
Environment and Planning A 2013, volume 40, pages 576 – 594

doi:10.1068/b38227

Tractable shape grammars

Kui Yue

Microsoft, Redmond, WA 98052, USA; e-mail: kuiyue@microsoft.com
Ramesh Krishnamurti ¶
Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA; e-mail: ramesh@cmu.edu
Received 13 December 2011; in revised form 25 May 2012

Abstract. In this paper we explore the theoretical basis for a concept of ‘computation-friendly’

shape grammars, through a formal examination of tractability of the grammar formalism.

Although a variety of shape grammar definitions have evolved over time, it is possible to

unify these to be backwards compatible. Under this unified definition, a shape grammar can

be constructed to simulate any Turing machine from which it follows that: a shape grammar

may not halt; its language space can be exponentially large; and in general, its membership

problem is unsolvable. Moreover, parametric subshape recognition is shown to be NP.

This implies that it is unlikely, in general, to find a polynomial-time algorithm to interpret

parametric shape grammars, and that more pragmatic approaches need to be sought.

Factors that influence the tractability of shape grammars are identified and discussed.

Keywords: shape grammar definitions, Turing machine, parametric shape recognition,

computational complexity, tractability

1 Introduction
Implementing a parametric shape grammar interpreter has long been considered difficult
(Chau et al, 2004; Gips, 1999) for reasons not always apparent. In this paper we consider the
issue of implementation through a formal examination of tractability of the shape grammar
formalism for which we invoke both formal language theory and asymptotic analyses of
algorithms. Specifically, a computational problem is deemed tractable whenever there
is a polynomial algorithm; and intractable when it requires superpolynomial, typically,
exponential, time. As a result we are better positioned to formulate a concept for a shape
grammar that is ‘computation friendly’.

The basic formalism of a shape grammar has remained largely unchanged, although, over
time there have been changes in definition and development. Factors that have influenced
these changes relate to the scope of permissible shape elements and possible augmentations.
The early focus in shape grammars was on two-dimensional shapes made up from finite
lines, specified, representationally, in terms of maximal elements (Stiny, 1980a). In the
kindergarten grammar (Stiny, 1980b), basic shapes were extended to three-dimensional
rectilinear solids, albeit drawn as line shapes. In a subsequent paper Stiny (1991) considered
shapes made up from points, lines, planes, or solids as the main elements for a shape grammar.
Krishnamurti (1992a) examined shape arithmetic for shapes made up from finite planes; with
Earl (Krishnamurti and Earl, 1992) he considered subshape recognition for three-dimensional
shapes under linear transformations; and with Stouffs (Krishnamurti and Stouffs, 2004)
he extended the arithmetic to higher-dimensional shape algebras, described algorithms for
three-dimensional shape arithmetic and analyzed their computational complexity (Stouffs
and Krishnamurti, 2006), and considered subshape recognition over the Cartesian products of
differently dimensioned shapes (Krishnamurti and Stouffs, 1997). A three-dimensional shape

¶ Author for correspondence.

Tractable shape grammars 577

grammar implementation based on a commercial solid modeling kernel has been described
in Piazzalunga and Fitzhorn (1998), and grammars over curves have been considered by
several authors (Chau, 2002; Jowers and Earl, 2010; 2011; Jowers et al, 2004; McCormack
and Cagan, 2003; Prats et al, 2004).

Geometric shapes can be augmented by symbols, numbers, attributes, and weights
(Stiny, 1992), in this way, connecting shapes of various kinds (Stiny, 1991). Shapes so
augmented can be further extended, by open parameters, such that a family of shapes
can be defined. A shape s ≈ s(x) can be associated with a finite but possibly empty set of
variables x, for example, coordinates of points that describes a family of shapes. When
the set of variables x is empty, then a shape is given automatically. Otherwise, a shape can be
‘fixed’ by using a function g to assign values to the variables x as g(s) ≈ g[s(x)]. Historically,
shape grammars with parameters have been termed parametric shape grammars. To distinguish,
grammars without parameters are referred to as nonparametric shape grammars.

2 Evolution of shape grammar definitions
A rigorous unified general definition of shape grammars is essential for theoretical
analyses. In this regard, a detailed review of past definitions is essential to enable us to
explore important characteristics over time, capture tendencies of development, and obtain
insights on a definition of shape grammars, which will be appropriate for complexity
analysis. The first formal definition, SG-DEF-1971 (1) was given in the seminal article by
Stiny and Gips (1971). Since then, several other definitions have appeared in the literature,
each reflecting either the understanding at a particular time, or reflecting a specific
research flavor. These include SG-DEF-1974 (Gips, 1974), SG-DEF-1975 (Stiny, 1975),
SG-DEF-1977 (Stiny, 1977), SG-DEF-1980 (Stiny, 1980a), SG-DEF-1991 (Stiny, 1991),
SG-DEF-1992 (Stiny, 1992), and the implied definition SG-DEF-2006 (Stiny, 1992; 2006).
All but SG-DEF-1974, and SG-DEF-1992 are reviewed in detail.

In these definitions, a shape grammar GS, M, P, IH is typically specified as a 4-tuple
made up from a set of vocabulary shapes S, a set of markers M, a set of productions P,
and an initial shape I together with a notion of shape rule application. The set S* is formed
by finite arrangements of one or more elements of S in which any element may be used
a multiple number of times with any scale or orientation. Typically, the elements of S*
and M have nothing in common. That is, S* + M = Q. Each element in P consists of an
ordered pair (u, v) typically written as u " v, representing a shape rule. The initial shape
I normally contains an A such that there is an applicable rule, (u, v), which is an element
of P. Elements of S* appearing in certain rules (u, v) of P, or in I are terminal elements.
By contrast, elements of M are nonterminals. Variations between the definitions rest on the
way in which the sets and shape-rule application are specified.

A shape is generated from a shape grammar by starting with the initial shape and
recursively applying the rules. The result of applying a rule to a given shape is another shape
consisting of the given shape with the right-hand side of the rule substituted in the shape for
an occurrence of the left-hand side of the rule. In principle, shape-rule application proceeds
as follows: (1) find a part of the shape that is geometrically similar to the left-hand side of a
rule in terms of both spatial and marker elements; (2) find a geometric transformation that
makes the left-hand side of the rule identical to the corresponding part in the shape; and
(3) apply those transformations to the right-hand side of the rule and substitute the right-
hand side of the rule for the corresponding part of the shape. The shape-generation process
terminates when no shape rule in the grammar can be applied. The set of shapes generated by
the shape grammar is defined to be its language.

(1) In this paper, the different definitions are named using the format, SG-DEF-year.

578 K Yue, R Krishnamurti

2.1 SG-DEF-1971
The earliest definition for a shape grammar comes from the seminal article by Stiny and Gips
(1971), who employ an analogy to phrase structure grammars (also known as generative
grammars).

Here, the marker set M is a finite set of shapes that is distinct from the vocabulary
set S. Each rule (u, v) satisfies the following: u is a shape in (x ! S* ) × M, and (i) v is x or,
(ii) v is x augmented by a shape in M [that is, x ! ({s} × M )] or, (iii) v is x augmented by a
shape in S* × M. That is, v ! [(7y, x 3 y ! S* ) × M ]. I is a shape in S* × M.

In many ways this definition reflects the infancy of shape grammars in the sense that
grammars are purely shape based, daringly moving away from symbols in a direct manner.
Markers, which are used to guide the application of shape rules, are also shapes distinguishable
from the principal shape, avoiding the use of any nonshape symbols. There are no restrictions
on the types of shapes used; that is, in principle, shapes can be combinations of straight
lines or curves, two-dimensional or three-dimensional, or whatever. Analogous to phrase-
structure grammars, the * operator is defined over S, and is interpreted as a finite arrangement
of elements of S under transformations of similarity, including the empty shape ø.(2) This
enables one to define a shape vocabulary succinctly. However, on careful examination,
there is no * operator defined over M—in all probability, this was a typographic error—
however, this results in a definition that is not completely consistent with the shape grammar
examples (Urform I, II, and III) given in the paper. In particular, the marker for RULE 1
(page 1461) changes in size as well as orientation and the set M is defined to contain a single
marker. Noticeably, here shape rules can, in effect, only add more terminal shapes, with no
capacity for subtraction, although markers can be eliminated, revised, or exchanged during
the application of shape rules. Implicitly, the application of a shape rule involves the shape
operations of Boolean sum and difference; moreover, recursive application of shape rules
requires that both Boolean operations be closed over the types of shapes involved.

2.2 SG-DEF-1975
In his PhD thesis Stiny (1975) investigated the concept of shape grammars in terms of two
models, pictorial and formal. The definition of shape grammars in the pictorial model is
essentially the same as Gips’s (1974) definition, SG-DEF-1974. However, the definition for
the formal model (SG-DEF-1975) is ‘custom designed’ for analysis, analogously to phrase-
structure grammars. Here, a shape is restricted to consist of only line segments. Such shapes
are most common, and have certain nice properties. For example, all shapes belong to the set
defined by a unit line segment under the * operator. In contrast, this is not the case for shapes
made out of arcs. As before, a shape grammar is a 4-tuple: GS, M, P, I H, with the following
conditions: each production in P is of the form Gsu, u1, …, unH " Gsv, v1, …, vnH such that
(a) su, sv ! S *R; (b) for all i, 1 G i G n, ui ! M *R, or ui = e, for all i, 1 G i G n, vi ! M *R;
and (c) there is an i, 1 G i G n, such that ui ! ø and ui ! e. The initial shape I is an n +1 tuple
of shapes H, ,I s m m0 0 0n1 f= G such that (1) s0 ! S *R; (2) for all i, 1 G i G n, m0i ! M *R;
and (3) there is an i, 1 G i G n, such that m0i ! e.

In comparison with SG-DEF-1971 and SG-DEF-1974, the R operator, which enforces
shapes to be in a reduced form (maximal lines), is new in this definition. Implicit in the
definition of the R operator is the notion of embedded shapes, more specifically of proper line
(segments) embedded in the maximal lines. A subshape of a shape is then made up from these
embedded (line) segments. The restriction of shapes made out of straight lines makes it nearly
impossible to distinguish S * from M *. The technique to deal with such difficulty is to employ
shapes with multiple tuples; that is, shapes on different tuples are on different ‘channels’,
thereby not interfering with one another. The use of n +1 tuples of shapes, together with the
(2) Notationally, we distinguish between Ø and ø, the empty set and empty shape, respectively.

Tractable shape grammars 579

symbol e (which behaves as the empty shape ø), enables shape grammars to be combined to
form a new shape grammar. However, to our knowledge, no further work along these lines
can be found in the subsequent literature.

This definition also distinguishes a special case of shape-rule application. When the
union of the left-hand side of a shape rule has fewer than two points of intersection, there are
potentially infinitely many ways to apply such a shape rule. It appears that Stiny, at the time,
regarded the ‘infinitely many ways’ unfavorably, defining the transformation to be the one
which transforms the left-hand side in such a way that each element has an identical, rather
than a subshape, counterpart in the configuration.

With this definition, Stiny was able to show that shape grammars so defined are as equally
powerful as Turing machines. Algorithms for shape-rule application, and Church’s thesis
demonstrate that a Turing machine can simulate any shape grammar so defined. Likewise,
a shape grammar can be constructed to simulate any Turing machine.

2.3 SG-DEF-1977
In his paper on Chinese ice-ray lattice grammars, Stiny (1977) introduces labeled shapes and
parametric shape grammars briefly explaining the corresponding definition for nonparametric
shape grammars in the appendix. As parametric shape grammars are further elaborated in a
subsequent paper (Stiny, 1980a), we postpone discussion to subsection 2.4 (SG-DEF-1980);
the focus here is on labels and markers.

In this definition, shapes are finite arrangements of straight lines of limited but nonzero
length specified in some Cartesian coordinate system, assumed given. A family of shapes is
defined by associating parametric expressions satisfying certain conditions with a limited
number of points coincident with the lines in a given shape. A particular member of this
family is specified, by giving an assignment of real values to parameters that satisfies the
conditions. The result of applying an assignment g to a parameterized shape s is the shape
denoted by g(s). A nonparameterized shape is a special case of a parameterized shape—here
g is always the identity assignment, that is, s = g(s). In this case, s has no variables.

 The set M consists of labeled points of the form p:m, where p is a point with the symbol
m associated with it. It is not necessary for labeled points to be coincident with lines in a
shape. A transformation t of a labeled point p:m is the labeled point t(p):m, where t(p) is the
image of p under t. A labeled shape, v = Gs, lH, consists of a shape s and an unordered set
of labeled points, l. Note that an unlabeled shape s is the labeled shape with an empty set of
labeled points; that is, s . Gs, ØH. When s or l are parameterized, v = Gs, lH is a labeled
parameterized shape. An assignment g to the parameters in s and l specify a specific labeled
shape g(v) in the family of labeled shapes defined by v.

Here, a parametric shape grammar has five parts: GS, M, P, I, T H. T is a collection of
allowable transformations. Here, M is a finite unordered set of labeled points. P is a set of
shape rules u " v where u and v are labeled parameterized shapes in S + × M* and S * × M *
respectively. M * = M + , {e}, where e denotes the empty labeled point. The initial shape is an
element of S+ × M*. Again, shapes are generated by a shape grammar by beginning with the
initial shape I, and recursively applying the shape rules in the set P.

A shape rule u " v applies to a labeled shape s when there is an assignment g and a
transformation t such that t[g(u)] G s. The result of applying shape rule u " v to labeled
shape s under g and t is the labeled shape given by [s –t[g(u)]] + t[g(v)]. The expression for
rule application for a nonparametric shape grammar is obtained by substituting the identity
function by g. That is, applying u " v to a shape s under t is the shape given by [s – t(u) + t(v)].

This definition of shape grammars uses labeled points instead of markers, in contrast
to definitions SG-DEF-1971, SG-DEF-1974, and SG-DEF-1975. Nevertheless, labels and
markers are equivalent to some extent. Stiny explains that labeled points function in the same

580 K Yue, R Krishnamurti

way as markers to guide shape generation; however, labels are invariant under Euclidean
transformations whereas markers are not. However, such a distinction might be construed as
overly simple, and depends on the design of shape rules. For example, in SG-DEF-1974, Gips
(1974) employs certain geometrical characteristics, such as the asymmetry of the markers, to
control shape-rule application. By replacing markers with labels, the only important geometry
information is position. As most grammars do not rely on the geometric characteristics of
markers or labels beyond their position, we may use markers and labels interchangeably
unless stated otherwise; consequently, the phrases ‘marker driven’ and ‘label driven’ mean
exactly the same thing.

Knight (1983) provides an extensive discussion on the usage of labels. Labels in a shape
rule normally supply additional information not provided by the shapes themselves and
indicate (1) how, (2) where, or (3) when a shape rule may apply to the design being generated.
How labels specify under which Euclidean transformations a rule can apply (usually by
altering the symmetry). Where labels specify the subshapes in the design to which a shape
rule can apply. When labels are associated with the design instead of with any particular
point or points. When labeling is most frequently used to indicate successive stages in the
generation of a design. Here, labels serve as status markers, regulating the sequence and
repetition of rule applications. How and where labels are spatial as their location is important.
When labels are nonspatial as their presence rather than location is more important.

2.4 SG-DEF-1980
Stiny (1980a) elaborates on labeled shapes, and nonparametric and parametric shape grammars.
This version (SG-DEF-1980) has subsequently become the standard definition, and is most
widely quoted. In this definition, a shape is specified by its maximal line representation,
and every line (segment) of a subshape of a shape is embedded in a maximal line of the
shape. As before, a labeled shape consists of two parts: a shape and a set of labeled points.
Parameterized labeled shapes are similarly defined. Labeled points may be parameterized.
That is, the coordinates of a labeled point may be variables

Unlike SG-DEF-1977, in this definition, a shape grammar reverts back to comprising
four components: S, a finite set of shapes; M, a finite set of labels; P, a finite set of rules
of the form u " v, where u is a labeled shape in (S, M)+, and v is a labeled shape in (S, M)*;

and I, the initial shape, a labeled shape in (S, M)+.
For nonparametric shape grammars, a shape rule u " v applies to a labeled shape s when

there is a transformation t such that t(u) is a subshape of s. The labeled shape produced by
applying the shape rule u " v to the labeled shape s under the transformation t is given
by [s – t(u)] + t(v). Parametric shape grammars are extensions of nonparametric shape
grammars in which shape rules are defined by filling the open terms (point variables) of a
general schema.

A shape rule schema u " v comprises a pair of parameterized labeled shapes, u and v,
where no member of the family of labeled shapes specified by u is the empty labeled shape.
When specific values are given to the variables of u and v by an assignment g, to determine
specific labeled shapes, a new shape rule g(u) " g(v) is defined. This shape rule can then
be used to change a given labeled shape into a new shape in the usual way. That is, rule
application is expressed as [s – t(g(u))] + t(g(v)).

In comparison with SG-DEF-1975 and SG-DEF-1977, this definition is much more
succinct and allows for more flexible shape rules. In SG-DEF-1975, markers are just shapes on
different channels from the principal configuration, and labeling is implicit. In SG-DEF-1977,
labels replace markers. In this definition, shape rules without symbols are supported; subshape
matching drives shape-rule application rather than markers or labels, whereupon, shape
emergence becomes the factor to be considered during shape-rule application. While this allows

Tractable shape grammars 581

new types of shape rules, there is a price to pay. Computationally, determining applicability of
shape rules as well as their corresponding transformations become much more complicated.

Note that, in this definition, the allowable transformations can be restricted to special
kinds, although this facility seldom features in the subsequent literature. The restriction on
the transformations in the case of the infinitely many ways of applying a shape rule, which
appears in SG-DEF-1975, is not singled out here.

The introduction of parametric shape grammars basically extends the scope of allowable
transformations. While providing for more flexible and natural design of shape rules, function
g for assigning parameters implicitly implies computational difficulty. Such functions are
those allowing the points of a shape as variables (open terms) and the space of such functions
is infinitely large. This means searching an infinite space. Indeed, Stiny (2006, page 280)
states that devising an algorithm to find the transformations under which a parametric shape
rule applies to a configuration is an open question. As shown in this paper, the number of
candidates to be tested increases exponentially fast as the number of open terms increases,
making this problem NP (Garey and Johnson, 1979), perhaps NP-hard, in general.

2.5 SG-DEF-1991
An obvious deficiency of SG-DEF-1980 is the limitation on shapes requiring them to be
composed of straight lines. Shapes, in general, are formed as arrangements of points, lines,
planes, solids, and even exotic curves and surfaces. Stiny (1991) generalizes definition
SG-DEF-1980 in terms of shape algebras.

Mathematically, if there is a t such that t(u) G s is satisfied, then an object is produced
according to the formula [s – t(u)] + t(v). Operators t, G, +, and – are defined over a shape
algebra, where t is a transformation function over a shape and can be generalized as a being
alike function, G is a partial order relation in terms of subshape, and + and – are Boolean sum
and difference. All these operators are applied recursively until reaching the basic elements,
on which these operators are directly defined.

In short, in a shape grammar, any pair of objects u and v defines a rule u " v. The rule
applies to an object s in a two-stage process involving a transformation t. The transformation
is used in both stages, once with the subshape relation G to distinguish some part of s, and
then again with the arithmetic operations + and – to replace the part that has been picked out.

Under this definition, shapes are readily extensible. A shape can be simple—formed
from basic elements of a single kind; or compound—a mix of various elements, optionally
augmented in some way, for example, by colors. The only condition is that the operators
of any shape algebra are defined on all its elementary objects, are recursively applicable,
and are closed. In contrast to definition SG-DEF-1980, indeterminacy, that is, the infinitely
many ways of applying a shape rule, is encouraged rather than restricted. While this causes
little trouble for designers, indeterminacy is a tough issue for computer implementations.
Additionally, shape emergence is regarded as a way of producing novel designs. As an
extension to this definition, SG-DEF-1992 (Stiny, 1992) formally includes labels and weights
in algebraic terms.

2.6 SG-DEF-2006
In his monograph, Shape: Talking About Seeing and Doing, Stiny (2006) discusses shape
grammars in terms of drawing shapes and calculating by seeing. The historical analogy of
shape grammars to phrase-structure grammars is reexamined, with the conclusion that the
analogy is inappropriate; it implies a lot more than it should. As a matter of fact, during
the design process, a designer’s vocabulary of shapes is typically not prescribed; instead,
new types of shapes are defined on the fly. Noticeably, in this book, a definition for a shape
grammar is actually never given, and only alluded to informally, with the basic formalism
remaining the same as SG-DEF-1992.

582 K Yue, R Krishnamurti

2.7 Trends in the development of shape grammars
The evolutionary development of shape grammars falls into two categories: marker-driven
and subshape-driven grammars. Computationally, this distinction is important; in comparison
with marker-driven shape grammars, there are more difficult computational issues with
subshape-drive shape grammars: in particular, parametric subshape recognition and
indeterminacy.

The first four definitions: SG-DEF-1971, SG-DEF-1974, SG-DEF-1975, and SG-DEF-1977
belong to the former category in the sense that shape-rule application in grammars so defined
are controlled by markers. It is the markers that play a pivotal role in determining both
the applicability of shape rules and their corresponding transformation. Markers can be
designed in such a way that the determination of applicability and transformation is relatively
straightforward to compute. In later developments of shape grammars markers evolve as
alphanumeric symbols, which make determination even simpler (albeit while losing power).
All subsequent definitions belong to the subshape-driven category during which marker-
driven (also label-driven) and subshape-driven rule application can coexist. In other words,
the definitions support both marker-driven and subshape-driven shape grammars. This
coexistence between marker-driven and subshape-driven rules is explicit in SG-DEF-1975.

Chronologically, the above definitions exhibit backwards compatibility. That is
SG-DEF-1971 % SG-DEF-1975 % SG-DEF-1977 % SG-DEF-1980 % SG-DEF-1991
% SG-DEF-1992 % SG-DEF-2006, where the right-hand side of % is more general than
the left-hand side. Historically, it is significant to note that SG-DEF-1971 % SG-DEF-1974.
However, there is a discrepancy between SG-DEF-1974 and SG-DEF-1975. They were
developed independently by the two principal authors of shape grammars, for very distinct
research purposes, albeit from the same root, SG-DEF-1971. The discrepancy is reflected
in the evolutionary development of shape-grammar definitions.

The evolutionary development shows a trend from ‘rigid’ to ‘soft’. ‘Rigid’ here means
that the shape grammars are defined in a way that is closer to phrase-structure grammars.
Such shape grammars are more machine bound in the sense that they are relatively easy to
carry out (compute) on a computer, but harder to use to generate novel designs. As a matter
of fact, there is very limited novelty involved. SG-DEF-1974 falls within this category.
A recent series of notable shape grammar implementations based on the CGA shape falls
within the rigid category of shape grammars (Müller et al, 2006; 2007; Watson et al, 2008;
Weber et al, 2009).

On the other hand, ‘soft’ is more human centered, showing more concern and consideration
on how to use shape grammars to generate novel designs. This explains, in part, the importance
of subshape-driven grammars, concepts of indeterminacy and shape emergence, and the
support for ambiguity in shape-grammar research. Humans have little trouble handling such
concepts. Moreover, human designers actually benefit from them. However, these concepts
are problematical when considering computer implementation. Recent developments attempt
to subvert some of the more difficult issues through alternative representations (Keles et al,
2010). The features are summarized in figure 1.

2.8 A unified definition of shape grammars
Traditionally, the nonparametric shape grammars formalism is defined as follows: for a shape
rule u " v and a configuration c, if t(u) G c, then the result of applying the shape rule on c is
[c – t(u)] + t(v), where t is a transformation of similarity, G is a part relation, – is the operation
of Boolean difference, and + is the operation of Boolean sum. Note that, the operations of
Boolean sum and difference implicitly involve an operation of reduction R, which is used to
maintain the maximal representation (Krishnamurti, 1992b).

Tractable shape grammars 583

For parametric shape grammars, the formalism is defined as follows: for a shape rule
schema u(x) " v(x) and a configuration c, if t[g(u(x))] G c, then the result of applying the
shape rule on c is [c – t[g(u(x))]] + t[g(v(x))], where g is a function which makes an assignment
to the open terms (variables) of the schema.

Since t can be generalized to a being-alike function (Stiny, 1991), the function g can
be combined with, thus subsumed by, t to form a new being-alike function. In this way,
the formalisms of nonparametric and parametric shape grammars are unified.

Definition For a shape rule u " v and a configuration c, if t(a) G c, then the result of
applying the shape rule on c is [c – t(u)]+t(v), where t is a being-alike function, G is a part
relation, – is the operation of Boolean difference, + is the operation of Boolean sum.

Implicit in this definition, as the last step in applying a shape rule, is the reduction operator,
R, which is needed to maintain a maximal representation.

Following this definition, the scope of basic shape elements can be extended arbitrarily;
the bottom line is that all operators of t, G, –, +, and R are well defined. In particular,
elements are implicitly typed in a way that operators of G, –, +, and R only operate on
two elements of the same type (that is, the elements are coequal); for example, for two line
segments, these operators are only meaningful when two have the same slope. The unified
definition above is backwards compatible with the other definitions reviewed in this section.

Definition Features

M
ar

ke
r-d

riv
en

 sh
ap

e
gr

am
m

ar
s

SG-DEF-1971 Based on shapes as both vocabulary and marker elements. Introduces the analogy to
generative string grammars. Emergent shapes are implicit in ‘surprises’.

SG-DEF-1974
Based on closed polygons, curves. No treatment of emergent shapes. Theoretical basis of
the first ever shape-grammar interpreter implemented (Gips, 1974). Certain elements of the
shape grammar were treated symbolically in Gips’ implementation.

SG-DEF-1977 Introduces labels and labeled points. Outlines the elements of parametric shape grammars.

(Above) Marker-driven shape grammars based on an analogy to generative grammars. Grammars tend to be more
tractable and easier to implement.

SG-DEF-1975

Based on two-dimensional rectilinear shapes. Implicit introduction to maximal lines.
Mainly used to prove equivalence between shape grammars and other formal language
formalisms. Emergent shapes are referred to as ‘surprises.’ Theoretical basis of the
first shape-grammar interpreter that properly took into consideration emergent shapes
(Krishnamurti, 1982).

Su
bs

ha
pe

-d
riv

en
 sh

ap
e

gr
am

m
ar

s

(Below) Subshape-driven shape grammars. Progressively shy away from the generative grammar analogy.
Grammars tend to be human-centered, less tractable, and harder to implement. Emergence is central to such
grammars.

SG-DEF-1980
Introduces parametric shape-grammar definition for shapes based on a maximal line
representation. First definition for rule application explicitly based on the subshape
relationship.

SG-DEF-1991 Extends the definition to apply to shapes defined on different algebras, for example, points,
lines, planes and volumes. Introduces a being-alike function.

SG-DEF-1992
Extends the algebraic definition to include weighted shapes.
This definition subsumes a host of other independently defined weighted shape grammars,
for example, color grammars (Knight, 1989).

SG-DEF-2006
Implicit definition of shape grammars considered in Stiny (2006).
Essentially dismantles any vestiges of a connection to generative grammars. Indeed,
generative grammars can be considered as a special case of shape grammars.

Figure 1. Evolution of shape grammar definitions.

584 K Yue, R Krishnamurti

The unified definition holds for shape rules defined across shape algebras. In a recent article,
Stiny (2011) considers the specification of shape rules in terms of general transformations,
part and boundary relationships. In his classification, Stiny considers three basic kinds of
rule constructs: x " t(x), x " prt(x) or x " b(x), where t(x) represents a transformation,
typically geometrical, in general, a parametric variation of x; in other words, t is a being-
alike function. The part relation satisfies prt(x) G x with the reduction operation R relying
on there being a shape y such that x = prt(y), or y = prt–1(x). The inverse part relationship
prt–1 is computationally interesting as it essentially specifies a data structure that hosts any of
its embedded shapes. Certain prt–1 relations have been referred to as carriers (Krishnamurti
and Stouffs, 2004). An example is shown in figure 2. Elements of prt–1(x) share descriptors
with subshapes of carrier(x), which can be effectively employed in computation (Stouffs and
Krishnamurti, 2006).

Note that carrier(x) is a restriction on prt–1(x). There are subshapes y of carrier(x) that are
not elements of prt–1(x). However, since x + y is an element of prt–1(x), carrier(x) enables us to
explore shapes that appear ‘unrelated’ to x so to speak, that is, even having no shape in common
with x. However, these shapes are parts of the same carrier, and this opens up an interesting
question, which is beyond the scope of this paper to address. As Stiny (2004, page 64) concludes,

Figure 2. A shape x, a shape in prt–1(x), the carrier of x, and interesting subshapes of carrier(x).

Tractable shape grammars 585

“seeing makes it worthwhile to calculate with shapes’’, it is worth exploring calculations with
the ‘unrelated’ shapes of a shape. The answer may well lie within the carriers of shapes. For
example, in figure 2, for the top left shape, from among possible shapes we see immediately,
are the star, five triangles, the pentagon in the middle, ten distinct points of intersection, and at
least twenty-five different angles. Some shapes are seen in combination with parts of the top
left shape; others have an identity all their own.

The boundary is a cross algebra operator. The b operator and its inverse b–1 define a
shape, may resolve parameters, and can be used in conjunction with t, prt, and prt–1 to specify
particular shapes. Computationally, in a maximal element representation, the combination
of a b and a prt–1 operator specify a shape (Krishnamurti and Stouffs, 2004). Other kinds of
shape rules such as erasure, identity, and in general, unrestricted parametric rules can be
created from these basic constructs. See Stiny (2011).

3 Three corollaries
In his dissertation Stiny (1975) concluded that for shape grammars under SG-DEF-1975,
theorems on Turing machines naturally hold. Certain direct extensions of theorems on Turing
machines to shape grammars are helpful in understanding their computational complexity.
These are worth discussing in some detail. Using constructions similar to Stiny’s, it is possible
to show that a shape grammar under the unified definition can be constructed to simulate
any Turing machine. For this, it is essential to consider four aspects. The following briefly
explain each and illustrate the corresponding simulation.
∑

Aspect 1. The states of a Turing machine can be encoded as shapes in reduced form, such that
no two similar shapes represent distinct states. The set of shapes corresponding to the set of
states of the Turing machine will form the main part of the set of markers for the constructed
shape grammar.

Consider a Turing machine with states qi, 0 G i G n. Each state qi can be encoded by a
triangle shape si with points {G0, pH, G p, pH, G i

p

1+ H, 0H}, where 0 G i G n, p ! 0. Notice that
for states qi and qj, if qi ! qj, then si is not similar to sj. For the shape rules simulating
transitions, the states serve as markers. Figure 3(a) shows an example of one such state.

Aspect 2. The tape symbols, including the blank symbol, of a Turing machine can be encoded
as shapes in reduced form such that no two similar shapes represent different tape symbols.
The set of shapes corresponding to the set of tape symbols of the Turing machine form the
main part of the set of terminals for the constructed shape grammar.

Tape symbols can be defined similarly to state symbols. Assume the Turing machine
to have the set of tape symbols ∑ = {ai |1 G i G m}. Let the blank symbol be a0. Each
symbol in the set ∑ , {a0} can be uniquely encoded by a triangle with points in the set
{G0, pH, G p, pH, G i

p

1+ , 2pH}, where 0 G i G m, p ! 0. Figure 3b is an example of such a
symbol.
Aspect 3. Turing machine tapes and configurations can be represented by shape grammars.

Consider the Turing machine tape a ai ik0f where all symbols to the left of ai0 and to
the right of aik are the blank tape symbol a0. The tape can be represented by the shape
ti0 , trans(ti1 , p) , f , trans(tik , pk), where trans(t , x) means translating shape t by x along
the x-axis. Figure 3(c) illustrates an example of such a tape.

Assume that the Turing machine is in state qi and is scanning the tape symbol aij
occurring in the tape ja a ai i ik0 f f . The configuration can be represented by the pair of
shapes GT, trans(si, pj)H where T is the shape representing the tape a i0 … a ij … a ik. Figure 3(d)
illustrates an example of such a configuration.

586 K Yue, R Krishnamurti

Aspect 4. Turing machine transitions can be represented as shape rules. The set of shape
rules corresponding to the set of transitions of the Turing machine form the main part of the
set of shape rules for the constructed shape grammar.

A transition Gqi, aj, aj', qi', LH, which reflects a Turing machine in state qi scanning symbol
aj, replacing it by symbol aj', subsequently going into state qi', and moving its tape one tape
cell to the left, can be represented by the shape rule Gtj, siH " Gtj', trans(si', p)H. Figure 4 depicts
two shape rules that simulate such transitions.

With the above setup, it is easy to see that the constructed parametric shape grammar
simulates the computation of a Turing machine by derivation. The following are three relevant
direct extensions from the theory of formal languages (Harry and Christos, 1997).

Firstly, it is well known that a Turing machine may not halt. Assume there is a computer
program, which recursively applies the shape rules of a shape grammar until no shape rules can
apply. As a result, this computer program will not halt for any shape grammar that simulates
a nonhalting Turing machine. In other words, there are nonhalting shape grammars.

Secondly, a simulation of a nondeterministic Turing machine (NTM) with n steps
by a deterministic Turing machine (DTM) requires exponentially many steps in n.

Figure 3. Encoding symbols and states for a Turing machine by parametric shapes. (a) Parametric shape
encoding state qi  ; (b) parametric shape encoding symbol ai ; (c) parametric shape encoding the tape
a1a2a1a2 ; (d) parametric shape encoding a configuration a1a2a1a2 in state q1. Adapted from Stiny (1975).

G10p/3, pH

G10p/3, pH

G p/2, pH

G p/2, pH

G p/(i+1), pH

G3p/2, – pH

G5p/2, pH

G5p/2, pH

G4p/(3, pH

G4p/3, pH

G p/(i+1), 0H

G0, pH

G0, 0H

G0, 0H

G0, 0H

G3p, 0H

G3p, 0H

(a)

(c)

(d)

G p, pH

G p, 0H

G p, 0H

G p, 0H

G2p, 0H

G2p, 0H

G4p, 0H

G4p, 0H

(b)

Tractable shape grammars 587

Naturally, a shape grammar can be designed in a nondeterministic fashion, for example,
the sports-figure grammar (Carlson et al, 1991). Thus, a shape grammar can be designed
to simulate any NTM in a fashion similar to simulating a DTM. This is equivalent to the
problem of simulating an NTM by a DTM; that is, the language space of a shape grammar
can be exponentially large.

Lastly, another well-known theorem for unrestricted string grammars is that the
membership problem—that is determining whether a string belongs to the language defined
by a grammar or not—is undecidable. A shape grammar can be designed to simulate a string
grammar in a similar manner to simulating a Turing machine. For such a shape grammar, the
membership problem is equally undecidable—the proof, by contradiction, is trivial. In other
words, in general, determining whether a configuration (a shape) belongs to the language
defined by the shape grammar is unsolvable; that is, the problem of parsing a configuration
against a shape grammar is, in general, unsolvable. Whether it is possible to restrict shape
rules to restriction categories similar to those defined for string grammars, for example,
context-free grammars, remains an open problem.

4 Recognition in parametric shape grammars
The three corollaries show that, in principle, there are shape grammars which do not halt and
whose language spaces are exponentially large. Such shape grammars are unquestionably
intractable. The following question is immediate: are all halting shape grammars with (even
large) polynomial language space tractable? For ease of discussion, such grammars are
termed practical shape grammars (see figure 5).

Figure 4. Simulating Turing machine transitions by shape rules. (a) ai , qj"ak, ql move right;
(b) ai , qj"ak , ql move left. Adapted from Stiny (1975).

G0, 0H

G0, 0H

(a)

(b)

G p, 0H G– p, 0H G p, 0H
G0, 0H

G 0, 0HG p, 0H
G p, 0H

G2p, 0H

G p/(i+1), pH

G p/( j +1), – pH

G p/(i+1), pH

G p/( j+1), – pH

G p/(k+1), pH

G p/(k +1), pH

G p+p/(l +1), – pH

G p/(l +1) – p, – pH

588 K Yue, R Krishnamurti

A shape grammar is interpreted through the application of its shape rules. A shape
grammar contains a finite set of shape rules. This fact underlies the fundamental basis for
a shape grammar, namely, that of using a small number of shape rules to realize many,
potentially, infinitely many, design possibilities (Stiny, 2006). For practical shape grammars
this fact implies that shape rules are applicable in, at most, polynomial time. It therefore
follows that tractability is determined by the application of each shape rule. However, it is
known that parametric subshape recognition is difficult.

Below, the tractability of a specific problem, that is, subshape recognition of parametric
shape grammars over two-dimensional rectilinear shapes, is examined. This is done by
considering a polynomial-time reduction on the maximum clique problem (Cormen et al,
2004). The conclusion reached is that it is computationally expensive even for shapes of a
relatively small size, and it is NP-hard for shapes with an arbitrary number of open terms.
4.1 Parametric two-dimensional rectilinear subshape recognition
For nonparametric subshape recognition of two-dimensional rectilinear shapes, the transfor-
mation t can be determined by matching three distinguishable points of a left-hand side shape
u to three distinguishable points of a configuration c (Krishnamurti, 1981). In fact, two points
are all that are required with a third distinguishable point constructed from these two in
four possible ways by considering reflections about the axis through the two distinguishable
points. However, for parametric subshape recognition this is not necessarily the case.

It is possible that the parametric shape u has a certain number of fixed points (nonopen
terms). If there are more than two fixed points (distinguishable by definition), the above three-
point algorithm is still applicable, with O(n2) possibilities to initially test against. For shapes
with a single fixed point, this is identical to the situation when all points are open as similarity
is subsumed by the assignment. When there are open points, the shape transformation may not
be describable by a homogeneous transformation matrix. For example, figure 6(a) matches
figure 6(b) under a parametric shape rule, but there is no 3 × 3 homogeneous matrix which
describes the transformation. In every case, open terms have to be determined, point by point,
for each candidate subshape in c.

Figure 5. Practical shape grammars.

Practical
shape grammars

Shape grammars that
either do not halt
or have exponential
language space

All shape grammars

Figure 6. Example of parametric subshape matching.

(a) (b)

Tractable shape grammars 589

In general, when there are k open terms, there are n
k` j, or O(nk ) possibilities. Even

assuming that testing against each possibility costs unit time (typically, this is much more
expensive in reality), when k is close to n/2, the time complexity is a superpolynomial. To
illustrate with concrete examples, the possible number of tests is 7.5 × 107 when k = 5, n = 100;
1.7 × 1013 when k = 10, n = 100; and 1.0 × 1029 when k = 50, n = 100. It takes a computer with
performance of thousands of millions of instructions per second several minutes to test all the
possibilities when k = 10, n = 100. Note that when k > n/2, the number of possible tests begins
to decrease. It should be noted that in practice n and k are small numbers.
4.2 Parametric subshape recognition (PSR) is NP
Suppose that a subshape s is found under a parametric schema function t. We need to verify
that s is the same as the left-hand side shape u under t. Let n be the maximum of the number
of points in s and u. As both shapes are two-dimensional and rectilinear, the verification
algorithm first computes u' = t(u) by applying t to each point in u. This takes O(n) time, and u'
so obtained has at most n points. The verification algorithm picks a point p in s, and compares
the neighbors of p against the neighbors of point p' in u', which has the same coordinates as p.
This process ends when all points of s have been compared. For each point p in s, it takes O(n)
time to find the corresponding point p' in u'. Since there are at most (n – 1) edges incident with
p as well as p', it takes O(n2) time to verify equality of neighborhoods. Therefore, in total, it
takes n[O(n) + O(n2)] = O(n3) time to verify the equality of s and u'. That is, verification takes
polynomial time.

We next show that PSR in general is NP by reducing the problem of finding certain
cliques in a graph to the problem of PSR. That is, if we can solve PSR in polynomial time,
then we can solve the graph-theoretical clique problem in polynomial time, which is known
to be NP, actually NP-hard (Cormen et al, 2004).

A clique in an undirected graph G = (V, E) is a subset of vertices, V' ,3 V, in which each
vertex pair is connected by an edge in E. That is, a clique is a complete subgraph of G. The size
of a clique is the number of its vertices. Figure 7(c) is an example of a clique of size 4. The clique
problem corresponds to the optimization problem of finding a clique of maximum size in a graph.
For example, in the graph of figure 7(a), the maximum clique is 4. The subgraph is shown bold.

Firstly, let us preprocess graph G [figure 7(a)] to get G' [figure 7(b)] by treating vertices
in G as end points of incident edges, assigning unique x and y coordinates to all vertices so
that no three vertices are collinear, and enforcing all arcs to be straight lines. This can be done

Figure 7. Example of finding a clique of size 4.

Preprocess

Preprocess

1

2
3

4

65

7 8

109

(a)

(c) (d)

(b)

590 K Yue, R Krishnamurti

in O(|V |2) time. Note that G' is actually a two-dimensional shape, and we can use it as the
configuration shape c.

We generate a complete graph Gk with k vertices [figure 7(c)] and similarly preprocess
it to obtain Gkl [figure 7(d)]. This can be done in O(k 2 ) time. Note that Gkl is another two-
dimensional shape, and we may use it as the left side shape u. The points of u have their
counterparts in the vertices of Gk. Note that as u is a parametric shape, certain points, hence
certain vertices in Gk, have coordinates with open terms.

If there is an algorithm capable of detecting the existence of subshape g(u) in c by
automatically finding an appropriate assignment of g in a polynomial time, then we can
use the algorithm to detect the existence of subshape g(Gkl) in G' by automatically finding
an appropriate assignment of g in a polynomial time, say, Tk. By the particular way that we
processed graph G and Gk, the existence of subshape g(Gkl) in G' is identical to the existence
of Gk in G. That is, we can use the algorithm to detect the existence of Gk in G in a polynomial
time of Tk plus an added preprocessing time.

By the above preprocessing, and detecting sequentially for k = {1 … |V |} until the answer
is false, we can find a clique of maximum size in time of /{ [| | (()]}O O V T O k| |

k
F

k1
2+ +=

2 ,
which is a polynomial. This is a contradiction since the clique problem is known to be NP.

However, this result is not as bleak as it seems. The above proof is based on the
assumption that the number of open terms k, and the number of points n, n H k, against
which these open terms are matched are unbounded. In fact, the proof relies on the fact that
n and k be as large as possible. Typically, n and k are bounded—we can employ a variant of
the subgraph isomorphism algorithm, which, using brute-force comparison, in the worst case
requires O(nk ) time. However, as n grows indefinitely large subgraph isomorphism too tends
to be exponential in time. In reality the open terms are topologically (and geometrically)
dependent on the fixed terms. Matching can be resolved by following procedure. We first
match the subshape constructed from the fixed points. This yields a mapping between a
spanning forest of the fixed points and corresponding points in the given shape, where two
points are adjacent whenever there is a line in the shape between them. Next, the open terms
are resolved by depth-first search to grow this spanning forest. Implicit in this two-step
matching process is a tree isomorphism test, which, if successful, is followed by a graph
isomorphism check in the form of a simpler test for subshape relationship (Krishnamurti and
Stouffs, 2004). We leave the details to the reader.

On the other hand, there are subshape situations which do require exponential time. As a
concrete example, consider a shape with 2n points such that it contains no n-sided polygon.
It is possible to construct such a polygon quite easily. Let the points be numbered 1, 2, …, 2n.
Construct lines pairwise among points i, i + 1, …, i + (n – 2) mod 2n and ensure that i and
i + (n – 1) are not connected by a line. Then, for any sequence of n points it will not contain
a line between, at least, one pair of points. That is, there are no n-gons in this polygon.
However, determining that the shape does not contain an n-gon will require looking at
n2
n` j possible candidates, which requires O(2n) time.

The above example illustrates a situation where there are no matching subshapes. We
have yet to find an example where a matching subshape exists but which requires exponential
time to determine, although if the above example was reconstructed so that there was a single
n-sided polygon, it is possible that it may still require O(2n) time to determine the subshape.(3)

Taken altogether, we can conclude that PSR is NP in terms of the number of open terms. That
is, in general, it is unlikely that there is a polynomial algorithm for PSR for two-dimensional
rectilinear shapes. From this, we know formally that the problem of implementing a parametric
shape grammar interpreter is NP, as PSR is a necessary step.

(3) It is possible that we may not be able to construct just one single n-sided polygon within this configuration.

Tractable shape grammars 591

Thus, it follows that some practical shape grammars are likely to be intractable. It is
therefore important to know the factors that influence shape grammar tractability. In doing so,
we would be in a position to manage and control the design of shape grammars to avoid these
possible intractable situations.

5 Factors influencing tractability
The following analysis is built on top of the unified definition for shape grammars so that the
results are as general as possible; that is, the factors influencing tractability are applicable to
a variety of different types of shape grammars.

For practical shape grammars, tractability is determined by shape-rule application. By
definition, application of a shape rule involves operations of t, –, +, G, and R on elementary
objects. If any of these operations takes superpolynomial time, then the shape-rule application
becomes intractable. In common design practice the complexity of these operations may
seem trivial, since the operations are not difficult to specify for rectilinear shapes. As shown
by Stouffs and Krishnamurti (1993), the asymptotic upper bounds of comparing two coequal
spatial elements in d-dimensional space, 0 G d G 3, is a polynomial in the maximum
boundary element size n. In particular, when d = 0 or 1, the upper bound is a constant; for
d = 2, it is H[(m + n) log n], with m = O(n2); and for d = 3, H[(Km + kn) log n], with K = O(k),
k = O(n) and m = O(n2).

However, for certain types of shape objects, some of these operations can be difficult,
even intractable. An example is the Boolean operation on two solids with rational curved
surfaces, which involves finding the intersection of two rational surfaces. The intersection
of two smooth surfaces is one of the following: (1) empty; (2) a collection of points; (3) a
collection of smooth curves; (4) a collection of smooth surfaces; or, (5) any combination
of (2), (3), and (4) (Barnhill et al, 1987). Traditionally, analytical approaches by variable
elimination have been the means of solving this type of intersection problem. However,
the degree of the resulting polynomial can be too high to solve. For instance, two generic
bicubic patches can intersect in a curve of degree 324. Moreover, it has been shown that the
intersection curves cannot be represented exactly by parametric equations even of degree 324
(Katz and Sederberg, 1988). Therefore, numerical methods have to be used and only curves
under certain approximations are obtained. Although surface-to-surface intersection is still
an active area of research (Hur et al, 2009; Patrikalakis et al, 2004) there are no good, general
solvers for solving systems of multivariate polynomial equations, the equivalent problem to
surface-to-surface intersection (Press et al, 2007).

The implication of this is that one cannot arbitrarily expand the scope of shapes.
Basic operations of certain shape elements can become so complicated as to make them
intractable. As a guideline, in order to design tractable shape grammars, the basic operations
of the allowable elementary objects are required to take polynomial time. In the following
discussion, we assume that this is the case.

The application of a shape rule u " v to configuration c involves two steps: searching
the configuration c for applicable regions according to the left-hand side u, and rewriting the
configuration with the right-hand side v. Rewriting a configuration involves two steps:
subtracting (–) the left-hand shape under a known t, and adding (+) the right-hand shape under
the same t. By our previous assumption, the operations of −, +, t, and R for each allowable
elementary object are in polynomial time. As there is a fixed number of elementary objects
involved, the overall time complexity of rewriting still has an upper bound in polynomial
time. It should be noted that the algorithm here is brute force, given simply for the purpose
of deriving a polynomial upper bound—seeking efficient, uniform algorithms for rewriting
is still valid research (Jowers, 2006; Stouffs, 1994). In our discussion, however, rewriting is
‘easier’ in the sense that there is always a brute-force polynomial algorithm.

592 K Yue, R Krishnamurti

On the other hand, searching a configuration for possible rule applications can be much
‘harder’. In effect, the searching procedure includes two steps: using certain criteria to identify
possible matching candidates, and then verifying the exact matching of each candidate under
all allowable t. Even with the optimal searching criteria, the number of matching candidates can
be superpolynomial. This is exactly the case for PSR over two-dimensional rectilinear shapes;
the number of candidates increases exponentially as the number of open terms increases.

In the verification step for exact matching of a candidate, it is possible that there are infinitely
many t’s, which are impossible to compute in finite time. For example, for the candidate shape
found in figure 8 (marked with a dashed circle), the possible transformations, up to scale, are
indefinitely many. This phenomenon is known in the literature as indeterminacy, and viewed
as an advantage where unexpected variations can be introduced (Stiny, 1991). However, it is
hard for a computer implementation to appreciate this advantage. The basic question then is:
which is the best way to choose one or a subset of possible candidates from infinitely many?
Random choice provides a solution, but relying upon randomness to create novel designs is
probably not always a good idea. Manual selection is another option, although this is counter
to the goal of a computer implementation. What is certain is that it is impossible to elaborate
all the indefinitely many possibilities; we have to assume that the grammar designer specifies
a way of selecting a finite subset so that the implementation is tractable.

To sum up, there are three factors which influence tractability of a shape grammar:
(i) computational complexity of the basic operations t, –, +, G, and R; (ii) number of matching
candidates; (iii) indeterminacy—number of possible ts for each matching candidate.

Factor (i) is the most controllable in terms of computer implementation by ensuring that
the system only supports basic elementary objects for which there are efficient algorithms
(at most polynomial-time complexity) for these operations. Factor (ii) probably influences
certain extreme cases. In general, the number of open terms in parametric shape rules is
usually small enough for their time complexity to be relatively inexpensive, thereby making
shape recognition still tractable. Factor (iii) is somewhat controllable. As Stiny (1991)
remarks, detailed conditions for indeterminacy are more complicated and vary from algebra
to algebra and from dimension to dimension; Cartesian products are recommended as a useful
way to avoid indeterminacy in general. However, in practice, chances for indeterminacy are
much less. Shape grammars are seldom designed purely on the basis of geometry—typically,
they are imbued with semantics in the form of labeled points or elements. The semantics are
usually sufficiently rich to permit only a limited number of possible transformations.

6 Computation-friendly shape grammars
The existence of both tractable and intractable shape grammars, together with other
computation difficulties mentioned at the beginning of this paper, negates the possibility of
a single general shape grammar interpreter. As is shown in (Yue, 2009), characteristics
of tractable shape grammars can vary significantly. In response, a paradigm for practical,
‘general’, shape grammar interpretation is proposed in a sequel (Yue and Krishnamurti, 2013),
and shape grammars following such a paradigm can be said to be computation friendly—that
is, tractable with polynomial-time and language-space complexity.

Figure 8. A candidate with infinitely many matching transformations under scaling.

Tractable shape grammars 593

Acknowledgement. This research was supported in part by a grant from US Army Corps of Engineers,
Engineer Research and Development Center, Champaign, IL. Any opinions, findings, conclusions or
recommendations presented in this paper are those of the authors and do not necessarily reflect the
views of CERL. The authors are grateful to the referee for suggestions to improve the paper.

References
Barnhill R E, Farin G, Jordan M, Piper B R, 1987, “Surface/surface intersection” Computer Aided

Geometric Design 4 3–16
Carlson C, McKelvey R, Woodbury R, 1991, “An introduction to structure and structure grammars”

Environment and Planning B: Planning and Design 18 417–426
Chau H-H, 2002 Preserving Brand Identity in Engineering Design Using a Grammatical Approach

PhD thesis, School of Mechanical Engineering and Keyworth Institute of Manufacturing and
Information Systems, The University of Leeds

Chau H H, Chen X, McKay A, Pennington A, 2004, “Evaluation of a 3D shape grammar
implementation”, in Design Computing and Cognition ’04 Ed. J S Gero, (Kluwer, Dordrecht)
pp 357–376

Cormen T H, Leiserson C E, Rivest R L, Stein C, 2004 Introduction to Algorithms 2nd edition (MIT
Press, Cambridge, MA)

Garey M R, Johnson D S, 1979 Computers and Intractability: A Guide to the Theory of NP-completeness
(W H Freeman, New York)

Gips J, 1974 Shape Grammars and Their Uses PhD thesis, Computer Science Department, Stanford
University, Stanford, CA

Gips J, 1999, “Computer implementation of shape grammars”, NSF/MIT Workshop on Shape
Computation, Cambridge, MA, http://www.shapegrammar.org/implement.pdf

Harry R L, Christos H P, 1997 Elements of the Theory of Computation (Prentice-Hall, Englewood
Cliffs, NJ)

Hur S, Oh M-J, Kim T-W, 2009, “Approximation of surface-to-surface intersection curves within a
prescribed error bound satisfying G2 continuity” Computer-Aided Design 41 37–46

Jowers I, 2006 Computation with Curved Shapes: Towards Freeform Shape Generation in Design
PhD thesis, Department of Design and Innovation, The Open University, Milton Keynes, Bucks

Jowers I, Earl C, 2010, “The construction of curved shapes” Environment and Planning B: Planning
and Design 37 42 – 58

Jowers I, Earl C, 2011, “Implementation of curved shape grammars” Environment and Planning B:
Planning and Design 38 616– 635

Jowers I, Prats M, Earl C, Garner S, 2004, “On curves and computation with shapes”, in Generative
CAD Systems Symposium: G-CAD 2004 Eds O Akin, R Krishnamurti, K P Lam (Carnegie Mellon
University, Pittsburgh, PA)

Katz S, Sederberg T W, 1988, “Genus of the intersection curve of two rational surface patches”
Computer Aided Geometric Design 5 253–258

Keles H Y, Ozkar M, Tari S, 2010, “Embedding shapes without predefined parts” Environment and
Planning B: Planning and Design 37 664– 681

Knight T W, 1983, “Transformations of languages of designs” Environment and Planning B: Planning
and Design 10 125–177

Knight T W, 1989, “Color grammars: designing with lines and colors” Environment and Planning B:
Planning and Design 16 417–449

Krishnamurti R, 1981, “The construction of shapes” Environment and Planning B: Planning and
Design 8 5–40

Krishnamurti R, 1982, “SGI: An interpreter for shape grammars”, technical report, Centre for
Configurational Studies, The Open University, Milton Keynes, Bucks,
http://www.andrew.cmu.edu/user/ramesh/pub/distribution/technical/SGI.pdf

Krishnamurti R, 1992a, “The arithmetic of maximal planes” Environment and Planning B: Planning
and Design 19 431–464

Krishnamurti R, 1992b, “The maximal representation of a shape” Environment and Planning B:
Planning and Design 19 267–288

Krishnamurti R, Earl C F, 1992, “Shape recognition in three dimensions” Environment and Planning B:
Planning and Design 19 585–603

594 K Yue, R Krishnamurti

Krishnamurti R, Stouffs R, 1997, “Spatial change: continuity, reversibility and emergent shapes”
Environment and Planning B: Planning and Design 24 359–384

Krishnamurti R, Stouffs R, 2004, “The boundary of a shape and its classification” The Journal of
Design Research 4(1)

McCormack J P, Cagan J, 2003, “Increasing the scope of implemented shape grammars: a shape
grammar interpreter for curved shapes”, in Proceedings of the ASME 2003 International Design
Engineering Technical Conferences and Information in Engineering Conference Chicago, IL

Müller P, Wonka P, Haegler S, Ulmer A, Gool L V, 2006, “Procedural modeling of buildings”
ACM Transactions on Graphics 25 614–623

Müller P, Zeng G, Wonka P, Gool L V, 2007, “Image-based procedural modeling of facades”
ACM Transactions on Graphics 26 85

Patrikalakis N M, Maekawa T, Ko K H, Mukundan H, 2004, “Surface to surface intersections”
Computer-Aided Design and Applications 1 449–458

Piazzalunga U, Fitzhorn P, 1998, “Note on a three-dimensional shape grammar interpreter”
Environment and Planning B: Planning and Design 25 11–30

Prats M, Jowers I, Earl C, Garner S, 2004, “Generative curves in product design”, in Design
Computing and Cognition DCC ’04 Ed. J S Gero (Kluwer, Dordrecht)

Press W H, Teukolsky S A, Vetterling W T, Flannery B P, 2007 Numerical Recipes: The Art of
Scientific Computing 3rd edition (Cambridge University Press, Cambridge)

Stiny G, 1975 Pictorial and Formal Aspects of Shape and Shape Grammars and Aesthetic Systems
PhD thesis, System Science, University of California, Los Angeles, CA

Stiny G, 1977, “Ice-ray: a note on Chinese lattice designs” Environment and Planning B 4 89–98
Stiny G, 1980a, “Introduction to shape and shape grammars” Environment and Planning B: Planning

and Design 7 343–351
Stiny G, 1980b, “Kindergarten grammars: designing with Froebel’s building gifts” Environment and

Planning B 7 409–462
Stiny G, 1991, “The algebras of design” Research in Engineering Design 2 171–181
Stiny G, 1992, “Weights” Environment and Planning B: Planning and Design 19 413–430
Stiny G, 2004, “How to calculate with shapes”, in Formal Engineering Design Synthesis

Eds E K Antonsson, J Cagan (Cambridge University Press, Cambridge) pp 20–64
Stiny G, 2006 Shape: Talking About Seeing and Doing (MIT Press, Cambridge, MA)
Stiny G, 2011, “What rule(s) should I use?” Nexus Network Journal 13 15–47
Stiny G, Gips J, 1971, “Shape grammars and the generative specification of painting and sculpture”,

in Information Processing 71 Ed. C V Freiman (North-Holland, Amsterdam) pp 1460–1465
Stouffs R, 1994 The Algebra of Shapes PhD thesis, Department of Architecture, Carnegie Mellon

University, Pittsburgh, PA
Stouffs R, Krishnamurti R, 1993, “The complexity of the maximal representations of shapes”, in

Proceedings of the IFIP WG 5.2 Workshop on Formal Design Methods for CAD Ed. J S Gero
(Kluwer, Dordrecht) pp 53–66

Stouffs R, Krishnamurti R, 2006, “Algorithms for the classification and construction of the boundary
of a shapes” Journal of Design Research 5 54–95

Watson B, Müller P, Veryovka O, Fuller A, Wonka P, Sexton C, 2008, “Procedural urban modeling
in practice” IEEE Computer Graphics Applications 28 18–26

Weber B, Müller P, Wonka P, Gross M, 2009, “Interactive geometric simulation of 4D cities”
Computer Graphics Forum 28 481–492

Yue K, 2009 Computation-friendly Shape Grammars: With Application to Determining the
Interior Layout of Buildings from Image Data PhD thesis, School of Architecture, Carnegie
Mellon University, Pittsburgh, PA, http://www.cmu.edu/architecture/research/grad_work/2009/
phdcd_yue_kui.pdf

Yue K, Krishnamurti R, 2013, “A paradigm for interpreting tractable shape grammars” Environment
and Planning B: Planning and Design 40 forthcoming

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'PageBros'])
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads true
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /WorkingCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

