redmond, WA 98052, USA; e‑mail: kuiyue@microsoft.com
Ramesh Krishnamurti ¶
School of Architecture, Carnegie Mellon University, Pittsburgh, PA 15213‑3890, USA;
e‑mail: ramesh@cmu.edu
Received 19 June 2012; in revised form 14 December 2012

Abstract. Shape grammars are, in general, intractable. Even amongst tractable shape
grammars, their characteristics vary significantly. This paper describes a paradigm for
practical general shape grammar interpreters, which aim to address computational
difficulties posed by parameterization. The paradigm is expressed in terms of
frameworks each comprising an underlying data structure, manipulation algorithms, and
a metalanguage. The approach is illustrated through three exemplar frameworks.

Keywords: shape grammars, tractability, framework, computer implementation

1 Introduction
Shape grammars provide a rule‑based, visual, and algorithmic approach to spatial designs
(Stiny, 2006). Remarkably, since their inception (Stiny and Gips, 1971), there have been
few computer programs that assist with using shape grammars in design. In a previous paper
(Yue and Krishnamurti, 2013), we showed that shape grammars may not halt and can have
exponential language space. Moreover, even practical shape grammars—halting grammars
with polynomial language space—can be intractable. This implies that algorithms to interpret
shape grammars fall into two categories: those that handle special shapes; and other, more
general, algorithms with worst‑case exponential time complexity, which are practical only
for shapes of small size. The implication is that the best we can achieve, in practice, is to
design and implement a shape grammar interpreter capable of handling a subset of grammars.
In this paper we describe an approach to implementing a class of tractable shape grammars.

Even amongst tractable shape grammars, their characteristics vary significantly. One
possible explanation for this is that the shape grammar formalism covers a wide spectrum
of designs stemming from different disciplines. This richness in variety is shown indirectly
by a number of well‑known categories of shape grammars such as subshape‑driven versus
marker‑driven, nonparametric versus parametric, or rectilinear versus curvilinear. The variety
can also be observed in the details of basic operations of t, −, +, G, and R; their diversity
forms different algebras [for example, U0, U1, U2, and U3 (Stiny, 1991)], on top of which
further categories of shape grammars can be defined. For example, Knight (1999) examines
variety by criteria of restrictions on rule format and ordering. Six types of shape grammars are
distinguished: basic, nondeterministic, sequential, additive, deterministic, and unrestricted
grammars. Such varieties are tangibly noticeable even when we focus on a specific subset of
tractable grammars: for example, those based on two‑dimensional rectilinear (with limited
curved) shapes. The following is a comparison of three such examples, each based on the
square or rectangle as the dominant vocabulary shape.

¶ Corresponding author.

A paradigm for interpreting tractable shape grammars 111

The Baltimore Rowhouse grammar (Yue and Krishnamurti, 2008) captures a specific
building style. Other examples of this type include the Queen Anne grammar (Flemming,
1987) and Frank Lloyd Wright’s Prairie House grammar (Koning and Eizenberg, 1981).
These are all parametric shape grammars, in which rule application does not depend on
emergent shapes. Markers drive shape rule application, and configurations are rectangular
or can be approximated as such. Moreover, parameterization is often limited to the height or
width of a room, or to the ratio of a room partition. The central manipulation unit is a room
(or space). Shape rules typically add a room, partition a room, or refine a room by adding
windows, doors, etc. Figure 1 illustrates typical generic schema.

Figure 2 illustrates the rules and a sample derivation of a polyomino (Golomb, 1994)
grammar based on a structure grammar (Carlson et al, 1991), an augmented variation of
a formalism known as a set grammar (Stiny, 1982). The grey square in rule 3 depicts an
exclusionary condition.

The Kindergarten grammar (Stiny, 1980) is another example of this type of grammar.
These grammars treat designs as symbolic objects; designs are enforced to be elements of
sets from which they are formed. Thus, integrity of the compositional units in designs is
preserved, as these parts cannot be recombined and decomposed in different ways. This
is in contrast to those grammars in which shape elements are decomposed and recombined
freely so that new shapes can emerge: for example, the shape grammar shown in figure 3.
Here we are essentially manipulating symbols in a two‑dimensional space, thus making
these grammars amenable to computer implementation. The resulting shapes are simply
replacements of internal symbols that occur at the final stage, for the purpose of visualization.

Figure 1. Typical schema found in parametric grammars describing floor plan layouts.

112 K Yue, R Krishnamurti

Figure 3 shows the rules and sample derivations of a classic Stiny (2011) shape grammar
comprised of three shape rules. The first rule replicates a square forming squares overlapping
a central square; the second rotates a square, and the third moves a square. In rule application
sides of squares are cut into meaningful pieces of various lengths, that are related in a definite
sequence, and squares move wherever one wants—left or right and up or down—yielding a
variety of shapes that exceed expectations that might be associated with the square. This is an
example of the kind of shape grammars where shape elements are free to be decomposed and
recombined so that shape emergence is an important feature during shape rule application. In
the Knight and Stiny (2001) nomenclature, computation here is nonclassical.

Table 1 shows a comparison of certain characteristics of the three grammar examples
discussed above, of their importance to computer implementation. The variety in this table
shows that, even for tractable shape grammars, it is still difficult to come up with the design
of a single uniform interpreter. Remarkably, however, of the three grammars, the classic
Stiny grammar is the most straightforward to implement (Krishnamurti, 1982); shapes rules,
although subject to similarity transformations, are nonparametric—that is, shapes are fixed in
their geometry. The polyomino grammar can be realized, symbolically, as shapes associated
with symbols, and thus implemented in a straightforward fashion using attributed strings.
Parametric shape grammars as exemplified by the Rowhouse grammar require further
consideration.

Figure 2. Rules of a polyomino grammar and sample derivations.

A paradigm for interpreting tractable shape grammars 113

Figure 3. Rules and derivations of a grammar with emergence. Redrawn by the authors. Adapted from
Stiny (2011).

Table 1. Comparison of characteristics important for computer implementation.

Grammar Driver Emergence Manipulation unit Parametric Context

Rowhouse marker no room yes sensitive
Polyomino marker no symbol no sensitive
Stiny classic subshape yes shape element no free

114 K Yue, R Krishnamurti

2 An approach to practical grammar interpreters
More often than not it is relatively straightforward to implement an interpreter for a
special class of shape grammars: for example, grammars that capture building styles. As
we cannot handle intractable shape grammars, why not focus on dealing with as many
tractable shape grammars as possible, employing a concept, in spirit, comparable with or
similar to approximation algorithms (Cormen et al, 2004). Following this idea, we propose
an approach for practical, ‘general’ shape grammar interpreters, as shown in figure 4. The
approach comprises a set of subinterpreters, one for each class of tractable shape grammars.

In this way, collectively, most parametric shape grammars can be covered.

This approach is a perfect subject for applying techniques of object‑oriented design: in
particular, modularity, polymorphism, and inheritance (Grady et al, 2007). The top‑level
formalism of shape grammars can be implemented as abstract classes and methods, which
are materialized in the subinterpreter for each class. The shared functionalities—for example,
interfaces—can be implemented as part of the top‑level infrastructure such that developers
for the subclass interpreters are free from unnecessary redundant work.

The approach can be promoted to follow the successful model of the Eclipse project
(http://www.eclipse.org), which aims at an open development platform comprising extensible
frameworks, tools, and runtimes for building, deploying, and managing software across
the lifecycle. By building a similar platform backed up by the above approach, researchers
geographically dispersed around the world can collaboratively work on the same platform;
each freely developing their idea as an add-in, thus contributing to their effort. Designers
can freely download and exploit up‑to‑date grammar systems, testing new design ideas,
suggesting new features, and reporting bugs. Such a platform fundamentally changes the past
discrete structure of the research of implementing a shape grammar interpreter (Chau et al,
2004); duplicated work is significantly reduced, and the scope of the users greatly expanded.

It should be noted that the proposed approach depends on a classification of shape
grammars into subclasses. Moreover, the classification is considered to be ‘better’ when the
number of subclasses is smaller, and when, simultaneously, the scope covered, collectively, is
larger. Here, the following research question immediately emerges: what is the most optimal
way of classifying shape grammars?

Figure 4. [In colour online.] An approach for a practical ‘general’ shape grammar interpreter.

A paradigm for interpreting tractable shape grammars 115

3 Classification of shape grammars
There are many different ways of classifying shape grammars, each from a distinct perspective.
For instance, shape grammars could be classified based on relatively obvious shape properties
such as, two‑dimensional versus three‑dimensional shapes, rectilinear versus curvilinear
shapes, and so on. Classification could be based on definition: for example, structure grammars
(Carlson et al, 1991) or set grammars as defined by Stiny (1982). Classification from the
field of formal linguistics could be introduced: for example, finite versus infinite grammars
based on the size of the underlying language; that is, based on the size of the design space.
Classification could also be based on properties of shape rules and/or their rule application:
for example, nonparametric versus parametric shape grammars based on how shape rules
are specified, marker‑driven versus subshape‑driven shape grammars based on how shape
rule application is controlled, or context‑free versus context‑sensitive shape grammars based
on neighbourhood dependency when shape rules are applied. Knight’s (1999) six types fall
into this latter category. However, none of the categories is truly appropriate. This is because
each category is so broad as to comprise grammars with even greater variety. In other words,
the criteria upon which shape grammars have been classified have not been based on elements
that are fundamental to grammar interpretation or implementation.

Elements fundamental to any computer program are algorithms and data structures;
this is evident from the title of Wirth’s (1978) classic textbook Algorithms + Data
Structure = Programs. This is equally true for shape grammar implementations. An
implementation is, in essence, a computer program that manipulates the internal representation
of a design—data structure—by a set of operations. The basic shape grammar operations of t,
–, +, G, and R operate on a data structure, and details vary from one data structure to another.
The exact procedure of searching for matching candidates depends on the data structure; so
too does exact match verification. The underlying data structure, in turn, determines how
to carry out these operations, and how efficient they are. Moreover, data structure fixes in
advance the power of the shape rules built on top of them. Stiny (1994, page s53) remarks,
“the antecedent definition of meaning parts and units limits the subsequent possibilities
for inquiry … . Descriptions fix things in computations, and nothing is ever more than its
description anticipates explicitly.”

The argument can also be seen from a cognitive standpoint. The design of a data structure
is simply a particular view of the underlying subject, which is present‑at‑hand. According
to Winograd and Flores (1986, page 97), “Whenever we treat a situation as present‑at‑hand,
analyzing it in terms of objects and their properties, we thereby create a blindness.” Things
covered by any current data structure correspond to those that are seen; the blind parts are
left to other data structures.

In line with this argument, the underlying data structure used to support algorithms for
the implementation fundamentally characterizes the corresponding class of shape grammars.
Assuming that there is always a power difference between any two data structures adopted,
and if no other data structure subsumes any of the adopted data structures, then we have
reached an optimal classification.

4 Augmented practical ‘general’ approach
The ‘general’ approach comprises a set of subinterpreters, one for each class of shape
grammars. Moreover, each class is backed up by a data structure, which reflects the internal
characteristics of the corresponding subset of shape grammars.

Apart from the internal characteristics of shape grammars, there are other factors that
influence computational tractability: for example, how shape grammars are designed
and described. Traditionally, a shape grammar is designed to simply and succinctly
describe an underlying building style, with little consideration given to how the grammar

116 K Yue, R Krishnamurti

can be implemented. For example, as is often found in the literature, such descriptions
of the form “If the back or sides are wide enough, rule 2 can be used …” are inherently
countercomputable. As a result, in order to translate this into programming code, shape rules
have to be quantitatively specified; furthermore, there has to be enough precision in the
specification to disallow generation of ill‑dimensioned configurations.

Closer examination also shows that there may be more than one way to describe
a particular shape rule; it is possible that a certain way is easier to compute, and another
might be computationally intractable. As a result, it is desirable to design an application
programming interface‑like framework to support the design of shape grammars; then,
shape grammars that follow the framework are guaranteed to be computationally tractable.
Such a framework is built on top of an underlying data structure and basic manipulation
algorithms. Moreover, for the ease of code translation, a metalanguage built on top of the
basic manipulation algorithms should also be developed. As grammars in different classes
typically have differing underlying structures, the appropriate underlying data structure for
the framework will be different. Consequently, the overall framework comprises a series of
subframeworks, one for each class of shape grammars, as shown in figure 5.

5 Three exemplar subframeworks
In this section we examine three subframework exemplars as a way of illustrating the
approach to practical, ‘general’ interpretation of shape grammars.

In selecting subframeworks to illustrate the approach, it was deemed advantageous to
initially select a subframework for a subclass of shape grammars with the largest population. It
turns out that shape grammars that capture building style happen to be good choice. Of all the
shape grammar applications reviewed by Chau et al (2004), about half deal with architectural
plans. Moreover, conventional buildings (namely, buildings with rectangular spaces or
dominated by such spaces) are often the subject matter. Consequently, a subframework for
shape grammars capturing corpora of conventional building types (namely, the rectangular
subframework) is chosen.

Two‑dimensional polygons are another kind of shape widely used in shape grammars: for
example, Chinese ice‑ray lattices (Stiny, 1977) and Hepplewhite‑style chair back grammars
(Knight, 1981). Thus, a subframework for two‑dimensional polygonal shapes is also chosen.
From the appearance, such a subframework can be viewed as an extension of the rectangular

Figure 5. [In colour online.] A subframework for each subclass of tractable grammars.

A paradigm for interpreting tractable shape grammars 117

subframework. Yet, as is shown in section 7, the extension is not straightforward. In fact,
both application context and basic manipulations are quite different.

The rectangular subframework relies on a graph‑like data structure. This suggests that there
might be a relationship between shape and graph grammars; the former has been investigated
mainly in the field of design, in particular, architectural design; the latter has been widely
studied in computer science. The comparison in section 7.1.3 shows that both differ
significantly although there is noticeable commonality. Graph grammars are most useful when
dealing with those shape grammars which are dimensionless and context free. Accordingly,
we consider graph grammars as a subframework for implementing dimensionless, context‑
free shape grammars. For reasons of space, the rectangular subframework is explained in
detail, while the other two subframeworks are discussed in brief with less detail.

6 Rectangular subframework
Conventional buildings are buildings with rectangular spaces or dominated by such.
A rectangular space is specified by a set of walls in such a way that the space is considered
rectangular by the human vision system. Amongst many variations, a space can be specified
by four walls jointed to one another, four disjoint walls, three walls, or framed by four corners.
See figure 6.

Spaces (rooms) are central to buildings—whence, to shape grammars that describe
building styles. For shape grammars capturing corpora of conventional building types, shape
rules are parametrically specified in such a way that parametric subshape recognition consists,
typically, of searching a special room under certain constraints, and actually matching labels.
Such grammars generally start with a rough layout; details, such as openings and staircase,
are added at a subsequent stage. There are two main ways of generating a layout: space
subdivision and space aggregation. Combination of the two is also possible.

6.1 A graph-like data structure
The interpreter needs a data structure to represent layouts with rectangular spaces: that is, a
data structure that contains topological information of spaces as well as concrete geometry
(in this paper, two‑dimensional) data of a layout including walls, doors, windows, and
staircases. It needs to support viewing a layout as a whole, viewing a layout from a particular
room with its neighbourhood, or simply focusing on a particular room itself. Moreover, the
data structure needs to support Euclidean transformations augmented by both uniform and
anamorphic scaling.

A graph‑like data structure has been designed to specify such rectangular spaces. There
is a boundary node [coloured blue (light gray) and tagged by the label B] for each corner
of the rectangular space, as well as a node for each endpoint of a wall. These nodes are
connected by either a wall edge (solid line) or an empty edge (dotted line). A central node
[coloured red (dark gray) and tagged by the label R] represents the room corresponding to
the space, and connects to the four corners by diagonal edges (dashed lines). It is needed
for manipulating boundary nodes of room units, such as dividing a wall through node
insertions (coloured white and tagged by the label W), for creating an opening in a wall by
changing the opening’s edge type to empty, and so on. More information about a room is
recorded in the room node: for example, a staircase within the space. Windows and doors

Figure 6. Examples of a rectangular space.

118 K Yue, R Krishnamurti

are assigned as attributes of wall edges. Further, unlike traditional graph data structures,
the angle at each corner is set to be a right angle. A node has at most eight neighbours.
Figure 7 illustrates the graph‑like data structure for the different variations of a space
given in figure 6. A set of such graph units can be combined to represent complex layouts
comprising rectangular spaces. See figure 8.

6.2 Transformations of the graph-like data structure
The target layout is assumed to comprise only rectangular spaces, and the allowable
transformations are Euclidean with uniform and anamorphic scaling. As shape rule application
is label‑driven, translation is automatically handled. The graph‑like data structure is capable
of easily handling uniform and anamorphic scaling: by, firstly matching room names,
then labels on corner nodes, and, lastly, by comparing possible room ratio or dimension
requirements.

As a result, only rotations and reflections remain to be considered. As the spaces are
rectangular, rotations are limited to multiples of 90° and reflections are either vertical or
vertical. Moreover, a horizontal reflection can be viewed as a combination of a horizontal
reflection and a rotation. Hence, any combination of reflections and rotations is equivalent
to a combination of horizontal reflections and rotations. Consequently, the following
transformations are all we actually need to consider:

 ● R0: default; no rotation, with possible translation and/or scale.
 ● R90, R180, R270: a rotation of 90°, 180°, and 270°, respectively, with possible translation
and/or scale.

Figure 7. [In colour online.] Graph‑like data structure representation of a space.

Figure 8. [In colour online.] A layout represented by a set of graph units.

B W

R

A paradigm for interpreting tractable shape grammars 119

 ● RR0, RR90, RR180, RR270: (first a rotation of 0°, 90°, 180°, and 270°, respectively,
followed by a vertical reflection) vertical reflection, horizontal reflection, or their
combination, with possible translation and/or scale.
As shown in figure 9, transformations can be implemented on the data structure by index

manipulation. Each of the eight possible neighbours of a node is assigned an index from
0 to 7; indices are then transformed simply by modulo arithmetic. For example, index + 2
(modulo 8), counterclockwise rotates neighbour vertices through 90°. Other rotations and
reflections are likewise achieved. By viewing the original neighbour relationship for each
node with the transformed indices, we obtain the same transformation of the whole graph.
By taking advantage of this fact, we need to manipulate only the interior layout instead
of the left‑hand side of every shape rule. Consequently, we only need to consider how to

apply shape rules with the default transformation, which is automatically applicable to the
configuration under different possible transformations. This gives the same results, but is
much simpler to achieve.

6.3 Common functions for the graph-like data structure
With the graph‑like data structure, a layout is represented by an eight‑way doubly linked list
formed by nodes and edges. Shape rule application manipulates this structure, and a set of
common functions shared by the shape rules can be identified.

Some common functions are relatively easy to carry out: for example, splitting a room
into two and merging two rooms into one, or finding a room with a given name. Others are
more complicated; examples include finding the north neighbour(s) of a given room, and
finding the shared wall of two given rooms. The following section describes the algorithm
and pseudo‑code for these examples.

6.3.1 Finding the north neighbour(s) of a given room
A room may have zero, one, or more north neighbours (figure 10), which can be represented
by a list of room nodes. Intuitively, to find the north neighbour(s) of A, we start by finding
A’s northeast corner node, nodeNE, and northwest corner node, nodeNW. Then, we traverse
through each corner node from nodeNE (inclusive) to nodeNW (exclusive) along the
westerly direction to find its north neighbours. All north neighbours found are desired room
nodes. For example, in figure 10(c), the north neighbours found are B, and C. However, as
shown in figure 10(d), this intuitive algorithm will miss the rightmost neighbour room, that
is, when two neighbour rooms only partially overlap so that nodeNE is on the south edge
of that neighbour room, and is not the desired end node. Therefore, we need to modify the
intuitive algorithm to have the correct start and end nodes to loop through.

It can be proven that nodeNW is always the correct end node as a north neighbour B has
to overlap with room A, which means room B must has a southeast corner node, nodeSE, at

Figure 9. Transformations of the graph‑like data structures.

120 K Yue, R Krishnamurti

the right side of nodeNW [figure 11(a)], or is nodeNW [figure 11(c)]. Otherwise, B is not a
north neighbour of A.

The algorithm for finding the north neighbours of a given room is shown in figure 12.
Finding the north neighbour(s) of a given room is a special case of finding any neighbour(s)
of a given room. It turns out all that finding neighbour functions in the other three directions
can be implemented as finding the north neighbour(s) under a certain transformation. For
example, the east neighbour(s) of a given room is the same as the north neighbour(s) of the
given room under an R90 transformation.

6.3.2 Finding the shared wall of two given rooms
In the data structure, the shared wall of two given rooms is represented as a list of nodes
connected by edges; the simplest form of a shared wall is given by two nodes connected by
an edge. The pseudo‑code for the algorithm is given in figure 13.

For any two given input room nodes, A and B, in general, the rooms may not be neigh‑
bouring rooms at all. If, however, A and B are real neighbours, B can be in any one of four

Figure 11. [In colour online.] The start and end nodes for finding neighbour room(s).

Figure 10. [In colour online.] Different cases for the north neighbour(s) of a room.

(a) (b) (c) (d)

A paradigm for interpreting tractable shape grammars 121

directions from A. Therefore, it is necessary for the algorithm to test all four sides of A;
for each particular side, it is simple to test whether B is in the north neighbours under a given
transformation T.

If B is determined as a neighbour of A at a given side, the exact start node, wStart, and
end node, wEnd, need to be further determined. The edge from the northeast node, nodeNE,
to the north‑west node, nodeNW, of room A under transformation T is guaranteed to be the
wall of room A, but not necessarily the wall of room B [figure 14(a)]. As a result, wStart may
be actually a node to the right of nodeNE. This node is found by traversing from nodeNE
to nodeNW testing whether B is its northwest neighbour or not. Similarly, wEnd may be
actually a node to the left of nodeNW. This node is found by traversing from nodeNW to
nodeNE testing whether B is its northeast neighbour or not.

6.4 Metalanguages
All common functions collectively form an API (application programming interface), which
expresses the capability of its underlying data structure. Such an API facilitates the design of
shape rules, in a way similar to how a programming language API, say, the Java API helps
in building Java applications. Moreover, grammar designers can apply the API to ensure the
computability of their designed grammars.

A metalanguage is a language with which to describe another language. We employ a
metalanguage to express shape rules. Normally, shape rules are described pictorially, which
is inherently ambiguous, and difficult to translate to a computer program. Equally, describing
shape rules in a programming language is likewise cumbersome for the typical designer
who is creating the shape grammar. A metalanguage serves as a middleman helping to
express shape rules in a manner formally more rigorous than pictorial description, yet closer
in form to natural language. Every metalanguage is defined relative to its subframework.
A metalanguage facilitates manual translation to computer code. Ultimately, of course, it
would be preferable to have the metalanguage be automatically translated into the target
programming language, similar in spirit to MetaL (http://www.meta-language.net/faq.html).

Figure 12. Algorithm for finding the north neighbour(s) of a room.

122 K Yue, R Krishnamurti

The API supports descriptions of grammars via expressions in the metalanguage; that is,
shape rules can be designed in a rigorous fashion so as to be easily translated into pieces of
code, the ultimate format by which to interpret shape rules. Essentially, the metalanguage is
a set of function calls, which are predefined in the API.

Figure 13. Algorithm for finding the shared wall of two neighbouring rooms.

Figure 14. [In colour online.] Finding wStart and wEnd.

(a) (b)

A paradigm for interpreting tractable shape grammars 123

Figure 15 shows two such examples. The metalanguage is in the form of an if–then
statement; the if‑part determines whether the rule is applicable or not; the then‑part specifies
how to do the rewriting.

7 Polygonal subframework
Geometrically, the polygonal subframework may appear, quite simply, to be an extension of
the rectangular subframework. Closer examination actually tells a different story; both the
typical application context and the basic manipulations of this polygonal subframework are
distinct from the rectangular subframework.

While the rectangular subframework works for shape grammars describing building
layouts, the polygonal subframework does not. The reason is that the majority of
building spaces are rectangular rather than polygonal. Instead, shape grammars involving
polygonal shapes are more common in describing other kinds of designs: for example,
Chinese ice‑ray lattices (Stiny, 1977), Hepplewhite‑style chair backs (Knight, 1981), as well

Figure 15. Example rules in the rectangular subframework and their metalanguage.

124 K Yue, R Krishnamurti

as abstract paintings (Knight, 1989), see, for example, the nonrepresentational paintings of
Fritz Glarner. Such shape grammars are typically parametric and marker driven. The central
manipulation is subdivision, which is the theme selected for the polygonal subframework.
Besides subdivision, there are other auxiliary manipulations, such as filling colours, inscribing
to the initial shape with a shape of triangle, pentagon, hexagon, and so on (Stiny, 1977). Such
auxiliary manipulations cannot be generated by subdivision and are handled in a special way,
by adding extra functions, or by other means, for example, treating the shape to be inscribed
as part of the initial shape.

Subdivision is a procedure for dividing a polygon into two smaller ones by a ‘cutting’ line,
which is a straight‑line segment, a joint line of two segments, or a polyline of multiple
line segments. As a result, transformations become unnecessary, since an equal effect can
be achieved by changing the coordinates of the endpoints of the cutting line. For example,
figure 16 shows a shape rule in which a triangle is subdivided into a smaller triangle and a
quadrilateral. Shape rule (b) is a vertical reflection of the shape rule (a).

The determination of the position of a cutting line starts with inserting a point or multiple
points in the interior of a polygon or on its boundary; then the cutting line is generated by
connecting new inserted points to other existing points of the polygon, possibly involving
line extensions and intersections, or by simply interconnecting the new inserted points. There
are typically constraints over the candidate position of a new point. The constraints can be
a fixed position like the centroid of a polygon, an interval on a line, or a particular region.
This means that there are generally infinitely many ways to position a new point. Two ways
frequently used to position the new point are manual pickup and random selection.

Noticeably, a ‘subdivision’ of the polygonal subframework is different from a ‘splitting’
of a rectangular subframework. The former is typically oblique while the latter is always
horizontal or vertical. Moreover, a cutting line of the former often has infinitely many
possibilities while the position of a splitting line of the latter is usually uniquely ‘fixed’.

7.1 Common functions of polygonal subframework
Key common functions include the function of dividing a simple polygon into two by
a cutting line, and those determining the positions of the new points.

7.1.1 Dividing a simple polygon by a cutting line
Here, we consider a more general function, of dividing a simple polygon G into multiple
subpolygons by a cutting line C [figure 17(a)]. This problem can be solved by converting
the problem to finding the intersection of two arbitrary (may not be simple) polygons, which
has been well studied (Greiner and Hormann, 1998; O’Rourke, 1998; Stouffs, 1994; Stouffs

(a)

(b)

Figure 16. A subdivision shape rule (a) and its vertical reflection (b).

(a)

A paradigm for interpreting tractable shape grammars 125

and Krishnamurti, 2006). This is done by first finding a rectangle, which is larger than the
bounding box of polygon G, and then forming two simple polygons, GC1 and GC2, by extending
the starting and ending line segments of the cutting line [figure (17b)]; the desired results will
be () ()G G G GC C1 2+ , + [figure 17(c)].

A simpler but new algorithm is introduced here. This algorithm is inspired by Greiner and
Hormann (1998). It takes advantage of the special properties of cutting lines in the polygonal
subframework. A cutting line is always interior or on the boundary of the polygon G and has
no self‑intersection. Moreover, the start point Ps and end point Pe of the cutting line are on
the boundary of polygon G [figure 18(a)]. In fact, any cutting line can be reshaped to satisfy
these conditions. See figure 19.

Figure 18 illustrates the steps when applying the algorithm. The algorithm starts from the
start point Ps of the reshaped cutting line, marching to the end point Pe, segment by segment.
Each segment is tested for whether intersecting the polygon G or not by testing whether the
other endpoint falls on the boundary of polygon G: for example, endpoint P1 for segment S1,
P2 for segment S2 [figure 18(a)].

When an intersection is found, two new polygons are created by using the cutting line
marched so far and continuously marching right and left, respectively, along the polygon G
until going back to the start point. The segments marched are then removed from the cutting
line so that a new cutting line is formed for the next step (the dashed line in figure 18). If the
new cutting line is empty, then both new polygons are the desired results. Otherwise, by using
the point‑inside test on the two new polygons with the point P next to the start point of the
new cutting line, the one which P does not fall inside (dark shaded polygons in figure 18) is
the desired result, and the other (lightly shaded polygons in figure 18), together with the new

Figure 17. Dividing a simple polygon by intersection of two arbitrary polygons.

(a)

(c)

(b)

126 K Yue, R Krishnamurti

cutting will be used as the input for the next step. The above procedure is repeated and the
entire algorithm stops when the cutting line becomes empty [figure 18(f)].

There are possible degenerate cases when some matched segments overlap with the some
other segments of the polygon G [figures 18(c), (d), and (f). In such cases, the number of
segments in one of the two new polygons must be two; this can be easily tested and ignored.

Figure 18. Applying a marching algorithm for polygon subdivision.

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

Figure 19. Reshaping the cutting line.
(a) (b)

A paradigm for interpreting tractable shape grammars 127

Another issue with such cases is that the segment coming from the cutting line is colinear
and connected to the next segment coming from the polygon input, and these two should be
merged into one [figure 18(f)]. The algorithm is given in figure 20.

Testing for intersection dominates the running time of the marching algorithm. The total
number of intersection tests for marching along the cutting line is mn, where m and n is
the number of segments in C and G, respectively. As a result, its complexity is O(mn).

7.1.2 Determining the positions of the new points
Determining the positions of the new points can be done in two ways, randomly or manually.
Manual determination needs the support of an interface: for example, highlighting the
candidate regions, and enforcing further constraints for the next new point after a new point
has been picked. Random determination requires computing all candidates of intervals and
regions, and randomly selecting a point.

Figure 20. A simple marching algorithm to divide a simple polygon by a cutting line.

128 K Yue, R Krishnamurti

7.1.3 Metalanguage for polygonal subframework
Figure 21 illustrates the metalanguage for three examples taken from Knight (1980). The
first randomly selects two points from candidate intervals. The metalanguage enforces
the constraint on angle a, a H 90º, by first, determining (x2, y2), second, creating a line
through (x2, y2) and a perpendicular to line P2P3, third, computing the intersection (x, y) of

Figure 21. Metalanguage examples for picking up new points under constraints (adapted from Knight,
1980).

A paradigm for interpreting tractable shape grammars 129

the new line with line P1P3 to obtain the interval [(x, y), P3], and last, using the intersection
of intervals [(x, y), P3] and [P3, P1, 5/8, 3/4] as the interval for (x1, y1).

The second and third are examples of manually picking up points from candidate intervals
and regions. All candidate intervals and regions are computed and combined as a candidate
pool.

8 Graph subframework
The rectangular subframework may give the impression that shape grammars are just special
cases of graph grammars (Brouno, 1990; Rozenberg, 1997), which have been widely studied
in the computer science. The following discussion shows that both significantly differ from
one another. However, graph grammars can be used as a subframework to solve certain
dimensionless, context‑free shape grammars.

8.1 Shape and graph grammars
Graphs provide a natural way of describing complex situations on an intuitive level. At
a certain level, this characteristic caters to the advantage that visual languages (that is,
shapes) possess. Graph grammars are rule‑based modification of graphs through graph
rule application. Graph grammars have been developed as an extension to graphs of formal
string grammars (also known as generative grammar, or phrase structure grammars).
Among string grammars, context‑free grammars are the best understood; they have proven
extremely useful in practical applications and powerful enough to generate a wide spectrum
of interesting formal languages. Analogously, most research focuses on ‘context‑free’ graph
grammars, which typically means local modifications of graphs without ‘global’ constraints.

Figure 22. A Sierpinski gasket.

Figure 23. Collage grammar for the Sierpinski gasket. Adapted from Drewes and Kreowski (1999).

130 K Yue, R Krishnamurti

Rule application on graphs is, typically, label driven. There are two basic choices for
rewriting a graph: node replacement and hyperedge replacement.

Shape grammars are rule‑based rewriting systems of shapes. In many ways, these can
be viewed as an extension of formal string grammars to shapes. Their shared roots imply a
close connection between graph and shape grammars. As an example, Drewes and Kreowski
(1999) investigated the properties of collage grammars, a special case of graph grammars,
and applied them to generate pictures: for example, a Sierpinski gasket (figures 22 and 23).
Likewise, such pictures can be also succinctly described by shape grammars (Piazzalunga and

Figure 24. A shape grammar for the Sierpinski gasket.

Figure 25. Implementing the ice‑ray grammar as a graph grammar: (a) a step in the ice‑ray derivation,
(b) the corresponding hypergraph derivation.

(a) (b)

A paradigm for interpreting tractable shape grammars 131

Fitzhorn, 1998; Stiny, 1977) (figure 24). This suggests that there is an intersection between
graph and shape grammars.

Consequentially, shape grammars can take advantage of graph grammar research results,
especially for ‘context‑free’ shape grammars; that is, when shape rewriting happens locally.
For example, as shown in figure 25, ice‑ray grammars (Stiny, 1977), which essentially
describes a process of polygon subdivision, can be implemented as a graph grammar. Each
point corresponds to a vertex and each polygon is decorated with a hyperedge (the vertices
drawn in squares together with dashed tentacles). Figure 26 shows shape rules versus
corresponding graph rules of ice‑ray grammars: the right‑hand hyperedges are labeled either
S as candidates for further rule application, or T for no further rule application; the choice is
based on certain criteria, for example, the area of the underlying polygon. Rule 3 is applied
in figure 25. Note that there is a necessary step to convert graphs to figures when using
graph grammars to generate designs; depending on the details of the conversion, such graph
grammars may show different appearances (figures 23 and 26).

On the other hand, shapes differ significantly from graphs and so do their grammars.
Shape grammars do not deal solely with pure pictures; they are usually imbued with
semantics, and represent designs in reality. In this respect, dimensions become typically
important. Graph grammars, however, are inherently dimensionless. Moreover, semantics
make most shape grammars context sensitive; this greatly limits whatever advantages are
provided by those nice theorems of graph grammars (on the assumption that the grammars
are context free).

Figure 26. Shape and corresponding graph rules of the ice‑ray grammar.

Shape rule Graph rule

Rule 1

Rule 2

Rule 3

Rule 4

132 K Yue, R Krishnamurti

Graph grammars are essentially label driven; this puts further restrictions in helping
solve the fundamental problem of subshape recognition in shape grammars. As a classical
example (figure 27), there are many, potential uncountable, square subshapes in a grid figure.
Converting the grid figure to a graph does not change the basic characteristics of the problem.

8.2 Graph grammars as a subframework
Research on collage grammars (Drewes and Kreowski, 1999; Drewes et al, 1996) shows
how graph grammars can be used as a subframework in the ‘general’ approach to shape
grammar interpretation. Such graph grammars are essentially parametric and label driven.
The underlying data structure is obviously a graph, typically undirected in the context of
generating designs. The central step in using graph grammars to generate designs is the
iterative application of a set of graph rules, which is known as graph transformation in
the literature (Heckel, 2006). Moreover, the manipulation of the underlying graph is also
achieved through graph transformation. Thus, the key common function is the application of
a graph rule.

8.3 Graph rule application
Algorithms for graph rule application (that is, graph transformation) have been previously
investigated (Rozenberg, 1997). In general, a graph rule r is defined by six tuples (L, R, K,
glue, emb, appl): (i) L and R are left‑hand side and right‑hand side graphs, respectively;
(ii) K is a subgraph of L called the interface graph; (iii) glue is an occurrence of K in
R, relating the interface graph with the right hand side; (iv) emb is an embedding relation,
relating nodes of L to nodes of R; and (v) appl is a set specifying the application conditions
for the rule (Andries et al, 1999). It is possible that K, glue, emb, or appl is empty—
certain combination of emptyness forms a rule with special properties, for example, rules
without application conditions, or rules with an empty embedding relation corresponds to
single‑pushout rules.

The application of r to a graph G replaces an occurrence of the left‑hand side L in G by
the right hand‑side R. This is done through three stages: (i) removing a part of the occurrence
of L from G, (ii) gluing R and the remaining graph D, and (iii) connecting R with D via
the insertion of new edges between the nodes of R and those of D. Note that the left‑hand
side matches all isomorphic graphs and this subsumes geometry transformations, which are
usually important in the application of shape grammars. The details of the algorithm can be
found in Andries et al (1999).

8.3.1 Metalanguage for graph subframework
The metalanguage for the graph subframework is mainly to call the graph rule application
function by specifying the details of the graph rules, with auxiliary functions to convert
the final graph to shapes. Figure 28 illustrates the style of a spiral collage grammar and its
corresponding metalanguage description (Drewes et al, 1996).

Figure 27. Subshape recognition in a grid figure: (a) a grid figure, (b) the corresponding graph.
(a) (b)

A paradigm for interpreting tractable shape grammars 133

9 The third dimension
The three subframeworks illustrated thus far are all two‑dimensional. There is nothing
intrinsic in the approach to prevent a subframework from being three‑dimensional. The
boundary solid grammar (Heisserman, 1994) is a case in point.

The representation of solid objects is composed of two parts: topology and geometry.
The topology is represented as a graph composed of nodes and arcs—the nodes are
topological elements, and the arcs represent the adjacencies between such elements. The
geometry contains vertex coordinates for polyhedral solids. The topology together with
the geometry forms a boundary representation. The basic operations are the Euler operators
(Mäntylä, 1988) for modifying the topology, vertex coordinate assignment for modifying the
geometry, label addition and removal, and state change to indicate the current status; these
are all specified as predicates in the declarative programming language, CLP(R). Figure 29
shows one such example of a basic operation, namely, the point_face operator, which pulls
out a surface onto a point, correctly modifying the number of edges and vertices of the face.

Supported by a set of basic operations, boundary solid grammars specify a subclass of
shape grammars, which, in the context of this paper, specifies a subframework. Accordingly,
the boundary representation is the underlying data structure, the algorithms are those for the

Figure 28. Metalanguage description for rules of a spiral collage grammar. Adapted from Drewes et al
(1996).

134 K Yue, R Krishnamurti

basic operations, and the metalanguage are expressions in CLP(R), and the subclass of shape
grammars contains those describable by the basic operations. Figure 30 shows an example of
a shape rule for adding a second floor above a room.

10 Paradigm
The Oxford English Dictionary gives the basic meaning of the term paradigm as “an exemplar,
a pattern followed, an epitome or a model.” It is a term that is frequently employed within
the design profession to indicate an archetype or outstanding example. Design paradigms
comprise functional precedents for design solutions (Wake, 2000). In this paper we have
developed an approach for implementing practical parametric shape grammars by, essentially,
subdividing grammars into subclasses of tractable shape grammars. We have illustrated the

Figure 29. Point_face operator (adapted from Heisserman and Woodbury, 1993).

A paradigm for interpreting tractable shape grammars 135

approach through several subframeworks each specified by an underlying data structure, basic
manipulation algorithms, and a description metalanguage. Each subframework specifies a
way of implementing a subclass of shape grammars. In terms of language space, the language
covered by a subframework is identical to the language of a subclass of shape grammars.
However, each subframework takes advantage of special characteristics of the corresponding
subclass of shape grammars so that implementation is manageable. That is, although the
language spaces are equal, the implementation may not truly implement the shape grammar
formalism as described in its formal definition. On the other hand, in practice, many shape
grammars are ‘special’ in that they are, indeed, tractable. Whence, it is feasible to consider a
paradigm—comprising elements of similarities both practical and general—for implementing
and hence, interpreting, tractable shape grammars. The approach presented in this paper
constitutes such a paradigm.

Acknowledgement. This research was supported in part by a grant from US Army Corps of Engineers,
Engineer Research and Development Center, Champaign, IL. Any opinions, findings, conclusions, or
recommendations presented in this paper are those of the authors and do not necessarily reflect the
views of CERL.

Figure 30. Rule for adding a second floor above a room (adapted from Heisserman and Woodbury,
1993).

136 K Yue, R Krishnamurti

References
Andries M, Engels G, Habel A, Hoffmann B, Kreowski H‑J, Kuske S, Plump D, Schurr A,

Taentzer G, 1999, “Graph transformation for specification and programming” Science of
Computer Programming 34 1–54

Brouno C, 1990, “Graph rewriting: an algebraic and logic approach”, in Handbook of Theoretical
Computer Science (Volume B): Formal Models and Semantics (MIT Press, Cambridge, MA)
pp 193–242

Carlson C, McKelvey R, Woodbury R, 1991, “An introduction to structure and structure grammars”
Environment and Planning B: Planning and Design 18 417–426

Chau H H, Chen X, McKay A, Pennington A, 2004, “Evaluation of a 3D shape grammar
implementation”, in Design Computing and Cognition ’04 Ed. J S Gero (Kluwer Academic,
Dordrecht) pp 357–376

Cormen T H, Leiserson C E, Rivest R L, Stein C, 2004 Introduction to Algorithms 2nd edition
(MIT Press, Cambridge, MA)

Drewes F, Kreowski H J, 1999, “Picture generation by collage grammars”, in Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications, Languages, and
Tools (World Scientific Publishing, Singapore) pp 397–457

Drewes F, Kreowski H‑J, Schwabe N, 1996, “COLLAGE‑ONE: a system for evaluation and
visualization of collage grammars” Machine Graphics and Vision 5 393–402

Flemming U, 1987, “More than the sum of parts: the grammar of Queen Anne houses” Environment
and Planning B: Planning and Design 14 323–350

Golomb S W, 1994 Polyominoes (Princeton University Press, Princeton, NJ)
Grady B, Robert M, Michael E, Bobbi Y, Jim C, Kelli H, 2007 Object-oriented Analysis and Design

with Applications 3rd edition (Addison‑Wesley Professional, Indianapolis, IN)
Greiner G, Hormann K, 1998, “Efficient clipping of arbitrary polygons” ACM Transactions on

Graphics 17 71–83
Heckel R, 2006, “Graph transformation in a nutshell” Electronic Notes in Theoretical Computer

Science 148 187–198
Heisserman J, 1994, “Generative geometric design” IEEE Computer Graphics and Applications

14 37–45
Heisserman J, Woodbury R, 1993, “Generating languages of solid models”, in Proceedings of

the Second ACM symposium on Solid Modeling and Applications (ACM, Montreal, Quebec)
pp 103–112

Knight T W, 1980, “The generation of Hepplewhite‑style chair back designs” Environment and
Planning B 7 227–238

Knight T W, 1981, “The forty‑one steps: the languages of Japanese tea‑room designs” Environment
and Planning B: Planning and Design 8 97–114

Knight T W, l989, “Transformations of the De Stijl art: the paintings of Georges Vantangerloo and
Fritz Glarner” Environment and Planning B: Planning and Design 16 51– 98

Knight T W, 1999, “Shape grammars: six types” Environment and Planning B: Planning and Design
26 15–31

Knight T W, Stiny G, 2001, “Classical and non‑classical computation” Information Technology
5 355–372

Koning H, Eizenberg J, 1981, “The language of the prairie: Frank Lloyd Wright’s prairie houses”
Environment and Planning B: Planning and Design 8 295–323

Krishnamurti R, 1982, “SGI: an interpreter for shape grammars”, technical report, Centre for
Configurational Studies, The Open University

Mäntylä M, 1988 An Introduction to Solid Modeling (Computer Science Press, College Park, MD)
O’Rourke J, 1998 Computational Geometry in C (Cambridge University Press, Cambridge)
Piazzalunga U, Fitzhorn P, 1998, “Note on a three‑dimensional shape grammar interpreter”

Environment and Planning B: Planning and Design 25 11–30
Rozenburg G, 1997 Handbook of Graph Grammars and Computing by Graph Transformation:

Volume 1: Foundations (World Scientific Publishing, Singapore)
Stiny G, 1977, “Ice‑ray: a note on Chinese lattice designs” Environment and Planning B 4 89–98

A paradigm for interpreting tractable shape grammars 137

Stiny G, 1980, “Kindergarten grammars: designing with Froebel’s building gifts” Environment and
Planning B 7 409–462

Stiny G, 1982, “Spatial relations and grammars” Environment and Planning B: Planning and Design
9 113–114

Stiny G, 1991, “The algebras of design” Research in Engineering Design 2 171–181
Stiny G, 1994, “Shape rules: closure, continuity, and emergence” Environment and Planning B:

Planning and Design 21 s49–s78
Stiny G, 2006 Shape: Talking about Seeing and Doing (MIT Press, Cambridge, MA)
Stiny G, 2011, “What rule(s) should I use?” Nexus Network Journal 13(1) 15–47
Stiny G, Gips J, 1971, “Shape grammars and the generative specification of painting and sculpture”,

in Information Processing 71 Ed. C V Freiman (North‑Holland, Amsterdam) pp 1460–1465
Stouffs R, 1994 The Algebra of Shapes PhD dissertation, Department of Architecture, Carnegie

Mellon University, Pittsburgh, PA
Stouffs R, Krishnamurti R, 2006, “Algorithms for the classification and construction of the boundary

of shapes” Journal of Design Research 5 54–95
Wake W K, 2000 Design Paradigms: A Sourcebook for Creative Visualization (John Wiley,

Chichester, Sussex)
Winograd T, Flores F, 1986 Understanding Computers and Cognition: A New Foundation for Design

(Addison Wesley, Boston, MA)
Wirth N, 1978 Algorithms + Data Structures = Programs (Prentice‑Hall, Upper Saddle River, NJ)
Yue K, Krishnamurti R, 2008, “A technique for implementing a computational‑friendly shape

grammar interpreter”, in Design Computing and Cognition: Proceedings of the Third
International Conference on Design Computing and Cognition Eds J S Gero, A K Goel
(Springer, Atlanta, GA) pp 61–80

Yue K, Krishnamurti R, 2013, “Tractable shape grammars” Environment and Planning B: Planning
and Design 40 576–594

