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Abstract. Rectangulations include packings of rectangles in two dimensions and packings of cuboids 
(3-rectangles) in three dimensions. Spatial layouts of this type are used in architectural and engineering 
design. In this paper we examine the spatial relations between the lines, planes, and volume elements 
in these designs. It is shown how to describe rectangulations as shapes in product algebras. Spatial 
relations, particularly adjacencies between areas, volumes, maximal planes, or maximal lines are used 
to represent rectangulations. More general properties of these spatial relations are derived. Generative 
properties of rectangulations are established which distinguish those 3-rectangulations which have an 
essentially two-dimensional character. 

Introduction 
Three-dimensional rectangulations or 3-rectangulations are arrangements of rectangular 
volumes or cuboids (3-rectangles). The boundaries of the 3-rectangles are aligned along 
mutually perpendicular directions. For densely packed rectangulations the 3-rectangles 
do not overlap, there are no gaps between them, and they are packed into a 3-rectangle. 
The boundary faces of 3-rectangles join to form maximal planes. The joints among the 
maximal planes classify types of 3-rectangulation (Earl, 1978). In Krishnamurti (1979) 
classes of 3-rectangulations are generated on a cellular grid by distinguishing rules for 
the occupancy of grid cells. Densely packed rectangulations are part of a wider class 
of shapes consisting of loosely packed arrangements of rectangles (Flemming, 1986). 
Two-dimensional rectangulations (2-rectangulations) are called rectangular dissections 
(Steadman, 1983). 

Rectangulations, both loosely and densely packed, have served as a formally defined 
class of spatial configurations representing layout designs in two and three dimensions. 
In examples from architectural design (Flemming, 1986; Steadman, 1983) the rectan­
gular areas are treated as spaces and their boundary lines as walls. In these examples 
rectangulations have two distinct applications. First, as a formally defined class of 
geometrical configurations of a floor-plan layout type. Second, as a representative 
sample from which other layouts can be derived by local modifications such as taking 
the shape sum of adjacent rectangles or subdividing large rectangular areas. There are 
several ways of generating these rectangular configurations by grammars (Earl, 1980; 
Krishnamurti, 1979). A family of similar grammars specifies a wider class of rectangular 
shapes. Flemming's treatment of loosely packed rectangulations (Flemming, 1986; 1989) 
and their construction in the LOOS system provides a comprehensive framework for 
describing and generating spatial layouts. The LOOS implementation has been applied 
to aid the evaluation of different search methods in design applications (Flemming et al, 
1992) and as a component in a conceptual building design demonstrator (Flemming and 
Chien, 1995). 
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Layout design is a component in many areas of design, including architecture, 
mechanical and electromechanical engineering, electronics, and building construction. 
The architectural sources for the study of rectangular spatial layouts have been out­
lined above. Spatial layouts in engineering design are now considered. It may be 
instructive to distinguish two ways in which spatial layouts have been generated in 
engineering applications. First, spatial elements or 'pixel-like' areas or volumes are 
aggregated to form functional spaces. Rules incrementally modify spaces to meet shape 
and functional criteria. In an example of this approach applied to complex engineer-to-
order (that is, one-of-a-kind) products, such as oil-platform topside layout (Smith et al, 
1996), an expert system is used to generate associativity data (Chao et al, 1997) specify­
ing the relationships among spaces and a simulated annealing algorithm to optimise 
layout. A characteristic of this approach is that intermediate configurations generated 
in the process of searching for a layout range freely under the constraints of the rules. 

Second, functional spatial elements are composed by rules to generate possible 
designs. An example is the problem of three-dimensional component packing for design 
applications (Szykman and Cagan, 1995). A distinction is made between constrained 
and unconstrained problems. The constrained problem (Szykman and Cagan, 1997) 
corresponds to design applications where associativities and space attributes need to 
be satisfied as well as optimising the layout against an objective function. The search for 
suitable designs within the rule framework again uses simulated annealing (Cagan and 
Mitchell, 1993). An advantage of simulated annealing for layout problems is that it is 
possible to move out of the space of valid layouts during the search. As penalties are 
incurred for invalid layouts, such as those with overlaps among spaces, the process 
tends towards final valid layouts. Other examples of this approach include the design 
of machine layouts (Hicks et al, 1994) generated as loosely packed rectangulations, 
three-dimensional manufacturing layouts of process, transfer, and handling equipment, 
construction site layout (Choi and Flemming, 1996), and electronic component packing 
(Campbell et al, 1997). 

Electronic circuit layout is an engineering domain in which rectangular elements 
are widely used. The boundaries of adjacent rectangles represent channels through 
which connections between components located in the rectangles are made. In contrast 
to the architectural and mechanical examples the layout problem shifts from concen­
tration on rectangular spaces to the configuration of boundaries, whether lines or 
planes (Preas and van Cleemput, 1979; Supowit and Slutz, 1984). The wall representa­
tions of Flemming (1978; 1980) are directly applicable to these examples, and formal 
results on the equivalence of region and wall representations are presented by Kundu 
(1988). A boundary view of rectangulations is used later in this paper to describe 
underlying constraints and freedoms in the design of three-dimensional spatial layouts. 

This investigation of 3-rectangulations is motivated by two general aims. First, to 
try to understand the geometrical properties of fully three-dimensional configurations 
arising in applications such as architecture, electronics, factory layouts, and compact 
equipment packing in aerospace or consumer electronics. In these examples small 
dimensional changes can lead to a cascade of configurational alterations yielding a 
functionally unsuitable design. CAD geometric modelling provides tools for construct­
ing volume and surface elements and combining them into compositions. The CAD 
tools display the results of compositions (and construct associated geometric models) 
but spatial analysis is largely left to the designer. The designer's expertise and knowledge 
of the problem domain controls and guides spatial composition. CAD tools help 
visualisation, clash detection, and occupancy analysis of a proposed design. 

Second, rectangulations present an example of a class of shapes for which different 
descriptions in terms of shape elements (volumes and boundary planes) are used 
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simultaneously in design applications. The 3-rectangulations offer a class of shapes in 
which descriptions can be examined individually and in combination. Formal specifi­
cation of descriptions yields data structures. For 2-rectangulations, data structures based 
on generative schemes (Krishnamurti, 1979; Kundu, 1988) have provided computational 
mechanisms for manipulating the shapes. 

In this paper we are not defining an approach to spatial layout problems; rather we 
consider how layouts are described as shapes and spatial relations. Three-dimensional 
layouts display a wide variety of possible configurations. However, these configurations 
are constrained by geometric conditions placed on the elements and relations, such as 
rectangularity and dense packing. We examine how these constraints affect possible 
configurations and their resulting properties. These properties range from the local 
properties at joints in densely packed 3-rectangulations (Earl, 1978) to the more global 
ones of spatial relations among shape elements across the configuration. 

Maximal plane adjacency (one of the spatial relations between elements) is used 
by Krishnamurti (1993) to represent unlocked trivalent 3-rectangulations. This class of 
3-rectangulations is identified by the condition that maximal planes are rectangles 
which do not cross one another. The maximal plane adjacency representation is not 
appropriate for other classes of 3-rectangulation. These require more information on 
the properties of maximal planes and the types of adjacencies. We show how to charac­
terise those 3-dimensional maps which are maximal plane adjacency descriptions of 
unlocked trivalent 3-rectangulations. These descriptions can thus support shape com­
putations on rectangulations. Changes that occur in the rectangulations (at least 
configurational changes) are reflected in corresponding changes in the maximal plane 
adjacency description. We are not making special claims for a limited class of three-
dimensional layouts but use them to: (a) indicate the properties of more complex 
classes; (b) provide an example of different spatial descriptions of a spatial configura­
tion; (c) develop formal representations of the class. 

The analysis of rectangulations also provides an example of the ways in which 
shapes are described by elements (Earl, 1997; Stouffs, 1994). Some preliminary defini­
tions are given here. Elements are defined by descriptors and boundaries. Descriptors 
define lines, planes, or volumes, and the boundaries locate the element segments. A 
shape S is described by selected elements E(S). An element x in E(S) has boundary b(x). 
Elements with equal descriptors can be combined by finite sums and products to form 
new elements E'(S). Subsets Xof E'(S) which cover S can be used to describe S, with 
associated boundaries b(X) formed from the shape sum of the elements X. Among the 
subsets describing S, there is one for which the boundary is minimal. It is associated 
with the maximal elements in E'(S). 

The properties of 3-rectangulations depend critically on the properties of 2-rectan­
gulations because cross sections of 3-rectangulations are 2-rectangulations. Descriptions 
and properties of densely packed 2-rectangulations will be reviewed for application to the 
dimensional case. In the following we assume that all rectangulations are densely packed. 

2-rectangulations as shapes 
A 2-rectangulation R22 in shape algebra U22 (Stiny, 1991) is described by a set of rectan­
gular plane elements E22. A shape algebra Uy has shapes of dimension / embedded in a 
space of dimension j . For example, U22 contains coplanar plane elements and U23 

contains general plane elements embedded in three dimensions. The notation E22 

indicates that these elements are in shape algebra U22. For x, y in E22, the shape 
product x.y is empty (that is, the elements do not overlap). The shape sum, J ]x , of 
all elements x in E22 is a rectangular plane element (that is, the rectangles are densely 
packed into a rectangle). 
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Boundaries b(x), of elements x in E22, are rectangles, and minimal boundary 
b*(R22) is a rectangle (Earl, 1997). Trivalence is a property of boundaries. An element 
x is adjacent to y if b(x).b(y) is not the empty shape. A rectangulation is trivalent if, for 
adjacent elements x and y, there are two elements which are each adjacent to x and y 
An extended set of elements, formed from sums and products of elements in E22, is 
denoted E22. These elements are not necessarily connected and represent collections of 
rectangles. 

A 2-rectangulation Ru in shape algebra Ul2 is described by orthogonal maximal 
line elements Ml2. These line elements have all boundary points coincident with other 
lines. There are four shared boundary points which identify a bounding rectangle. If, in 
addition, the incidence (Earl, 1997) and boundary of Rn (described by elements Mn) 
are equal, then the lines do not cross and Rl2 is trivalent. 

The relation between the descriptions of rectangulations as lines and plane segments 
is now examined. If 2-rectangulation R22 is considered as a shape in U22 with elements 
E22 as above, then the boundary b(e), e in E229 is a rectangle. Boundary b(e) has four 
maximal line segments. The set of line segments {b(e), e in E22} can be used to describe 
a corresponding rectangulation Rl2 in Ul2. Let the elements in this description be El2. 
The sums and products of colinear elements in El2 yield elements E[2. These elements 
are not necessarily connected and represent alignments across the rectangulation. The 
maximal element description Ml2 is constructed by using maximal connected elements 
in E[2. 

The two views of 2-rectangulations can be combined in a product description. 
Consider the rectangulation shape in Ul2 x U22 comprising a rectangulation Rl2 in 
Ul2 and a rectangulation R22 in U22. The shapes Rn and R22 have element descriptions 
Ml2 and E22, such that the boundary of R22 expressed as the sum of boundaries of 
elements in E22 equals the sum of elements in M12. The shape Rn x R22 can be 
described by elements in the product set Mu x E22 = {(m, e), m in M12, e in E22}. 
The description with elements Ml2 and E22 concentrates attention on combinations 
of lines across the shape, but leaving plane segments as discrete elements packed 
together. This view may overlook potential richness in the spatial structure emerging 
from combinations of the plane elements. 

There are many alternative descriptions of a rectangulation in Ul2 x U22. We 
shall start with a description based on maximal lines and a single rectangular plane 
segment. The rectangulation is described by the product set of shape elements 
{(m, x), m in Ml2, x —. ^e, e in E22). The U22 component of this product is not a 
rectangulation in its own right. It is by combination with the shapes in the Ul2 

component that we obtain a rectangulation. This description of a rectangulation 
thus belongs properly to the product algebra. Further elements in U22 can be identified 
as elements in E22 which are rectangles. These rectangles may be compositions of 
elements in E22. The corresponding description of the rectangulation is the product 
set of shapes, {(m, e), m in Ml2, e in E22, e is a rectangle}. If we turn our attention 
to shape elements in Un, other descriptions are {{el2, e22), el2 inE l2, e22 in E22}, 
{(e[2,e22),e[2 in E'l2, e22 in E22}, {(e 

12 J ^22 

), el2 in 
^ 1 2 ? ^22 m ^ 2 2 }» { ( e 1 2 9 ^22)? e 1 2 

in E[29 e22 in E22}, and {(en, x), eu in El2, x = ^e, e in E22). The use of elements 
£22 widens the scope of the descriptions to include nonrectangular elements. 

The subshapes used to describe a rectangulation in the product algebra Uu x U22 

may not be set products of subshapes in Un and in U22. The subshapes may be formed 
by restricted pairs of subshapes. For example, subshapes composed from elements £22 
and their associated boundaries (that is, rectangles and their boundaries taken together) 
can be used to describe a rectangulation in the product algebra Ul2 x U22. The Un 

components in these restricted shapes are not shape elements. The relation between the 
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two components in this restricted subshape is not preserved under shape sum and 
shape product. For example, the product of two adjacent rectangles with boundary 
consists of the shape with components—the piece of shared boundary and the empty 
shape. These restricted subshapes are thus not candidates for closure algebras (Earl, 
1997; Stiny, 1994) of subshapes in the product algebra. This description of a rectangula-
tion illustrates the use of general descriptions based on selected subshapes rather than 
just shape elements. 

Representation of 2-rectangulations 
Densely packed 2-rectangulations are arrangements of nonoverlapping rectangles with 
a rectangular boundary. Trivalent 2-rectangulations are sections of trivalent unlocked 
3-rectangulations. We will require the properties of 2-rectangulations to derive the 
spatial and generative characteristics of 3-rectangulations. 

A trivalent 2-rectangulation is represented by a plane map of maximal line adja­
cency (Earl, 1980; Flemming, 1978). At an adjacency, one line abuts another. In 
Krishnamurti (1993) this asymmetry is included by directing the map edges. If line x 
abuts line y at an endpoint of x, then the corresponding edge (x, y) in the maximal line 
adjacency map has direction from x to y The boundary face corresponding to the 
bounding rectangle is assigned bidirected edges, that is, edges with both directions. 

Properties of maximal line adjacency maps arise immediately from the configura­
tion of maximal lines in a trivalent 2-rectangulation. 
(a) All the faces are cycles of length 4, that is, the maps are quadrangulations (Brown, 
1965). A cycle denotes a loop of incident edges and vertices, without regard to the direc­
tions on the edges. A directed cycle denotes that the edges have consistent directions 
around the loop. 
(b) There is a bidirected cycle of length 4. The length of a cycle is the number of 
vertices or edges it contains. 
(c) The out-degree of each vertex on the map is two. This means that each vertex has 
exactly two edges directed away from the vertex. This is denoted by d+(v) = 2, where 
d+(v) is the out-degree, or number of edges directed away from, vertex v. 
(d) The map is 2-vertex coloured, that is, the vertices form two sets with each edge 
from a vertex in one set to a vertex in the other. 
(e) There are no multiple edges between vertices (that is, cycles of length 2). 
(f) The map is planar. 

Let the directed quadrangulations satisfying all the conditions (a), (b), (c), (d), (e), 
and (f) be denoted by D. We show that D is precisely the set of maximal line adjacency 
maps of trivalent 2-rectangulations. We approach this result in two stages. First, we 
show that the quadrangulation property (a) is dependent on the other properties. 
Second, we construct these directed maps and interpret their construction in terms 
of rectangulations. Counting arguments relating the numbers of edges and faces of 
vertices are used frequently. Details of the counting arguments are shown in their first 
application but not subsequently. 

For a plane map M satisfying conditions (b), (c), (d), (e), and (f), planarity gives 
V — E + F = 2 where V, E, and F denote the numbers of vertices, edges, and faces, 
respectively, in M. The out-degree condition gives E = 2 V — 4, and edge counting 
gives J2 iFt = 2E, where Ft denotes the number of faces with boundary cycle length /. 
These relations imply that YJj ~ 4)^/ = 0- There are no cycles of length 2 or 3, thus 
F2 = 0 and F3 = 0, and all faces have boundary cycle length 4. Thus M is a quad­
rangulation and satisfies condition (a). 

The planarity condition (f) is important because planarity is not a consequence 
of the other properties (b), (c), (d), (e). As a counterexample, consider the 2-vertex 
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coloured graph with vertex sets {p, q, r, s} and {1, 2, 3, 4}, and directed edges {(1,/?), 
(1, r), 0,1), (g, 2), (2, q\ (r, 2), (2, r), (3, q\ (q, 3), (3, r), (r, 3), (p, 3), (s, 3), fo 4), 
(4, r), (4, 5)}. This graph has bidirected cycle (2, #, 3, r) and out-degree equal to two 
for all vertices, but is nonplanar because the subgraph on vertices {1, 3, 4,/?, r, ^} is 
complete bipartite (Bondy and Murty, 1976). 

In order to construct directed quadrangulations D, some properties of cycles are 
identified. A cycle bounds a quadrangulation. Let us define an inward-directed edge as 
one from a vertex on the cycle to a vertex inside (where inside means away from the 
bidirected boundary). There is a simple relation between the length of the cycle and the 
number of inward-directed edges. This is established by counting arguments on the 
quadrangulation enclosed by the cycle, to give: A cycle of length 2k in a directed 
quadrangulation in D has k-2 inward-directed edges. 

A special case is: Cycles of length 4 in directed quadrangulations in D have no inward-
directed edges. 

A nontrivial directed quadrangulation in D has an internal vertex of degree 2 or 3 
(by means of counting arguments). Removing a vertex of degree 2 retains a quadrangu­
lation in D (as there are no cycles of length 2) but with fewer vertices. Removing a 
vertex of degree 3 (planarity implies a surrounding cycle of length 6 if there are no 
vertices of degree 2) and its incident edges and replacing them with a single edge 
retains a directed quadrangulation in D. The replacement can be chosen to maintain 
out-degree 2 vertices and to avoid creating a cycle of length 2. The properties of the 
inward-directed edges on cycles ensure this. 

By reversing these operations, we can construct maps in D with n vertices from 
those with n — 1 vertices. Corresponding rules (figure 1) construct rectangulations. This 
establishes that: Each directed quadrangulation in D is the maximal line adjacency map 
of a 2-rectangulation. 

The argument leading to the result on generating directed quadrangulations in D 
also shows that a quadrangulation without multiple edges [satisfying conditions (a) and 
(e)] can be assigned edge directions meeting conditions (b) and (c). This means that 
quadrangulations represent the underlying maximal line adjacency in 2-rectangulations. 

Such a quadrangulation Q has a corresponding set of directed quadrangulations 
D(Q) in D. Each D(Q) has in general many elements. This can be seen by reversing the 
directions in a directed cycle. Reversal retains all properties of a directed map in D. 
Note that no directed cycles contain a boundary edge (except the boundary itself) 
because the boundary vertices have no inward-directed edges. These reversals of 
directed cycles generate all members in D(Q) from one particular directed quadrangu­
lation. This can be established by considering Dx and D2 in D(Q). Consider edge (v, w) 
in Q with direction w —> v in Dx and direction v —• w i n D 2 . I nD 2 there is an edge 
w —> x with a corresponding directed edge x —> w m Dx. Repeating this operation 
creates a directed path v, w, x, ... in D2 and the corresponding reversed path ... x, w, v 

Figure 1. Rules for constructing 2-rectangulations. 
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in Dx. The path in Dl does not reach the bidirected boundary and is thus a directed 
cycle. Thus all edges on which directions can be reversed belong to directed cycles. 
Thus: All directed quadrangulations in D with the same underlying quadrangulation can 
be derived from one another by sequences of reversals of directed cycles. 

The directed quadrangulations have connectivity properties based on directed 
paths. For a vertex v in a directed quadrangulation D in D, let us denote the maximal 
submap reached by directed paths from v by C(v). The submap is also a directed 
quadrangulation in D. This follows from counting arguments and by noting that C(v) 
reaches the bidirected boundary of the original quadrangulation (otherwise, the con­
dition on in-directed edges on a cycle is violated). The faces of C(v) can bound 
subquadrangulations in D so that C(v) does not cover D completely but can miss out 
the subquadrangulations. 

There are additional results for directed cycles in a directed quadrangulation in D. 
First, if there are no directed cycles (apart from the boundary) then there is a vertex of 
degree 2. This is established by following in reverse a directed path, against edge 
directions, until it terminates at an interior vertex (as there is no directed cycle), which 
has degree 2. Second, if there is a directed cycle (not the boundary) then there is a 
directed cycle of length 4. The directed cycle is either of length 4 or has an interior 
directed edge. Following this interior-directed edge, construct a 'smaller' directed cycle. 
Repeat the construction until a directed cycle of length 4 is found. In fact a stronger 
result holds for tracing back a path inside the cycle of length 4 against the edge 
directions (the original cycle is not a face) if either a vertex of degree 2 is found or, 
by repeating the construction, a directed cycle bounding a face is encountered. These 
two results are summarised as: A directed quadrangulation in D contains either an 
interior face bounded by a directed cycle or a vertex of degree 2. 

A consequence is that rules in figure 1 for constructing 2-rectangulations may be 
simplified to splitting an existing rectangle or creating the 'pinwheel' rectangle corre­
sponding to a directed cycle (figure 2). 

Figure 2. Simplified rules for constructing 2-rectangulations. 

Similar results have been given in earlier papers on rectangulations. In particular, 
the last result on the existence of directed 4-cycles or a vertex of degree 2 was 
established by Supowit and Slutz (1984), in the context of cycles of connection paths 
in rectangular channels for VLSI design. The maximal line representation allows this 
result to be obtained economically and offers insights on the maximal line structure of 
2-rectangulations. 

To complete the review of 2-rectangulations we identify generation rules which are 
derived directly from the line configurations in the rectangulations. The mediation of 
the maximal line adjacency description is not always advantageous. Two types of 
rectangles occur in 2-rectangulations. These are illustrated in figure 3 (see over) as 
the right-hand sides of the corresponding rules for generating 2-rectangulations. The 
rules in figure 3 are of interest because at least one of them applies to each rectangle 
(Krishnamurti, 1993). For any labelling of the faces {f} of a directed quadrangulation 
in D, there is an associated generation sequence which creates the faces in the same 
order , / , f2,f3, ...,fn. 
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Figure 3. Rules for constructing 2-rectangulations with rectangles being added in any order. 

3-rectangulations as shapes 
A 3-rectangulation R33 in shape algebra U33 is a set of rectangular volumes (3-
rectangles) E33. For x, y in £33, the shape product x.y is empty (that is, the elements 
do not overlap). The shape sum, J ] x, of all elements x in £33 is a 3-rectangle giving a 
dense packing. 

Boundaries b(x), of elements x in £33, are composed of 2-rectangles. The minimal 
boundary b*(R33) is similar. Trivalence is a property of boundaries. An element x is 
adjacent to y if b(x).b(y) is not the empty shape. A • 3-rectangulation is trivalent if, 
for adjacent elements x, y, and z, there are four 3-rectangles which are each adjacent to 
x, y, and z. An extended set of elements, formed from sums and products of elements in 
£33, is denoted E33. These elements are not necessarily connected and represent 
collections of 3-rectangles. 

A 3-rectangulation R23 in shape algebra U23 is described by orthogonal maximal 
plane elements M23. These planes have all boundary lines coincident with boundaries 
of other planes and there are twelve shared boundary lines which identify a bounding 
3-rectangle. If, in addition, the incidence and boundary of R23 (described by elements 
M23) are equal, then the planes do not cross and R23 is trivalent. 

If a 3-rectangulation R33 is considered as a shape in U33 with elements £33 as 
above, then the boundary b(e), e in £33, has six maximal plane segments. The set of 
plane segments in {b(e), e in £33} can be used to form a description for a correspond­
ing rectangulation R23 in U23. Let the elements in this description be E23. The sums and 
products of coplanar elements in E23 yield elements E23. These elements are not neces­
sarily connected. The maximal element description M23 is constructed by using maximal 
connected elements in E23. 

There are various descriptions of a rectangulation in U23 x U33 depending on the 
elements in U23 and U33 used to describe the shapes. One of these comprises a rectan­
gulation R23 in U23 and a rectangulation R33 in U33. An overall composite view composed 
of points, line planes, and volume elements is reviewed towards the end of the paper. 

The subshapes used to describe a rectangulation in the product algebra U23 x U33 

may be formed by restricted pairs of subshapes in U23 and U33. For example, subshapes 
composed from elements E33 and their associated boundaries (that is, 3-rectangles and 
their boundaries taken together) can be used to describe a 3-rectangulation. However, 
as with the similar product shapes for 2-rectangulations, the selected shapes are not 
closed. For example, the shape product (that is, intersection) of two adjacent 3-rectan­
gles with boundary consists of the shape with components—the shared rectangular 
plane segment and the empty shape which is not one of the shapes selected for the 
original description. 

Unlocked trivalent 3-rectangulations 
Maximal plane adjacency maps of unlocked trivalent 3-rectangulations (Krishnamurti, 
1993) are three-dimensional maps. Each 3-face (that is, a three-dimensional face or 
'volume') is an octahedron. Each face (or 2-face) is triangular and each edge (or 1-face) 
directed. The edges of the boundary octahedron are bidirected and each vertex has 
d+(v) = 4. 
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There are two types of cycle of particular interest. First, the 1-cycles of edges are 
the conventional sequences of edges sharing endpoints. Second, the 2-cycles of trian­
gular faces which form triangulated planar maps. These 'topological' 2-cycles have 
triangular faces edge to edge in pairs with no unpaired edges. There are no directed 
1-cycles of length 3 and the maps are 3-vertex coloured. Lastly, there are exactly four 
triangular faces between the four out-directed edges at the vertex. Each of these faces 
contains two of the out-directed edges. This last property is denoted by 5+(v) = 4. Just 
as in the two-dimensional case, three-dimensional embedding is critical. In the follow­
ing it is also assumed that there are no multiple edges or multiple 2-faces connecting 
the same vertices. 

These properties are summarised in the following way. The maximal plane adjacency 
map of an unlocked trivalent 3-rectangulation is an edge-directed three-dimensional map 
with the following properties: (a) 3-faces octahedral; (b) 2-faces triangular; (c) boundary 
octahedron bidirected; (d) d+(v) = 4 for all vertices; (e) S+(v) — 4 for all vertices; 
(f) no directed 1-cycles of length 3; (g) no directed boundaries of triangular 2-faces; 
and (h) 3-vertex coloured. 

There are dependencies among these properties. Condition (a) is dependent on the 
other conditions: {(b), (c), (d), (e), (h)} => {(a), (g)}, where a list of conditions indicates 
that they all hold. To establish this we use counting arguments. 

Let V, E, F, and S denote the numbers of vertices, edges, 2-faces, and 3-faces. 
Euler's relation gives V- E + F- S = 0. Conditions d+(v) = 4 and S+(v) = 4 yield 
4V = E+ 12 and 4(V — 6) ^ F — 8, respectively. The last inequality arises because 
four triangular faces are distinguished at each vertex by the S+(v) = 4 condition. 
However, there may be triangular faces which are not counted in this way. Such faces 
have boundaries which are directed 1-cycles of length 3. This counting of triangular 
faces by use of the S+(v) = 4 condition counts 2-faces at most once, and thus the 
inequality. Face counting gives 2F = J2 ^ CO> where Sf (F) is the number of 3-faces 
with i triangular faces. Together the above equations imply ^2(i — 8)5,- (F) < 0. Each 3-
face has triangular 2-faces. The smallest which is 3-vertex coloured has eight faces, 
namely, the octahedron; thus E O ' - 8 ) ^ ^ ) > 0. Therefore £ ( / - 8)$ (F) = 0, and 
all 3-faces are octahedra. In addition, there are no triangular faces which are directed 
3-cycles. The stronger result that there are no directed cycles of length 3 remains to be 
established later. 

The previous result requires that S+(v) = 4 and d+(y) = 4. It appears that both 
these conditions are required to guarantee octahedral packing (all 3-faces octahedral). 
Now consider the conditions on which (e) [S+(v) = 4] is dependent. By applying 
counting arguments similar to those above, we can establish the following depen-
dencies: {(a), (c), (d), (g)} =* (e), and {(a), (c), (d), (e)} => (g). Thus {(a), (c), (d), (g)} is 
equivalent to {(a), (c), (d), (e)}. From these dependencies we get: {(a), (c), (d), (g)} 
is equivalent to {(b), (c), (d), (e), (h)}. 

Let T denote this class of three-dimensional directed octahedral maps specified by 
conditions {(a), (c), (d), (g)} or {(b), (c), (d), (e), (h)}. We refer to these maps as 
octahedral because each of their 3-faces is an octahedron. We will now show that the 
directed octahedral maps T are the maximal plane adjacency maps of unlocked triva­
lent 3-rectangulations. First, the internal structure of elements in T is examined. 

Consider T in J, and an internal vertex v of T. The vertices adjacent to v and the 
associated edges joining them form a quadrangulation Q(v). Because d+(v) = 4 and 
S+(v) = 4, there is a distinguished 2-cycle of length 4 in this quadrangulation incident 
to out-directed edges from v (figure 4, see over). Let us denote this by dQ(v) and the 
rest of Q(v) as the interior of Q(v). The cycle 8Q(v) divides Q(v) into two parts both of 
which are quadrangulations. 
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Figure 4. Configurations Q(v) at vertex v, where Q(v) is a quadrangulation embedded on a 
sphere, and dQ(v) divides the quadrangulation into two parts. 

Each edge in Q(v) corresponds to a triangular face with v as the other vertex. There 
are no inward-directed edges from 8g(v) because this would violate the condition that 
there are no triangular faces with a directed boundary. The vertices in the interior of 
Q{y) have S+(v) = 2, derived by means of counting arguments. Consequently, all the 
properties of directed quadrangulations corresponding to 2-rectangulations hold for 
each of the two parts of Q(v), separated by the distinguished cycle. In particular, a cycle 
of length 4 in either part has no inward-directed edges (where the inside of the cycle does 
not contain the distinguished cycle). 

The following construction identifies, for any vertex v in the interior of an octahedral 
map Tin T, an octahedral submap (having all 3-faces octahedra) which contains vertex v 
as an interior vertex. Let us take two vertices w{ and w2 of the same colour in dQ(v) and 
consider Qx = Q(w{) and Q2 = Q(w2). Let Qx n Q2 be the vertex and edge intersection 
of Qi and Q2. Construct C(v) with vertices reachable by paths from v (not necessarily 
directed) which do not cross dQx or dQ2; C(v) is a quadrangulation with a boundary 
cycle of length 4 consisting of vertices and edges in dQx or dQ2. Now construct T(v) as 
the octahedral submap of T as generated by the vertices {C(v), wl9 w2}. Further 
construct the octahedral submap T'(y) [which includes all of T(v)] generated by vertices 
{Q\ ^Qi> wi J w2}. In fact T'(y) = T(v) because if there is vertex x in the boundary of 
T(v) but interior to T'(v) then 3-dimensional embedding prevents the construction 
of T(x). Thus C(v) = Qx D Q2. Note that T(v) may enclose parts of T which are not 
part of T(v). 

Submap T(v) has no in-directed edges from its boundary to an interior vertex. This 
is a general property of octahedral submaps of T. First, note that octahedral submaps 
of T(y) have no in-directed edges. If T' is an octahedral submap of T and there is an 
edge from vertex x on the boundary of T' to an interior vertex y of Tr, then construct 
C(y) and the corresponding T(y). The edge (x, y) is either an edge directed towards the 
interior of T(y) or an inward-directed edge on a cycle of length 4. Both cases contradict 
the properties of T{y). Thus: An octahedral submap of an octahedral map in T has no in-
directed edges from its boundary to an interior vertex. 

This is analogous to the condition on cycles of length 4 in directed quadrangulations 
that there are no edges directed from the cycle towards its interior. However, note that for 
quadrangulations the result is established by counting arguments. In the three-dimen­
sional case of octahedral maps, counting arguments only yield bounds on the numbers of 
inward-directed and outward-directed edges at the boundary of an octahedron. These are 
not strong enough to give useful properties of the octahedral submaps. It is necessary to 
consider explicitly the three-dimensional embedding of the maps. 

We are now in position to show that: The octahedral maps T are precisely the 
maximal plane adjacency maps of unlocked trivalent 3-rectangulations. 
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This is established by induction on the number of vertices by using the construction 
of T(v) at each vertex v. Note that each T(v), when it has the edges of its boundary 
octahedron augmented so that they are bidirected, is a member of T. Further, removing 
the interior of T(v) [including vertices which do not belong to T(v)] leaves an octahe­
dral map which is also in T. A special case occurs when T(v) contains the boundary 
octahedron. The interior quadrangulation is then constructed from a quadrangulation 
with fewer vertices with associated rules for construction of 2-rectangulations. The 
octahedral map with one interior vertex is the maximal plane adjacency map of a 3-
rectangulation. Informally this means that an unlocked 3-rectangulation either has a 
sub-3-rectangulation or is a 'thin' rectangulation, one rectangle deep which has all the 
properties of a 2-rectangulation. The subrectangulation in turn satisfies the same 
property of having a sub-3-rectangulation or is a 'thin' rectangulation. These results 
indicate that unlocked trivalent 3-rectangulations are essentially two dimensional in 
character. An unlocked 3-rectangulation contains a subconfiguration which is an 
extruded 2-rectangulation. This means that 3-rectangulations can be viewed as a series 
of subdivisions of 3-rectangles by extruded 2-rectangulations. The three-dimensional 
complexity arises from application of the subdivision rule in three planes. 

The submaps T(v) have corresponding sub-3-rectangulations for each maximal 
plane in the rectangulation. The presence of these sub-3-rectangulations can be estab­
lished directly from the geometric configuration of the maximal planes in rectangulations. 
We now present results on directed paths and cycles in directed octahedral maps in T. 
These have direct parallels in 3-rectangulations and can be shown directly on the 
geometric configuration rather than by using the maximal plane adjacency map. 

The construction of the octahedral submap T(y) provides a way to establish results 
on directed 1-cycles in directed octahedral maps in T. Suppose that vertex v belongs to 
a directed path P. If P leaves T(v) then it cannot return to the interior of T(v) because 
there are no in-directed edges. Thus if P leaves T(v) it cannot be a cycle. Consider a 2-
coloured directed cycle containing vertex v. As the cycle remains in T(v) we have the 
general result: A 2-coloured directed 1-cycle in an octahedral map in T has all vertices 
adjacent to two vertices of the third colour by edges out-directed from vertices on the 
directed cycle. 

The consequences of the construction are stronger. Consider a 3-coloured path 
containing the vertex v in T(y). The path must leave and cannot return to the interior 
of T(y). Thus: An octahedral map in T has no 3-coloured directed cycles. 

By the construction of T(y) its interior vertices form a directed quadrangulation. 
Thus, by the properties of directed quadrangulations, a directed 2-coloured path can 
always be found from the interior of T(y) to the boundary of T(v). A directed 2-coloured 
path from any vertex in an octahedral map T leads to the boundary octahedron because 
the path repeatedly leaves octahedral submaps T{v) and does not return. Thus: There are 
2-coloured directed paths (of each pair of colours) from each vertex of a map in T to the 
boundary octahedron. 

The results for the directed octahedral maps T can be interpreted directly for 3-
rectangulations. The characteristics of directed 2-coloured cycles are straightforward to 
establish directly on 3-rectangulations. As a directed path passes from plane to plane, 
the 'height' of the plane increases. With a cycle these heights must all be equal and the 
planes in the cycle are all adjacent to a pair of planes orthogonal to those in the cycle. 
The result that there are no 3-coloured cycles is harder to establish directly and the 
maximal plane adjacency representation is an effective route to this result. 
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Generating 3-rectangulations 
The methods of generation used above are based on suboctahedral maps or their 
corresponding subrectangulations. There are more straightforward generations based 
on the types of 3-rectangle present in a 3-rectangulation. The rules in figure 5 generate 
unlocked trivalent 3-rectangulations and depend on the fact that the right-hand sides of 
the rules represent the only two configurations for the planes around a rectangle. Thus, for 
any labelling rx, r2, ..., rn of the rectangles in a 3-rectangulation, there is an associated 
generation sequence which creates the rectangles in the same order r1? r2, ..., rn. 

Other rules based on maximal plane configurations can be identified. These do not 
have the flexibility of those in figure 5 but are simpler in appearance. Suppose there are 
no directed cycles in an octahedral map in T. There must be a vertex v with no in-
directed edges. Thus v has four incident edges, all out-directed. On the other hand, if 
there is a directed cycle then this cycle lies on some quadrangulation Q(v) adjacent to a 
vertex v. There is a directed cycle of length 4 from the results for directed quadrangula-
tions. Thus each map T in T has either a vertex of degree 4 or an octahedral face which 
has a directed cycle of length 4 on its boundary. 

These results show that an element in T can be generated by a sequence of 
operations which either add a vertex of degree 4 inside an octahedral face or split a 
vertex to create a new octahedral face. The 3-rectangulations are generated by the 
corresponding spatial compositions (figure 6). These generative results show that the 
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Figure 5. Rules for generating 3-rectangulations which can create component rectangles in any 
order. 
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Figure 6. Rules for constructing 3-rectangulations. 
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unlocked trivalent 3-rectangulations are local variants of layered two-dimensional 
layouts. Unlocked 3-rectangulations are generated by rules which are extruded forms 
of the corresponding rules for 2-rectangulations. Three-dimensional variation is created 
by the three planes in which the local rules can be applied. 

Descriptions of 3-rectangulations 
The elements used to describe 3-rectangulations are maximal line and maximal plane 
elements in Ul3 and U23, respectively. Selected volumes forming the 3-rectangles are 
appropriate for elements in U33. Other plane elements form the segments which are 
maximal in the boundaries of volumes; other line elements are the boundaries of these 
plane segments. The description used here focuses on maximal planes and 3-rectangle 
volumes. 

From these elements a closed shape description can be constructed. Let us select 
the following subshapes in U03 x Ul3 x U23 x U33 to describe a 3-rectangulation R: 
(1) 3-rectangle volumes including the overall bounding 3-rectangle; (2) plane bounda­
ries of the 3-rectangles; (3) the line boundaries of these planes; and (4) the point 
boundaries of lines. 

The 3-rectangulations are described as 3-rectangle volumes with the cumulative 
boundary, that is, the boundary planes, their boundary lines, and the boundary points 
of these lines. Unions and intersections of these shapes give further shapes which are 
volumes composed of several 3-rectangles and the associated planes and volumes. 
Intersections also include individual planes and lines (and their compositions). This 
set of subshapes includes fragmented pieces of boundary planes and forms a closure 
structure of closed shapes (Stiny, 1994). Closure c(x) of a subshape x of a rectangula-
tion R is the minimal closed shape containing the subshape. 

The closure boundary (Earl, 1997) of a subshape x is the shape product 
c(x)c(R — x) of the closure of x and of the shape complement R — x. A 3-rectangle 
volume x in R has closure; the shape consisting of x and its cumulative boundary of 
planes, lines, and points. The shape complements of R — x are all planes, lines, and 
volumes, except x. The shape R — x is closed because it comprises the sum of closed 
shapes. The closure boundary of x is thus the planes, lines, and points in its cumulative 
descriptive boundary. For subshape x + y = z which is the sum of two 3-rectangle 
volumes x and y, the closure of shape z contains the boundary lines and planes of x 
and y. The shape complement R — z is closed and the closure boundary of z is a 
cumulative descriptive boundary but not the minimal descriptive boundary. The closure 
of an arbitrary plane segment illustrates an interesting view of the closed sets which 
are planes (with their boundary lines). For two 3-rectangles in R adjacent via a plane, 
the plane segment shared by the two 3-rectangles is a closed shape. Thus, for an arbitrary 
plane segment x, the closure of x is the smallest closed plane segment containing x. This 
will not necessarily be the boundary plane of a 3-rectangle. 

Other closed shapes consist of maximal planes and 3-rectangle volumes considered 
separately. These will include arbitrary collections of planes and volumes, without any 
boundary connection between them. There are many views of 3-rectangulations based 
on selections of subshapes and in terms of closed shapes. Allowing volumes, planes, 
and lines to be used independently in constructing descriptions creates rich and 
surprising views of 3-rectangulations. The restricted views of discrete volume elements 
packed together or of orthogonal maximal plane elements may constrain a wide-ranging 
exploration of possible designs in which these shapes are used. Describing 3-rectangula­
tions in the product algebras helps to realise these possibilities. 
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Conclusion 
Rectangulations are analysed in terms of shape descriptions. Shape elements and their 
relations provide multiple descriptions. One of these descriptions, the maximal element 
adjacency, is used as the basis of a formal representation. The configurations of maxi­
mal lines and maximal planes in densely packed rectangulations are described by 
embedded maps representing adjacencies of these spatial elements. We identify exactly 
which maps are descriptions of densely packed rectangulations. These descriptions are 
used to determine properties of densely packed rectangulations as well as methods of 
generation. Some of these results are derivable directly from the geometric configura­
tion without the mediation of the representation. 

In this paper we have shown that 3-rectangulations with constraints on neighbour­
ing rectangles defined by unlocked and trivalent joints form three-dimensional layouts 
which are 'local' variants of 'layered' two-dimensional layouts. There are two ways in 
which this interpretation arises, generatively and configurationally. 

We conclude that the unlocked 3-rectangulations described here still maintain an 
essentially two-dimensional structure. It is necessary to examine locked 3-rectangula­
tions to observe complex three-dimensional behaviour. The representation of locked 3-
rectangulations and the consequent derivation of their spatial properties requires more 
powerful methods than those presented here. However, distinguishing these two cate­
gories of spatial configuration allows us to identify the limits of current representations 
and the extent of the complexity of three-dimensional spatial arrangements. 
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