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Abstract. Spatial composition can be viewed as computations involving spatial changes each expressed 
as s - f(a) + f(b), where s is a shape, and f(a) is a representation of the emergent part (shape) that 
is altered by replacing it with the shape f(b). We examine this formula in three distinct but related 
ways. We begin by exploring the conditions under which a sequence of spatial changes is continuous. 
We next consider the conditions under which such changes are reversible. We conclude with the 
recognition of emergent shapes, that is, the determination of transformations f that make f(a) a 
part of s. We enumerate the cases for shape recognition within algebras ty, 0 < i ^y < 3, and 
within Cartesian products of these algebras. 

Spatial change 
Computer-aided design (CAD) is often nothing more than an euphemism for computer-
aided drafting, generally referring to systems that serve as repositories for designed 
information. All too often newer approaches disguise old technology in new garments.(1) 

Design is about change; design systems are formalisms which accommodate a notion 
of change. CAD is a process that employs computational mechanisms to effect change. 
The manner of change affects the way the worlds of possible designs can be explored. 
A particularly enticing and related concept is that of emergence (Mitchell, 1993; 
Stiny, 1993a; 1994). 

New spatial objects and changes to spatial objects are produced by manipulative 
operations on spatial objects. We consider a system for manipulating such objects. 
Such a system (at least, implicitly) includes all objects that can be produced by the 
manipulative operations, which at a minimum, consist of the spatial arithmetic opera
tions and geometrical transformations. Let s be an object (of interest) within this 
system. The basic operation of producing a new shape (to the system) is by 'adding' 
to s in a specified manner, which we can describe as s —> s + b. The symbol —» 
denotes a derivation of a new spatial object from a given object. In this case, the new 
object is derived from the given object, s9 by adding the object b. We may of course 
add the spatial object b, not as simply but through some functional or transformational 
form of it. Thus, s —> s + f (b), where f (b) is some transformation of the object b. 

(,)To some, taken literally, this statement is patently false when applied to disciplines where 
the foci of interest centre on the functional and behavioural descriptions associated with 
designed objects. These descriptions are (typically, hierarchically) structured relationships 
between items of known semantic types. In disciplines where design is through assembly, 
object-oriented approaches or case-based design can be useful and effective. Where design 
proceeds by composition, where the objective is not solely the designed object but also the 
discovery or manipulation of new 'components' along the way, these methods, by their very 
nature, are ineffectual. It is this aspect of novelty which we believe to be fundamental to 
design. 

mailto:ramesh@arc.cmu.edu
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Equally, a new object can be produced by 'removing' from s in some specific 
manner, which we can describe as s —> s — f(a). We note here that the production of 
new spatial objects by updating some aspects or properties of an existing object can 
be regarded as 'addition' or 'subtraction' depending on how the function f and the 
operators ' + ' and '—' are defined. 

We can of course effect change to s by the removal and subsequent addition of 
aspects or properties of s by the formula s - f(a) + g(b), where, in effect, f (a) is the 
altered part and g(b) is its replacement. If we accept the possibility that 'nothing' 
can be added or removed from s and still effect a change to s, the above formula is 
equivalent to two changes, applied in sequence, each expressed as the formula 

s -> s-'f(a) + f(b), 

where a or b may refer to an 'empty' object. 
We can stipulate conditions on the application of this formula. For instance, if 

we impose the condition that there is a connection between a and s—that is, there is a 
truth-functional \|/ such that s —• s — f(a) + f(b) can only be applied if \|/ [s, f (#)] 
is satisfied—then we arrive at the familiar notion of a 'rule', a —> b. Typically, \|/ is 
satisfied when certain aspects or properties of a 'occur' in s. If we further impose the 
condition that any and all changes are effected only through formulas of this form, the 
system then specifies a 'grammar'. Of particular importance is the notion of occurrence, 
for it is those emergent aspects or properties of the object of interest that one normally 
wishes to change. The derivation s —• s — f(a) + f (b) may be viewed as representing a 
basic equation of spatial change, where f (a) is a representation of the emergent proper
ties in s that is being altered. 

We claim that this formula captures nearly every kind of spatial editing change. 
Let us consider, for example, that the change s —> f(s) specifies a simple transforma
tion of s. Here the emergent shape is, simply, s. In practice we would replace s by f (s) 
directly rather than treat it as an application of the rule s —• f (s\ under an identity 
transformation. The formula is interesting in two respects. First, it offers a simple 
mechanism for structuring change. Second, it specifies which aspects of s we have to 
look for in effecting the change. It is the latter that influences the way in which humans 
perceive objects and affects the way in which they perceive change. This perception 
is particularly important to designers in their explorations of spatial forms. 

In this paper, the objects are shapes and the changes are spatial changes. Functions 
on shapes can be considered to be geometrical transformations. We can specify a 
part relation, whereby any part of a shape is a shape. That is, a shape identifies an 
indefinite number of shapes, each a part of the original shape. Shapes emerge under 
the part relation, even though these may not originally have been envisioned as 
such. Emergent shapes become explicit only when manipulated as such. Recognizing 
emergent shapes requires determining a transformation under which a shape is a 
part of the original shape. 

The idea that designs are the products of evolving spatial changes has been 
considered by others—for example, by Bridges (1991) who informally explores the 
(presumed) role of computers in the design studio, and less informally by Oxman 
and Oxman (1991) who, again in a pedagogical context, advocate that an understand
ing of precedents can be achieved through analyses of spatial (transformational) 
change, which they refer to as refinement and adaptation. The notion of studying 
spatial change—either informally or formally—is not new. Figure 1 illustrates a design 
for a church by Leonardo da Vinci (Galluzzi, 1987). This is an example of many designs 
that Leonardo created with the irregular octagon, a form with which he was fascinated. 
It is a cross-shaped radiating plan with alternating chapels and niches. The satellite 
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chapels connect diagonally converging into the central space. The octagon dominates 
the plan. It is interesting to see how Leonardo used the unevenly spaced grid and the 
(progressively added) axial lines to sculpt the emergent octagon (though he was not 
always successful in this endeavour). Figure 2 illustrates how an octagon emerges by 
the superposition (or addition) of the two sets of grid lines. 

The plan illustrates the three aspects of spatial change that form the subject 
matter of this paper. First, the development of the plan through spatial transformation 
(change) of the underlying grid. Second, emergence of the octagons by delineating 
certain parts of the grid and axial lines. Third, the existence of an overall structure 
and continuity of composition. 
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Figure 2. Emerging octagon by adding two sets of grid lines. 

Shape rules and algebra 
A shape rule is a mechanism that effects a spatial change. A shape rule a —> b 
specifies a spatial relationship between a and b, which when applied to a shape s 
under a transformation f, such that f(a) is a part of s, replaces f(a) in s by f(b) under 
rule application. That is, when the shape rule is applied to the shape s, it produces 
the shape s — f(a) + f(b). The set F of valid transformations is the set of all Euclidean 
transformations, which consist of translations, rotations, reflections, and scale. 
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A shape rule constitutes a formal specification of shape recognition and subsequent 
manipulation. For a shape rule a —> b, the left-hand side (a) specifies the similar 
shape to be recognized and the right-hand side (b) specifies the replacement leading 
to the resulting shape. A shape rule application consists of replacing the emergent 
shape corresponding to a, under some allowable transformation, by b, under the 
same transformation. 

Shape rules operate on shapes within an algebra, U, which is closed under the oper
ations of sum (shape union,'+'), difference ('—'), and product (shape intersection, '•'), 
and a set of transformations F We define a part relation ' ^ ' on U such that f(a) ^ s 
whenever a is a shape in s for some member f of F 

Shapes form algebras under the part relation with well-defined properties (Stiny, 
1991; Stouffs, 1994). We denote a shape algebra by Uip the set of all shapes made up 
of /-dimensional elements embedded in a y-dimensional Euclidean space EJ, j ^ /; 
by Uf if j is understood; and by U in general. 

Shapes can be augmented in a number of ways, for instance, by distinguishing 
certain parts of the shape which introduce additional spatial relations. For example, 
we can attach labels from a given set to points. Labeled points formed in this way 
are ordered pairs that can be arranged into sets to specify, in a manner analogous 
to U0, an algebra VQ of labeled points. Spatial transformations of labeled points 
keep the labels the same though the points may alter. Likewise, labels attached to the 
same point combine under the sum operation. Thus, a labeled shape can be considered 
as an element of the algebra V, V = UxV0, which has the same properties as U. 
A labeled shape is made up of a shape and a finite, possibly empty, set of labeled 
points. Other augmentations of shapes are possible (Stiny, 1992). 

Shape description and topology 
When designers work with shapes they do so in a manner quite distinct from the 
(computational) representations for shapes. Often this has to do with the process of 
designing and with explanations for design choices or decisions. In other words, a 
shape is structured so as to provide a description for it. Typically this structuring takes 
the form of a decomposition of the shape into parts, the sum of which equals the shape. 

A particular form of decomposition of a shape corresponds to a topology, which 
is closed under sum and product (Hocking and Young, 1988). A topology for a shape 
satisfies two additional conditions. First, both the shape and the empty shape are 
in the topology. Second, for any shape x which is a part of the given shape, there is 
a smallest shape in the topology of which x is also a part. Every element of the 
topology is a part of the shape. Thus, the sum of the elements of the topology equals 
the shape. A topology for a shape specifies a way of cutting up a shape into a 
collection of fixed parts. A shape can have any number of topologies defined on it. 

There are two obvious topologies for a shape s, the trivial topology consisting 
of the empty shape (0) and the shape (s), and the infinite topology made up of all 
parts of s. The more interesting typologies are those that cut up a shape somewhere 
in between these extremes (Stiny, 1994). Figure 3 illustrates a shape and a topology 
defined on it. 

Related to topologies for a shape are closure relations defined on shapes. A closure 
relation c on a shape s is a mapping between parts of s that satisfies the following 
conditions: 
(1) c(0) = 0, and c(s) = s; 
(2) x ^ c(x); 
(3) c[c(x)] = c(x); 
(4) c(x + y) = c(x) + (y). 
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Figure 3. A shape and a possible topology for it. 

In addition, a closure relation c has the following properties. 
(5) x ^ y => c(x) ^ cOO; 
(6) c(x • y) ^ c(x) • c(y). 

We denote the topology for a shape s by Ts, and its closure relation by cs. The 
connection between a topology and its closure relation is strong in the sense that 
each specifies the other. For any part x, x ^ s, its closure cs(x) is an element of Ts. 
In fact, every element of Ts is a closed shape. For shape s, with closure relation cs, 

TS = U c *w 
New shapes can be produced from a shape by the application of shape rules. 

A shape rule may be considered as a mapping between two shapes. Alternatively, as 
shown below, a shape rule relates the descriptions (topologies) of the two shapes. 
A computation, from one shape to another, is a series of shape rule applications that 
results in the production of the second shape from the first. 

Consider a shape s with topology 7̂ . Suppose the shape rule a —> b is applicable 
to s. Then there is a transformation f such that f (a) ^ s. Under shape rule application, 
we have 

t = s-f(a)+f(b). 

There are two distinct ways in which such rule applications can be considered: 
constructively and apperceptively.(2) 

'Doing' and 'seeing', as George Stiny puts it (personal communication). 
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It is perhaps instructive first to examine the constructive effect of spatial change 
that is wrought by rule application. We treat a rule as a function that 'acts' on 
parts of s. There are a number of ways in which such a function can be expressed. 
We note that t can be rewritten as: 

t = s - f (a - b) + f (b - a). 

That is, a —> b has the same effect as the rule (a — b) —> (b — a\ where the left-
hand and right-hand shapes are now disjoint. However, f(b — a) may have parts in 
common with s. Thus, 

/ = s - f (a - b) + [f (b - a) - s]. 

Here, f (a — b) is a part of s, [f(b — a) — s] has no part in common with s, and the 
rule is reduced to one in which the left-hand and right-hand shapes are disjoint and 
the replacement shape has no part in common with the given shape. 

We can characterize this behaviour of rule application by the function: 

h(X)={X-a + S' if-^O, (1) 
[ x, otherwise, 

where a = f (a - b\ and b — f(b - a) - s = f (b) - s. Note that h affects those parts 
of s that have^ something in common with f(a) but not in common with f (b). 
The rule a —> b provides a representation of the shape rule a —• b under the trans
formation f, a is a representation of the emergent shape, b is a representation of the 
replacement shape, and h is a representation of the application of the shape rule. The 
properties of h are given in table 1. The proof follows directly from the definition of h. 

Table 1. Properties of h. 

x = 0 h(0) = 0 
x = s h(s) = t 

h(x + y) = h(x) + h(y) 
x, y ^ s h(x • y) < h(x) • h(y) 

x ^ y => h(x) ^ h(y) 

It is important to note that, although a —> b has the same effect as a —• b, these 
are not equivalent rules either constructively and apperceptively. The rule a —> b 
applies to more spatial situations in s than does the rule a —> b. Equally, it is impor
tant to note that a -^ b is its own representation under the transformation f. 

The function h maps parts of s to parts of t, and in the process may be considered 
to induce a division of t into a set of parts, Tt. For the closure relation cy on s, we 
can consider the relation c,: 

'h[cs(x>s)];+b, if x>b ^ 0, 
c,(*) = , 

,h[cv (*)],-• otherwise. 

Note that, if x • b = 0, x ^ s. The relation c, basically leaves untouched those closed 
shapes of s which have no part in common with the replacement shape; otherwise, it 
adds b to each closed shape. Relation c, satisfies the properties of a closure relation on t 
as proven below. 

We note that c,(0) = h[c,(0)] = h(0) = 0. We have 

c,(/) = h[c,(x• s)] + b ^ h[c,(s)] + b = h(s) +b = t. 

That is, c, (/) ^ /. 
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If (x + y) -b = 0, then 

Ci(x + y) = b[cs(x + y)] = h[c, (*) + c, (y)] = h[cs(x)]+h[cs(y)] = c , (*)+c,(y) . 

Otherwise 

c,(x + j;) = h{c,[(x + ^) . j ]} + * = blcs(x-s)] + h[cs(y.s)]+b = c , (*)+c,(y) . 

We now show that, for x ^ t, x ^ c,(x). We note that x • a = 0. If x • b = 0, 
h(x) = x; x ^ cv(x) => h(x) < h[cy(x)] => x ^ c,(x). If x ^ b, then 

x ^ h[c5(x • s)] + b = ct(x). 

If neither holds, then x can be partitioned with respect to b, x = (x — b) + (x • b), 
and the inequality naturally follows. 

From c,(0 ^ * and t ^ c,(r), we get c,(0 = r, and ct(b) = h[cs(b - s)] + b = b. 
We have only c,[c,(x)] ^ c,(x) left to consider. Here we have two cases. Suppose 
x • b = 0, and c,(x) = hfc^x)]. If cs(x) • a = 0, then 

c,(x) = c,(x), 

c,[c,(x)] = ct[cs(x)] = h{c,[c,(x)]} = h[c,(x)] = c,(x). 

Otherwise 

c, (x) = cv (x) - a + b, 

c, [c, (x)] = c, [c, (x) - a] + c, {$) = h{c5 [c, (x) - 2]} + b^ h[c, (x)] + 6 

= cs(x)-a + b = c,(x). 

If x • b^ 0, then 

c, (x) = h[cv (x • s)] + 6 = c5 (x • j) - a + 6, 
C/[C/W] = ct[cs(x-s)-a]+ct(b) = h{cs[cs(x's)-a]} + b ^ h[cs(x-s)]+b 

= cs (x • s) — a + & = c, (x). 

Whence, the set 7} = |J c,(x) is a topology for shape t. 

Rule application and continuity 
Stiny (1994) offers an interesting characterization of shape rule application that is 
related to the way a shape is cut up into parts to form a description. In his paper he 
gives a handsomely deconstructivist interpretation whereby the present (shape) 
explains the precedent (shape) which justifies the present, and does so through the 
concept of continuity. We provide further elaboration. 

Two topologies are related by a mapping that is continuous whenever each closed 
shape in one topology is mapped into a closed shape in the other (Stiny, 1994). We 
consider the mapping h that relates two shapes s and t, and hence their respective topol
ogies Ts and Tt. Formally, h is continuous whenever, for x ^ s, h[c,.(x)] ^ c,[h(x)], where 
cv and c, are the closure relations in Ts and Tt. The continuity of h is now explored. 

Let us consider any part x < s. Let x • b = 0. If x • a = 0, then h(x) = x, 
c,[h(x)] = c,(x) = h[cs(x)]. Otherwise, consider a partitioning of x with respect to 
a: x = x — a + x - a. Then 

h(x) = x — a 4- b, 

c,[h(x)] = c , ( x - 5 ) + c,(£) = h[cs(x-a)]+h[cs(b)]9 

h[c, (x)] = h[c, (x - a) + c, (x • a)] = h[c, (x - a)] + h[c, (x • a)]. 
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Whence 

h[c,(x)] ^c,[h(x)] 

& h[c, (x - a)] + h[c, (x • a)] ^ h[c, (x - a)] + h[c, (8)] 

& h[c, (x • a)] ^ h[c, (x - a)} + h[c, (b)} 

4=> cs(x - a) — a + b ^ cs(x — a) — a + b 

<=> cs(x • a) ^ cA.{x — a) +a, because cs(x-a)-b = 0. 

As this must hold for any x < s, it must also hold for x = a => cs(a) = a. 
Furthermore, for x ^ s, 

cy {x- a) ^ cy (a) 0 ^ cv (x — a), 

and thus 

cv (x - a) ^ cv (a) = a ^ cv (x - a)+ <5. 

It follows that c¥(<5) = <5 is a necessary and sufficient condition for the rule 
application to be continuous. That is, the representation of the emergent shape has 
to be closed in the topology of s. However, this condition is dependent on the 
specific choice of the function h. For different choices of h, different conditions exist 
for the rule application to be continuous. For instance, if we choose h as 

;{x + c, [f(b) • s}} - f(a) + f(b), if x • f(a) * 0, 
h(x) = < (2) 

otherwise, 
and c, as 

c,(x) 
(h{cs(x.s)+cs[f(b).s]}+f(b), if x.[f(b)-s] ? 0, 

[ h[cv (x)], otherwise, 

we can show that h [as defined in equation (2)] satisfies the properties in table 1, 
and that c, specifies the closure relation for a topology for t. It is important to note 
that the term cy [f (b) • s] is required to account for all parts of the replacement shape 
f(b) that has parts in common with s. In this case we can show, following an argu
ment similar to the one above, that c,. [f (a)] ^ f (a) + c,. [f(b) • s] is a necessary and 
sufficient condition for the rule application to be continuous. Here, the condition for 
continuity of shape rule application is independent of x but dependent on s, f(a), 
and f(6), as well as the topology defined on s by the closure relation c,.. There are 
two cases to consider with respect to this condition. 

There are a set of rules for which rule application is always continuous, regardless 
of the topology defined. These are strictly additive rules for which a ^ b, or 
cs[f(a)] < cv[f(6)-.s].'Note that this is equivalent to the condition a = 0. Any rule 
application may be considered continuous if we choose the topology for s carefully 
so that cv[f(<z)] ^ cs.[f(6) • s] + f(a). We can examine this condition more closely for 
its effect on a topology. 

Suppose we partition f (a) with respect to cv [f (b) • s]. We then have 

c,[f(a)] = c J f ( a ) - c , [ f (4 ) . * ]}+c ,{ f ( a ) . c^ f (&M}. 

The second term is always a part of cs[f(b) • s]; thus, we can rewrite the condition as 

c, {{(a) - c, [f(b) -s]} < f(a) + c, [{(b) • s]. 

Given the properties of the closure operation, we can restate this condition upon the 
elements of the topology as follows: there exists a closed shape y of the topology Ts, 
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such that 

f(a)-cs[f(b)-s]^y^f(a)+cs[f(l>)'s). 

If a < b then f(a) — cv[f(Z?) • s] = 0, and y = 0 becomes a solution. As the empty 
shape 0 is always an element in the topology 7 ,̂ additive rules are always continuous, 
as shown before. 

We note that y = f (a — b) = a constitutes a solution. 
If f(b) - s = 0, there is exactly one solution, namely, y = f(a).̂  Note that this 

is similar to the situation considered previously; here, a = f(a) and b — f(b). Table 2 
gives the continuity conditions on h as defined in equation (2). In general, the 
specific range of solutions depends on the closure relation, as we need to evaluate 
c,[f (*)•*]. 

Table 2. Continuity of h. 

, , . . . . , [{(b) • s)} - {(a) + {(b) if x • {(a) * 0, 
h(;> M = { 

a < b 

{(a-b)eTs 

{(a + b)-s€Ts J 

otherwise 

yers 

{(a)-cMb)-s]<y<{(a)+cs[{(b)-s] 

Discussion 
Stiny demonstrates the relationship between continuity and shape emergence in the 
following way. Every shape rule computation can be made continuous provided one 
can structure topologies (and hence descriptions) for shapes so that emergent shapes 
are distinguished in the descriptions. He offers a construction in which every topology 
in the sequence representing a series of shape rule applications contains as an element 
the emergent shape that is altered by the corresponding shape rule in the sequence. 
It should be noted that the sequence of topologies is induced retroactively. 

Stiny develops his formulation in order to give an account of emergence in shape 
computation. As a consequence, it is necessary that the emergent shapes are distin
guished as such in descriptions of shapes. For a shape rule a —• b, f(a) is generally 
considered the emergent shape but any shape that is a part of f (a + b) • s, and has 
f (a — b) as a part, can be considered a representation of the emergent shape. Thus, 
for a computation to be continuous, a representation of the emergent shape has to be 
closed in each topology in the series that defines the computation. As the analysis above 
indicates, this requirement is strong. In other words, continuity of computation 
requires anticipation of the emergent shapes that are to be changed. 

This proposition complements Stiny's original result. Although every shape rule 
computation can be made continuous, retroactive induction illustrates only the poten
tial for continuity; for computations to be continuous, representations of the emergent 
shapes have to be closed (and thus anticipated either way) in the descriptions within 
a computation. 

It is important to note that the solution f (a) e Ts is independent of b but it is 
not independent of cv, namely, the way in which a shape is decomposed into its 
description. The solution f (a) € Ts is a continuity condition for all shape rules in the 
form a —• k. In fact, in this case it is the only solution. Note that this condition 
does not presuppose any conditions on the replacement shape and s. 
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The solution f(a) € Ts is the most interesting and unarguably the most intuitive. 
It is also the condition that best draws out the apperceptive nature of shape rule 
application. Consider the spatial change under an application of the rule a —> a. 
In fact s does not change. Yet sequences of spatial changes that include rules of the 
form a —• a will not be continuous unless f(a) e Ts. That is, in order to ensure 
continuity of computation, in general, descriptions of s have to be altered even when 
no spatial change has occurred. The shape rule a —• a may be viewed as reflecting 
the situation where designers pause and 'contemplate' the design thus far. The mere 
act of observing one's design might have the effect of changing its description. This 
remark—as it pertains to the act of designing—enters the realms of philosophy and 
cognitive psychology, areas in which we would not consider ourselves competent (for 
example, see Stiny, 1996). 

One can of course impose an arbitrary topology on shapes where the emergent 
shape is always an element and restrict shape rule application to known elements. 
This then ensures that, for each such 'object-oriented' view of a shape, computations 
involving known objects (within that view) will be continuous. However, these will 
also be independent of precedent. If, as Stiny shows, one wants 'interesting' computa
tions that distinguish emergent shapes, then these, by necessity, involve precedent 
and are only object-oriented after the fact.(3) 

The above result is not altogether surprising for spatial computations involving 
object-oriented descriptions. Taking any standard textbook definition of objects, it is 
straightforward to identify an isomorphism between objects and an augmented algebra 
of shapes made up of 'point' figures, A0 C U0 x A, where the elements of U0 are 
indices to the objects. Set A may of course reflect spatial and nonspatial attributes. 
Computation is essentially defined on finite sets of points. Technical difficulties, if 
any, lie in the manner in which elements of A can be operated on, for example, the 
inheritance of attributes or properties. For spatial computations to be interesting, 
notions of emergence have to be introduced into the definition and treatment of 
objects. 

It is possible to ensure continuous computations by always distinguishing the 
emergent shape f (a). In certain situations this can be done by restructuring the topol
ogies prior to each shape rule application, and always if this restructuring is carried 
out retroactively following Stiny's procedure. 

The restructuring of descriptions opens up interesting issues in design thinking. For 
instance, if we accept the hypothesis that descriptions convey structure and meaning— 
in other words, the topology sits within a system of features such as hierarchical 
classification schemes, for example, semantic networks or objected-oriented systems 

(3) The inherent dynamism of descriptions is a property that does not belong solely to the realm 
of design. There are striking parallels in other areas that demonstrate the connection between 
continuity, precedent, and emergence. Stiny cites sources in law where one seeks articulate 
consistency or, at the very least, continuity from precedent in order to explain a current legal 
position. In genetics, hereditary diseases such as cystic fibrosis or sickle-cell anaemia have been 
linked to certain DNA patterns witliin genes. Researchers have attempted to establish 
historical precedents for present-day patterns that can be explained through evolutionary gene 
mutation—in doing so, they have sometimes reclassified or redefined their taxonomies. 
The historian Edward Hallett Carr makes the same point in the traditional field of historical 
research. In his book, What is History Carr (1961, pages 35, 164) declares history to be "... a 
continuous process of interaction between the historian and his facts, an unending ... dialogue 
between the events of the past and the progressively emerging future ends. The historian's inter
pretation of the past, his selection of significant and the relevant, evolves with the progressive 
emergence of new goals" [our italics]. It seems that valid classifications, which can 'explain' 
designs, are equally postrationalised. 
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made up of known components with known semantics—and given that all spatial 
changes can be effected by mechanisms of the form given by s —> s — f(a) + f (b\ the 
preceding analysis suggests that there is a distinction to be drawn between descrip
tions that designers use while designing and descriptions that they employ to explain 
their designs. This may explain the 'discrepancy' which often surfaces between the 
avowed process, as evidenced by their stated descriptions and reasons, that designers 
claim to adopt at the start of their design and the actual process, again as evidenced 
by their stated descriptions and reasons, that they follow in arriving at their designs. 
If we accept that continuity of descriptions is a measure of articulate consistency, 
then this may explain that the reason why object-oriented approaches and case-based 
reasoning are becoming increasingly popular in CAD is precisely because operations 
on such descriptions are continuous. However, the analysis shows that these systems 
will be bereft of novelty, where novelty arises in situations in which the designer 
does not view a spatial entity as a fixed object with fixed descriptions but perceives 
it to be malleable and it can thus be reshaped to produce new spatial (and, conse
quently, new semantic) relationships. It is these emergent shapes made up of parts 
from known objects that, we believe, contribute to novelty in design. 

Reversible and irreversible rules 
Rules combine to form grammars which are formal rewriting systems for producing 
objects of interest. A shape grammar combines a set of shape rules and defines a 
language, which is the set containing all shapes, generated by the grammar, that have 
no associated symbols. Figure 4 shows a few shapes produced from an initial shape 
by just a single rule. All shapes produced are members of the language of the 
corresponding grammar. 

rule 

derivati ons <r~ 
\y 

> 

Figure 4. Exemplar derivations from an initial shape with a single rule. 
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Computationally, an important issue is whether one can easily backtrack along a 
computation to a shape from which alternative spatial forms may be explored. 
Related to this is the following question: whether for any rule in a grammar a reverse 
rule can be constructed such that, when the original and reverse rules are applied, 
consecutively, to any element of the algebra over which the grammar is defined, the 
result is identical to the original element. The rules are all reversible, the correspond
ing grammar is said to be reversible. 

The ability to reverse spatial computations is important for systems in which 
one can explore design space. If computations are reversible, then a simple recording 
of the changes that have been hitherto invoked is all that is required to return to 
any previous state. If computations are not reversible, additional shape information 
has to be recorded. The question then is whether the price of additional bookkeeping 
may be offset by the greater flexibility that irreversible rules offer for exploring the 
world of possible designs. 

We now consider the reversibility of shape rule application. Consider a shape 
rule a —• b that applies to a shape s. Then 

/ = j - f ( f l ) + f ( 6 ) = s-f{a-b)+f{b-a) = s-f(a-b) + [f(b-a)-s]. 

Assume that there is a rule x —> y, which may be identical to b —> a, such that 
the shape that results from applying the rules a —> b and x -+ y to s, in that order 
and under the same transformation f, equals s. We can assume that the rule x —> y 
applies under the same transformation; otherwise we can always transform the rule 
such that it applies under the same transformation, without changing the rule appli
cation or its scope. Thus 

s = t-f(x)+f(y) = t-f(x-y)+f(y-x) = / - f (JC - y) + [f {y - x) - t). 

Whence 

s = {s -f(a- b) + [f(b - a) - s}} -f(x - y) + [f(y - x) - t] 

= s-f(a-b)- f(x -y) + [f(b -a)-s-f(x- y)} + [f (y -x)-t]. 

As f (x — y) - s = 0, and [f (b — a) — s] - s = 0, the above equation implies the following: 

f(b-a)-s-f(x-y) = 0, s = s - f(a - b) + [f(y - x) - i\. 

Thus 

f(* - a) - s ^ f(x-y), f(a - b) ^f(y-x)-t. 

Similarly, substituting the expression for s in the expression for t, we obtain: 

f (x - y) ^ f(b -a)-s, f (y - x) - t ^ f{a - b). 

Therefore 

f(x-y) = f(b-a)-s, f(y-x)-t = f(a-b). 

These two equations give a specification for x and y in terms of the rule a —• b, 
as well as the shape s under application. The rule x —> y is independent of s only if 
f(b — a) • s = 0, so that f (x — y) = f(b — a). Similarly, note that a —• b is the reverse 
rule for x-—> y for all shapes t only when f(y — x) -1 = 0. This condition was first 
given in Krishnamurti (1981) though not formally proved there. 

Discussion 
Irreversibility of shape rules distinguishes shape grammars from most other grammar 
formalisms. Intuitively we note that, when two shapes (or sets) are combined under 
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the operation of 4-, identical elements 'merge'. That is, only a single occurrence of the 
element appears in the resulting shape or set. In the case of set grammars, if \u\ 
denotes the cardinality of a set w, 

maximum(|w|,|v|) ^ |w-t-v| ^ \u\ + |v|. 

On the other hand, in the case of string or graph grammars (given an appropriate 
definition for the size of a graph) this would constitute strict equality. No comparable 
measure exists for shapes except for shapes defined in U0. 

The condition f (b — a) • s = 0 is an expression of this situation. The transforma
tion f (b — a) denotes the shape that is added to s, which is not previously removed, 
under rule application. If the product with s equals zero, no elements merge and 
the rule application is reversible. The condition is in general dependent on the partic
ular rule application, that is, on the original shape s and transformation f. When 
b ^ a, f {b — a) = 0, and thus the rule is reversible independent of the shape to 
which (and the transformation under which) it is applied. These constitute purely 
subtractive rules. It is interesting to note that if a —» b is a reversible rule its reverse 
rule b -» a is not unless b = a. 

Figures 5 and 6 (see over) illustrate a reversible and an irreversible shape rule, 
respectively. In general, shape rules are irreversible. Yet every shape rule computation 
can be reversed provided one records the mergent shape, f(b — a)> s, for each rule 
application in the computation such that these shapes can be added, appropriately, in 
a reversal of computation. In other words—unlike in most spatial computational 
systems—it does not suffice merely to record the acts of change, but it is also neces
sary to record a representation of the spatial changes along with the acts. Thus, like 
continuity, reversibility of computation requires anticipation. In this case it requires 
an anticipation of the mergent shape, f (b — a) • s, within the original shape, s. 

The significance from a design standpoint—at any rate, to us—stems from the 
fact that designing is a temporal activity. The irreversibility of a rule has the effect 
of time stamping each rule application and thus capturing design 'intent' at any 
given time. 

It should be noted that, whenever a reversible rule a —• b is applied in a compu
tation, shape b does not add to the description (topology) of the resulting shape. 
It should be further noted that the application of the reverse rule b —• a at a 

rule 1 'reverse' rule 2 

derivations 

4 
^ v 

A 

^ X /^ 

Figure 5. An example of a reversible rule a —• b (rule 1). We observe from the exemplar 
derivations that, when the rules a —> b and b —• a (rule 2) are applied subsequently and under 
the same transformation, the resulting shape equals the original shape. 
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rule 1 'reverse' rule 2 

derivations 

^ X 

*£\ 

XT 

1 

Figure 6. An example of an irreversible rule a —• 6 (rule 1). We observe from the exemplar 
derivations that, when the rules a -+ b and b -* a (rule 2) are applied subsequently and under 
the same transformation, the resulting shape may not equal the original shape. 

subsequent stage in the computation under the same transformation f removes any 
trace of the effect of the original application on the design. However, in the case of 
an irreversible rule a —• b, the application of the rule b -> a under the same 
transformation f does not remove the effect of the original rule application on the 
design. Moreover, for reversible rules, the computation to produce a given design 
may be indifferent to the ordering of rule applications. This is because the parts of 
the shape that are affected by the rules remain the same. This is not the case with 
irreversible rules. Thus, general shape rule application is both spatial and temporal. 

Shape recognition 
We have thus far examined two distinct aspects of the application of shape rule 
a —• b to shape s. In our analyses we have assumed the existence of an affine 
transformation f such that f(a) ^ s. We now turn our attention to the question of 
determining all transformations that satisfy the subshape relation, f(a) ^ s. In general, 
shape recognition relates to finding one or all valid transformations under which a shape 
is a part of a given shape. In the case of shape rule application, the solution to this 
problem consists of finding a correspondence between the spatial elements on the left-
hand side of the rule (a) and elements of the given shape (s)9 and determining the 
transformation f that represents this correspondence.(4) This is a difficult problem 
because a shape, with definite description, has an indefinite number of 'touchable' 

(4) Some readers may be familiar with the equivalent problem in set or graph grammars, 
respectively termed subset and subgraph detection, that consists of searching for either a single 
entity or a group of entities within a set or a graph. Such a search is straightforward; it requires 
a one-to-one matching of entities that are identical under a certain transformation. The deter
mination of the matching is not necessarily efficient, for example, subgraph isomorphism is 
NP-complete. On the other hand, a prerequisite for shape rule computation is that any subshape 
of a shape is spatially replaceable. 
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Table 3. 

U0 U{ 

ux a 
Uy 

Table of shape 

[)0 » ^ 0 1 -> 

u„. 
u02, 
utt. 
u», 

algebras. 

u0i, ... 
u„, ... 
u2i, ... 
u». ... 

parts. In respect to this problem, we take the position that shapes are individuals as 
reflected by the part relation defined on shapes.(5) 

We consider shape recognition in each shape algebra and across shape algebras 
(table 3). Shape recognition in U0 is equivalent to set recognition and is thus trivial. 
For shapes in U}, distinguishable points serve as the basis for reducing the problem 
(Chase, 1989; Krishnamurti, 1981; Krishnamurti and Earl, 1992). For any given shape, 
its distinguishable points correspond to points (labeled or otherwise) the properties 
of which (with respect to the shape) are preserved under the part relation and affine 
transformations. Points of intersection of segments in a shape are distinguished. The 
application of this concept to Uh for / > 0, is explored below. 

In Un all shapes are necessarily coequal. Consequently, no distinguishable points, 
lines, or planes can be constructed. As a result, an indeterminate number of trans
formations exist for / > 0, the base transformation of which is the identity transfor
mation. In U00 only the identity transformations exist. 

In j dimensions, a correspondence between j + 1 not cohyperplanar distinguishable 
points uniquely determines an afiine transformation. However, to determine all valid 
similarity transformations, j such points suffice provided the corresponding 'point 
figures' are similar to each other. Each such transformation remains subject to evalu
ation with respect to the shape a. Otherwise, if j cohyperplanar distinguishable points 
cannot be determined then there may be an indeterminate number of valid transfor
mations. In such cases, one can isolate a set of base transformations from which the 
other transformations can be generated. Figure 7 illustrates this indeterminacy of 
transformations for shapes in U17) (see case 2.2 below). 

Figure 7. The base transformation maps carriers onto carriers without scaling: (a) no possible 
transformation exists, even under scaling; (b) an infinite number of possible transformations exist 
under scaling. 

(5) The concept of individuals differs from the generally accepted concept of classes (or sets) in 
that no subdivision into subclasses or members is established or suggested a priori (Leonard 
and Goodman, 1940). Stiny (1993b), in a reversal of his earlier position (Stiny, 1982), offers a 
comparison between shapes and individuals, which differ algebraically. However, shapes and 
individuals can both be divided into parts in any way whatsoever. 
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In the sequel we restrict discussion to similarity transformations. Note that, even 
in the case of shapes with rational descriptions, the resulting transformations may 
not be rational (Krishnamurti and Earl, 1992). As such, the constructions described 
below do not guarantee exact arithmetic. 

Detecting emergent shapes in Ui3 

We give the determinate and indeterminate cases for shapes defined on Ui3, i < 3. 
As the representation of a shape in Un is embedded in E3, we distinguish the case in 
E3 by using as primary distinguishable elements the distinct carriers of the segments 
in the shape to be recognized. Additional distinguishable points may be constructed 
for the purpose of generating a determinate number of valid transformations, though 
the cases themselves are identified by the primary distinguishable elements. The cases 
are grouped by their shape algebra and numbered accordingly: the first digit denotes 
the dimensionality of the algebra. In the sequel, a denotes the shape to be recognized 
in the given shape s. 

The cases for U03 

The cases are trivial. There is one determinate case when at least three noncolinear 
(distinguishable) points in the given shapes can be found. Otherwise, a possible inde
terminate number of valid transformations between the shapes exist. 

Case 0.1: There are three noncolinear points. Three noncolinear points uniquely deter
mine an affine transformation in E2, that is, for the plane these define. In E3, if the 
point figures are similar this results in two Euclidean transformations, of which one 
can be derived from the other by use of a reflection in this plane. A fourth, non-
coplanar, point suffices to invalidate one of these transformations. The computation 
of both transformations is described in Krishnamurti and Earl (1992). 

Case 0.2: There are two (distinct) points. An indeterminate number of valid transfor
mations exist. Given a base transformation that maps both points in the shape to 
be recognized onto the respective points in the given shape, the full set of possible 
transformations is derived from rotations about the line connecting both points and 
a reflection in a plane through this line. 

Case 0.3: There is a single point. An indeterminate number of valid transformations 
exist. These can be derived from a base transformation by means of (three-axes) 
rotations about this point, scalings that leave the point fixed, and a reflection in a 
plane through this point. 

The cases for £/13 

The cases are described in detail in Krishnamurti and Earl (1992). There are two 
determinate cases which are illustrated in figure 8. 

Case 1.1: There are two skew lines. Skew lines are not parallel; nor do they intersect at a 
point. The common perpendicular of two skew lines defines two distinguishable points, 

Figure 8. Examples illustrating the determinate cases for Un: (a) case 1.1; and (b, c) case 1.2. 



Continuity, reversibility, and emergent shapes 375 

that is, the feet of this perpendicular on the lines. As two points are sufficient to 
determine a fixed scaling factor, an additional (distinguishable) point may be 
constructed on one of the lines. As such, this problem reduces to case 0.1, with three 
distinguishable points, for which a determinate number of possible valid transforma
tions exist. A variant to this construction is described in Krishnamurti and Earl (1992). 

Case 1.2: There are three coplanar lines not all parallel and not all concurrent at a single 
point. If no two lines are parallel, then the intersection points of these lines constitute 
three distinguishable points. Otherwise, the two points of intersection constitute two dis
tinguishable points that can be augmented with a third point constructed as in case 1.1. 

There are also three indeterminate cases as illustrated in figure 9. 

Case 1.3: There are two nonparallel lines. From a base transformation, all other 
transformations result from scalings that leave the point of intersection fixed and a 
reflection in the plane defined by both lines. 

Case 1.4: There are two (parallel) lines. The full set of transformations is generated 
by composing a base transformation with translations along the direction of the lines 
together with a reflection in a plane perpendicular to the parallel lines. 

Case 1.5: There is a single line. The full set of possible transformations is found 
by composing the base transformation with rotations about the line (denoted a s / ) , 
scalings that leave a point on / fixed, translations along the direction of /, and a 
reflection in a plane normal to /. 

(a) x (b) (c) 
Figure 9. Examples illustrating the indeterminate cases for Un: (a) case 1.3; (b) case 1.4; and 
(c) case 1.5. 

The cases for I723 

The following cases are identified in Krishnamurti and Stouffs (1993). There is a 
single determinate case which is illustrated in figure 10. 

Case 2.1: There are four planes not all parallel and not all lines of intersection are 
parallel, concurrent, or coincident. We can find two skew lines of intersection and, 
consequently, reduce the problem to case 1.1 for which there exists a determinate 
number of valid transformations. 

Figure 10. Examples illustrating the determinate case 2.1 for U2 
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There are five indeterminate cases in U23 which are illustrated in figure 11. 

Case 2.2: There are three planes and not all the lines of intersection are parallel or 
coincident. Another way to formulate this is the following: there are three planes, and 
their normal vectors are linearly independent All the lines of intersection are concurrent 
at a single point, and the problem reduces to case 1.3 for which there exists a 
possible indeterminate number of valid transformations (under scaling and reflection). 

Case 2.3: There are three planes and these do not intersect in a single line. All the 
lines of intersection may be parallel but these do not coincide. This problem reduces 
to case 1.4 for which there exists a possible indeterminate number of valid transfor
mations (under translation and reflection). 

Case 2.4: There are two nonparallel planes. The full set of transformations is gen
erated by composing a base transformation with translations along the direction of 
the line of intersection together with scalings that leave a point on this line fixed 
and a reflection in a perpendicular plane. 

Case 2.5: There are two (parallel) planes. A base transformation maps the carriers 
of the two planes in a onto the respective carriers of two planes in s. All other 
transformations result from translations along two perpendicular axes parallel to 
these planes, rotations about a line normal to both planes, and a reflection in a plane 
through this line. 

Case 2.6: There is a single plane. A base transformation maps the carrier of a plane 
in a onto the carrier of a plane in s. The full set of possible transformations is generated 
by composing this base transformation with translations along two perpendicular axes 
parallel to the plane, scalings that leave a point on the plane fixed, rotations about a 
line normal to the plane, and a reflection in a plane through this line. 

(d) (e) (f) 

Figure 11. Examples illustrating the indeterminate cases for U23: (a) case 2.2; (b, c) case 2.3; 
(d) case 2.4; (e) case 2.5; and (f) case 2.6. 

Shape recognition revisited 
In the preceding analysis all possible cases for each of the algebras Ui3, 0 ^ / ^ 3, 
were considered. However, in many cases shape rule application is defined in a 
cartesian product of algebras. Earlier we defined shape rule application in an 
algebra V9 V — UxV0, of labeled shapes. More generally, shape rule application can 
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be defined in any cartesian product of algebras Ul x U2 x .... As such, it is insufficient 
to enumerate the cases for each of the algebras Ui3 separately. Below we consider 
the enumeration of the cases for any cartesian product of algebras Ui3, 0 < / ^ 3. 

Consider a shape s in the algebra U0 x Ux x [ / 2 x[ / 3 . The primary distinguishable 
elements can be augmented with constructed ones, such as the point of intersection of 
two lines, the line of intersection of two planes, the normal line to a plane through a 
point, and so on. Based on the combinations of independent transformations that yield 
the full set of possible valid transformations from a base transformation, only ten 
primary cases remain, of which one represents the determinate case and the remaining 
nine the indeterminate cases. We consider the degrees of freedom (DOF) corresponding 
to an indeterminate case to be the number of independent transformations (not 
including a possible reflection). Single transformations include a rotation about a 
line, a translation along a line, and a scaling. A single plane defines two independent 
translations; a general rotation about a single point constitutes three independent 
rotations. We use T to denote a translation, with Tj a translation along a line 1, and 
Tu and Tv two (perpendicular) translations parallel to a plane. We use R to denote a 
rotation, with Rj a rotation about the line 1, Rn a rotation about the normal n to a plane, 
and Rx, Ry and Rz rotations about the major axes. We use S to denote a scaling. 

The ten determinate and indeterminate cases are summarized in table 4. Cases II 
through IV correspond to a single degree of freedom, either rotational, translational, 
or scaling. Cases V and VI have two DOF of which one corresponds necessarily to 
a scaling; the other is either rotational or translational. Cases VII and VIII have three 
DOF: a single distinguishable line results in a translation degree of freedom along the 
line, a rotational degree of freedom about the line, as well as a scaling; two parallel 
planes give way to a single rotational degree of freedom and two translational DOF. 
Cases IX and X have a maximal four DOF—either three rotational or one rotational 
and two translational, together with a scaling. No other combinations are possible: 
an axis of rotation corresponds to a single degree of freedom, and a centre of rotation 
to three DOF. No construct allows for only two rotational DOF. Similarly, any 
distinguishable element removes at least one translational degree of freedom; only 
a distinguishable plane allows for two translational DOF, but for only a single rotational 
degree of freedom. 

Table 4. Ten possible combinations of independent transformations corresponding to one 
determinate (I) and nine indeterminate (II-X) cases for the subshape recognition problem in 
U0 x £/, x U2 x U3. 

Case 

I 
II 
III 
IV 
V 

VI 

VII 
VIII 
IX 
X 

Distinguishable elements 

3 noncolinear points 
2 distinct points 
2 nonparallel lines 
2 parallel lines 
1 point and 1 line 

through the point 
1 line and 1 plane 

through the line 
1 line 
2 parallel planes 
1 point 
1 plane 

Degrees 
of freedom 

0 
1 
1 
1 
2 

2 

3 
3 
4 
4 

Rotation 

R, 

R, 

R, 
Rn 

Rx> 
Rn 

Ry? RZ 

Translation 

T, 

T, 

T, 
Tu, 

Tn, 

T 

T 

Scaling 

S 

S 

S 

S 

S 
S 
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Each primary case defines a set of secondary cases, each of which can be reduced to 
the primary case by constructing additional distinguishable elements. However, it is 
computationally expensive to construct all possible distinguishable elements a priori, 
in order to determine the particular primary case. Therefore, we list below the 
secondary cases for each primary case, for all possible cases of combinations of 
primary distinguishable elements. Table 5 summarizes all nonredundant(6) cases with 
at least one distinguishable point. Table 6 summarizes all nonredundant cases without 

Table 5. All nonredundant cases with at least one distinguishable point, based on combinations 
of primary distinguishable elements. 

Distinguishable elements 

points 

3, noncolinear 

2 
2 

1 
1 

1 
1 
1 

1 

1 
1 

lines 

1, noncolinear 
1, colinear 

1, colinear 
1, colinear 

planes 

1, nonperpendicular 

1, noncoplanar, 
nonperpendicular 

1, coplanar 

2, noncolinear, 
intersection 

2, colinear, 
intersection 

1, noncoplanar 
1, coplanar 

Case 

La 

Lb 
ILa 

Lc 
I.d 

IILa 
V.a 
Le 

IILb 

ILb 
V.b 
IX.a 

Degrees 
of freedom 

0 

0 
1 

0 
0 

1 
2 
1 

1 

1 
2 
4 1 IX.a 

Table 6. All nonredundant cases without distinguishable points but at least 
line, based on combinations of primary distinguishable elements. 

Distinguishable elements 

lines planes 

Case 

4 

one distinguishable 

Degrees 
of freedom 

3, coplanar, not all parallel 
nonconcurrent 

2, skew 
2, coplanar, nonparallel 
2, coplanar, nonparallel 
2, parallel 
2, parallel 
1 

Lf 

1, nonconcurrent 

1, nonparallel 

2, nonconcurrent, not both 
parallel or perpendicular 
to the line 

2, perpendicular to the line 
1, nonparallel, 

nonperpendicular 
1, parallel 
1, perpendicular 
1, coplanar 

I g 
Lh 
III.c 
Li 
IV.a 

I j 

II.c 
IILd 

IV.b 
V.c 
VLa 
Vll.a 

0 
0 
1 
0 
1 

0 

1 
1 

1 
2 
2 
3 

(6) An example of redundancy would be two distinguishable points and one noncolinear line 
with at least one point: the second, possibly colinear, point is redundant as case I.c shows. 
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Table 7. All nonredundant cases with only distinguishable planes. 

Distinguishable planes 

4, not all parallel, not all intersections lines parallel or concurrent 
3, not all intersection lines parallel 
3, not concurrent in a single line 
2, nonparallel 
2, parallel 

Case 

I.k 
IILe 
IV.c 
Vl.b 
VIILa 
X.a 

Degrees 
of freedom 

0 
1 
1 
2 
3 
4 

distinguishable points but at least one distinguishable line. Table 7 summarizes all cases 
with only distinguishable planes, which correspond to the cases for £/23. The cases 
listed below are numbered according to their primary case. Thus, case d.n refers to 
the nth secondary case for the dth primary case. 

Case La is identical to case 0.1; it applies to case 1.1, case 1.2, and case 2.1 as 
well. Case La represents primary case I. 
Case La: There are three noncolinear points. We reduce each of the following cases to 
case La by constructing the necessary distinguishable points. 

Case Lb: There are two points together with a plane not perpendicular to the line defined by 
both points. If at least one point is not coincident with the plane, then construct the foot 
of the perpendicular from this point onto the plane as a third distinguishable point. 
These three points are not colinear; if they were the plane would be perpendicular to the 
line through both points. If both points are coincident with the plane, then construct a 
point on the normal with the plane through one point, such that the distance to this 
point is identical to the distance between the two original points (figure 12). 

(a) 
Figure 12. Illustrations of case Lb: (a) at least one point not conicident with the plane; and 
(b) both points coincident with the plane. 

Case Lc: There is a point and a line not colinear with the point. Construct the foot of 
the perpendicular from the point onto the line and construct a third point on the 
line at equal distance from the foot as the distance between the foot and the first 
point, as shown in figure 13(a) (Krishnamurti and Earl, 1992). 

Case L.d: There is a point, a line colinear with the point, and a plane neither coincident 
with the point nor perpendicular to the line. Construct the foot of the perpendicular 
from the point onto the plane. As this point is not colinear with the line, we have a 
situation similar to case I.e. However, we can construct a third point on the line at 
an equal distance from the original point as the distance from the foot to this point 
[see figure 13(b)]. 
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(a) (b) 

Figure 13. Illustrations of: (a) case I.c, and (b) case I.d. 

Case I.e: There is a point together with two planes neither of which is coincident with 
the point. As the line of intersection is not colinear with the point, this problem is 
reduced to case I.c. 

Case If: There are three coplanar lines not all parallel and not all concurrent at a single 
point. See case 1.2. 

Case I.g: There are two skewed lines. See case 1.1. 

Case I.h: There are two coplanar nonparallel lines together with a plane, which are not 
all concurrent at a single point. Consider the point of intersection of both lines 
together with one of the lines, which is not perpendicular to the plane, and the plane; 
this corresponds to case I.d. 

Case Li: There are two (parallel) lines and a plane which is neither parallel to the lines 
nor coincident with a line. Construct the intersection points of both lines with the 
plane. Construct a third point on one of the lines at equal distance from the point of 
intersection of this line with the plane as the distance between both intersection 
points [figure 14(a)]. 

(a) (b) 

Figure 14. Illustrations of (a) case Li, and (b) case I.j. 

Case I.j: There is a single line together with two planes, not parallel or perpendicular to 
the line, such that these are not all concurrent at a single point. The construction is 
dependent on whether one of the planes is parallel to the line or not. If one plane 
is parallel to but not coincident with the line, and the other plane is neither parallel 
to nor coincident with the line, then the line of intersection of both planes is skew 
with respect to the original line [figure 14b)]. This reduces to case I.g or case 1.1. 
Otherwise, neither plane is parallel to nor coincident with the line, both planes are 
not perpendicular to the line, and all three elements are not concurrent at a single 
point. Consider the (two) points of intersection of the line with both planes together 
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(a) (b) 

Figure 15. Illustrations of case I.j. 

with the foot of the perpendicular from one of the intersection points onto the other 
plane. These three points cannot be colinear (figure 15). 

Case Ik: There are four planes not all parallel and not all lines of intersection are 
parallel concurrent or coincident See case 2.1. 

Case Il.a specifies a single axis of rotation (without scaling); it is identical to 
case 0.2. It represents primary case II. 
Case Il.a: There are two (distinct) points. We reduce each of the following cases to 
case Il.a by constructing the necessary distinguishable points. 

Case lib: There is one point, and one plane not coplanar with the point. Construct the 
foot of the perpendicular from the point onto the plane. The resulting axis of 
rotation (defined by both points) is perpendicular to the plane, such that the plane is 
mapped onto itself under the transformation. 

Case II. c: There is one line, and two planes perpendicular to the line. The two points 
of intersection of the line with the planes are distinct. 

Cases III.a through IILe specify a scaling. Case III.c is the representative case; it is 
identical to case 1.3 and applies also to case 2.2. We reduce each of the following 
cases to case III.c by constructing the necessary distinguishable lines. 
Case III. a: There is one point, one line, and one plane, all coincident. Constructs second 
line perpendicular to the first line, coincident with both the point and the plane. 

Case IH.b: There is a point, and two planes coincident with the point. Construct the 
foot of the perpendicular from the point onto the plane. The resulting axis of 
rotation (defined by both points) is perpendicular to the plane, such that the plane is 
mapped onto itself under the transformation. 

Case III.c: There are two nonparallel lines. See case 1.3. 

Case Hid: There is one line and one plane; these are neither parallel nor perpen
dicular. Construct the line of intersection of a second plane, coincident with the line 
and perpendicular to the first plane, with the first plane. 

Case Ille: There are three planes and not all the lines of intersection are parallel or 
coincident. See case 2.2. 

Case IV.a specifies a single direction of translation (without scaling); it is identical 
to case 1.4 and applies also to case 2.3. Case IV.a represents primary case IV. 
Case IV.a: There are two parallel lines. We reduce each of the following cases to 
case IV.a by constructing the necessary distinguishable lines. 
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Case IV.b: There is one line and one parallel plane. There exists a unique second line 
coincident with the plane and parallel to the first line, such that the foot of 
the perpendicular from any point on the first line lies on the second line (that is, the 
second line constitutes a normal projection of the first line onto the plane). 

Case IV.c: There are three planes and these do not intersect in a single line. See case 2.3. 

Case V.a, which represents primary case V, specifies a single axis of rotation 
with scaling. 
Case V.a: There is a single point, and a line coincident with the point. The line consti
tutes the axis of rotation, and the single point inhibits any translation but allows 
for a scaling (Krishnamurti and Earl, 1992). We reduce each of the following cases to 
case V.a by constructing the necessary distinguishable line and/or point. 

Case V.b: There is a single point, and a plane coincident with the point. The line normal 
to the plane and coincident with the point constitutes the axis of rotation. 

Case V.c: There is a single line, and a plane perpendicular to the line. The line consti
tutes the axis of rotation, and the point of intersection of the line and the plane 
constitutes the fixed point. 

Case Vl.a, which represents primary case VI, specifies a single direction of trans
lation with scaling. 
Case Via: There is a single line, and a plane coincident with the line. The line defines 
the direction of translation, and the plane inhibits any rotation about the line but 
allows for scaling. 

Case VI.b: There are two nonparallel planes. See case 2.4. 

There is only one case, case VILa, which specifies a single axis of rotation, a 
single direction of translation, and a scaling. It is identical to case 1.5. 
Case Vila: There is a single line. 

There is only one representative case, case VIII. a, which specifies a single axis 
of rotation and two (perpendicular) directions of translation (without scaling); it is 
identical to case 2.5. 
Case Villa: There are two (parallel) planes. 

Case IX.a (the representative of primary case IX) specifies three (perpendicular) 
axes of rotation and a scaling; it is identical to case 0.3. 
Case IX.a: There is a single point. 

Case X.a (the representative of primary case X) specifies a single axis of rotation, 
two (perpendicular) directions of translation, and a scaling; it is identical to case 2.6. 
Case X.a: There is a single plane. 

This completes the enumeration of the secondary cases. 

Variations on a common theme 
The classification, according to the number and type of DOF, is based solely on 
distinguishable elements. That is, only the carriers of the shape segments and not the 
segments themselves define the specific classification. Each class is characterized by 
a base transformation, from which all possible transformations can be derived in 
correspondence to the DOF of this class. A possible transformation is a transforma
tion that maps the given shapes under the part relation. As such, the part relation 
defines a constraint on the possible transformations. 
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Gero and Yan (1993; 1994) consider a notion of emergent shapes that are visually 
recognized as such, which they refer to as emergent visual shapes. In particular, using 
shapes in U}, they consider as an emergent visual shape any shape that is embedded 
in the carriers of the given shape and the segments of which are bounded by the 
points of intersection of the carriers.(7) These carriers and their points of intersection 
define precisely the distinguishable elements used to determine the class of transfor
mations under shape recognition. The resulting set of possible transformations is 
constrained by the embedding of the segments of the transformed shape in the 
carriers (instead of the segments) of the given shape. 

Emergent shapes may be constrained by, for example, topological, geometrical, 
or dimensional considerations. For instance, Gero and Yan require emergent visual 
shapes to be simple closed polygons. A simple variant of the subshape recognition 
algorithm (Krishnamurti, 1981) can detect general emergent visual shapes. Stiny (1977; 
1980) characterizes shape recognition as dependent on a set of parameters specified 
on the emergent shape, together with the constraints or bounds on the parameters. 
Other requirements include emergent shapes augmented with attributes such as labels 
or weights. The enumeration of the recognition cases for labeled (and weighted) 
shapes can proceed along the lines described in this paper. 
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