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Shape recognition in three dimensions 
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Abstract. The subshape recognition problem for three-dimensional shapes under linear 
transformations is considered. The problem is analysed in a series of cases, some that 
provide a determinate number of solutions and others that have indeterminately many 
solutions. Procedures for its solution for general shapes are developed. Difficulties posed by 
strict adherence to rational transformations are examined. As a corollary, an outline of a 
procedure for determining the symmetries of a shape is presented. 

Introduction 
A central computational problem associated with shape grammar theory is discussed, 
namely, under which transformations is one shape a subshape of another? Further, 
the question is examined whether these transformations—if they exist—between 
shapes that can be rationally described also can be described by rational coefficients. 
In other words, can the subshape recognition problem for rational shapes always 
be resolved using exact arithmetic? 

The importance of the subshape problem can be gauged from the fact that its 
resolution is a prerequisite for the composition of shapes by the application of 
spatial rules. A spatial relation (a, ft) between shapes a and ft can be considered 
as a spatial rule that applies to a shape y if we can find a similarity (in general, a 
linear transformation) x such that x(a) occurs as a shape in y in which case x(fi) 
replaces x(a) in y under rule application. 

The subshape recognition problem in the form considered here has direct 
application to shape grammars (Stiny, 1980a; 1990), and to the ways in which 
spatial relations between shapes can be used to specify shape rules (Earl, 1986; 
Earl and Krishnamurti, 1984; Stiny, 1980b). Although acquaintance with shape 
grammar concepts would be an advantage, it is not crucial. The properties of 
shapes and definitions of spatial terms necessary for the arguments in this paper 
will be developed as needed. 

The treatment for two-dimensional shapes given in Krishnamurti (1980; 1981) 
is the basis for implementations of shape generation systems (Chase, 1989; 
Krishnamurti, 1982; Krishnamurti and Giraud, 1986). A discussion of three-
dimensional shapes is presented in Earl (1986), and an independent approach both 
for two-dimensional and for three-dimensional shapes is given in Stiny (forthcoming). 
This paper completes the details of the three-dimensional case. 

The following ideas are basic. 
A shape is a finite set of maximal straight lines of finite, nonzero length, where 

each line is specified by the coordinates of its endpoints. A shape is rational if its 
lines have endpoints given by rational coordinates, and real otherwise. The lines in 
a shape are maximal in the sense that colinear lines are separated by a gap, but 
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otherwise lines may touch or intersect. A subshape of a shape is a shape the lines 
of which each have endpoints that are coincident with a line in the original shape. 
The verification of the subshape relation for any two shapes s and s' can be 
approached as follows. 

Let s denote a shape and the set of maximal lines that describes it. Shape s 
may be structured by an equivalence relation that partitions the set into equivalence 
classes of colinear maximal lines. That is, each line / is associated with an 
unambiguous descriptor, say co(l), such that colinear lines have identical descriptors. 

An equivalence class of colinear lines can be organised by the order relation, <, 
extended to n-tuples as follows. Let A and B denote two arbitrary n-tuples of 
numbers, A = (al9 a2,..., an) and B = (bl9 b2,..., bn). Then A < B, if for some 
j £ {1,2,..., n}, ak = bk,k < j , and af < bj. Equality between A and B holds 
whenever the components of A and B are identical. 

The endpoints of a line segment / can be ordered such that one is designated as 
the tail(l) and the other as the head(l) where tail(l) < head(l). A line / may be 
thus described by the triple (co(l), tail(l), head(l)). A set of colinear maximal lines 
can be arranged as a sequence of lines in (increasing) order of head or tail values. 

A further structuring of a shape can be carried out. Suppose that the descriptor 
function co is expressed as a tuple of numbers, then the equivalence classes of 
colinear lines can be arranged as a sequence in order of their descriptor values. 

Two shapes can then be checked for equality, denoted s = sr, by comparing the 
sequences in their description term by term. Observe that by arranging the description 
of a shape in the manner suggested above, shape equality can be tested for in a 
time linear in the number of lines in shapes s or s'. 

In a similar fashion, the subshape relation s < s' can be verified. Here the 
description of s must be wholely contained within the description of sf. That is, 
for any two colinear lines, / = (co(l), tail{l), head{l)) in s, and /' = (co{lr), tail{l'\ 
head(l')) in s', I is contained in /' if and only if: 

co(l) = co(l'), tail{l) > tail(l'), and head(l) < head{l'). 

The subshape relation can be decided in a time linear in the number of lines in 
s or s'. 

Line geometry in three dimensions 
Points are described in homogeneous coordinates {x,y, z, w) in order to facilitate the 
description of points with rational coordinates as 4-tuples of integers. For real 
shapes we take w = 1. For rational shapes, any three-dimensional point (x,y,z) is 
expressed as a 4-tuple of relatively prime integers (xw, yw, zw, w) for some integer 
w chosen such that the integers are relatively prime. A simple way to do this is to 
set w = w \a, where w is the product of the denominators of the nonzero x, y, 
and z, and a = gcd{xw', yw', zw', w'), the greatest common divisor. We will assume 
that all coordinates are given in their (in the case of rational shapes, to their 
reduced relatively prime) homogeneous coordinate form. 

Points can be defined by vectors (which are indicated by boldface). A point p 
with coordinates {x,y,z, w) can be represented as p = {x,y,z,w). The operations 
of vector arithmetic, scalar, and cross products are defined for any two vectors 
P = (xp,yP,Zp,Wp) and q = (xq,yq, zq, wq) as: 

Xp = (Xxp,Xyp,Xzp,wp), (1) 

p±q = {xpwq ±xqwp, ypwq ±yqwp, zpwq ±zqwp, wpwq), (2) 
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and 

p q = (xPxq+ypyq+zpzq), (3) 
WpWq 

PXQ = (yPzq-yqzp,zpxq-zqxp,xpyq-xqyp,wpwq). (4) 

Line descriptor 
The descriptor function for a line is now established. Let p and p be endpoints 
of a line segment I, p = (x,y,z, w) and p' = (x',y\z\ wf). The line / can be 
described by a pair of vectors (L, L0) representing the direction of the line and its 
moment about the origin respectively (figure 1). The vectors are given by the 
following expressions: 

L = p-p' = (xw'-x'w, yw' -y'w, zw'—z'w, ww'), (5) 

£o = Pxp' = (yz'-y'z, zx'-z'x, xy -x'y, ww'). (6) 

The components of L are denoted by L = (L, M, N, W) and those of L0 by 
L0 =(L0,M0,iVo, W). 

For a line segment [q, q) colinear with (p,p')9 the positions of q and q' can be 
expressed as q - Xp + jup' and q = pp + vp', where .X+p, = p + v = 1. 
Equations (5) and (6) reduce to 

q-q = {Xp-pv)(p-p') = [Xp-pv)L , 

qxq' = {Xp-juv){pxp') = (Xp-juv)L0. 

Thus colinear line segments have descriptions (kL, kLQ), k ¥> 0. 
Suppose the descriptors are normalised according to the schemes: (a) for real 

line segments, set 1/k2 = L2 + M2 + N2, and W = 1; and (b)for rational line 
segments, divide L and L0 by their greatest common denominator (gcd) by setting 
1/k = gcd(L, M, Af, L0,MQ, N0), and W = 1. Further, the first nonzero entry of L 
is assumed positive by setting the sign of k the same as the sign of the first 
nonzero entry of L. This, in effect, assigns an orientation to the line segment. 
Then, colinear line segments have the same description provided all lines belong to 
the same class (real or rational), and thus have a consistent method of description. 
Note that parallel lines share the same normalised direction descriptor L to within 
a scalar factor. 

The definition of the line descriptor means that vectors L and L0 are 
perpendicular and their scalar product L • L0 is zero: 

LL0 + MM0 + NN0 = 0 . (7) 

Conversely, a vector pair (a, b), a, b # 0, is a line descriptor if a • b = 0. This 
may be shown as follows. Consider vectors x satisfying b = x*a. These have the 

Direction and 
moment vectors P 

L 

Figure 1. The direction and moment vectors of a line. 
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general vector form: 

axb 
x = Aa+ , 

a ' a 

where X is an arbitrary scalar. A line segment with endpoints x and x of this 
form has descriptor (ka, kb) where A: is a scalar. The descriptor (L, L0) is also 
referred to as the Pliicker (Brand, 1947) coordinates of the infinite line on which 
the line segment lies. Note that a point p = (x, y, z, w) lies on the line (L, L0) if 
and only if L0 = pxL. 

Figure 2 illustrates examples of spatial relations between pairs of line segments 
and distinguished points that result from the relations. These points are functions 
of the relations between the lines. They remain unaltered by Euclidean and scale 
transformations of the shape in the sense that the image of a point of a given kind 
under a Euclidean transformation is another point of the same kind. For instance, 
figure 2(a) shows lines that intersect at points of intersection which are distinguished 
points; figure 2(b) shows a line, a designated point, and the perpendicular from 
this point to the line the foot of which is a distinguished point; and figure 2(c) 
illustrates skew lines and the feet of their common perpendicular which are 
distinguished points. In determining the transformations under which the subshape 
relation holds it is often necessary to construct distinguished points. In the next 
section we examine some of these distinguished points which are used subsequently 
in determining the transformations. The distinguished points considered all have 
the property that they are rational if constructed on rational shapes. 

Figure 2. Spatial relations between pairs of lines and distinguished points: (a) point of 
intersection of two lines, (b) the foot of the perpendicular from a point to a line, (c) the feet 
of the common perpendicular between two skew lines. 

Intersecting lines 
The point of intersection of two noncolinear lines is the point that is coincident 
with both lines or their extensions. Parallel line segments may be considered to 
intersect on a plane at infinity (according to the homogeneous coordinate description 
of points). 

Suppose l(L,L0) and /'(L',L'0) are two noncolinear line segments. The segments 
intersect if and only if they are coplanar, and they are coplanar if and only if the 
volume of the tetrahedron with the segments as opposite edges is zero. This 
geometric condition can be expressed in a number of ways. If the endpoints of the 
segments are (p, q) and (/?', q'\ respectively, then the condition for intersection is 
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expressed by the vanishing determinant A, where 

A = \"q Jq ^ "q | . (8) 

XP 

xq 

xp, 

*«' 

yP 

y* 
yP' 
JV 

zp 
zq 

V 
V 

W "> 
w, 
Wp 

W« 

The condition zl = 0 expresses the linear dependence or equivalently the coplanarity 
of the four given points. This condition can be expressed succinctly in vector form 
as: 

L-l!0+l! -L0 = 0 . (9) 

The point of intersection c, c = {xC9yc, zc, wc\ of the two lines is the common 
solution of the two equations 

C X L — JL/Q , C X- L = M_JQ , 

The vector product of these two equations gives 

XQ ' L LQ L 

In coordinates this corresponds to 

x< = M0NQ-MQN0 y^ = JVO-LQ-JVOLQ 

wc L0ll + M0M'+ N0N" WC Loll + M0M' + N0N" 

zc LQMQ-L'OMO 

(10) 

(11) 
wc LOL+MQM +N0N 

Thus the intersection of two intersecting lines with rational descriptors is a rational 
point. 

Perpendiculars to lines 
Let p,p = (xp,yp, zp, wp), be a point not coincident with line 1{L, L0). Let f{p, I) 
be the foot of the perpendicular from p to the line /, f{p, I) = (xf,yf, zf, wf). 
Perpendicularity and the coincidence o f / a n d l(L,L0) implies that 

fxL=L0, (f-p)-L=0. 

Taking the vector product of the first equation with L gives 

{p-L)L L0XL 
J LL LL [ } 

This can be expressed in coordinate form. The jc-coordinate is given by 

i = (xpL + ypM + zpN)L-(M0N-MN0)wp 

wf {L2+M2+N2)wp 
(13) 

The other coordinates are expressed similarly. Thus for line / and point p both 
rational, the foot of the perpendicular from p to / is a rational point. 

Skew lines 
The arguments above can be extended to apply to the case of two skew lines 
I(L,L0) and l'(l!,ll0). Skew lines are neither coplanar nor parallel. There is a 
unique common perpendicular which meets the line segments or their extensions at 
/ = (xf, yf, zf, wf) and / ' = (x}9 y'f, zf, w'f\ respectively. The feet of the common 
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perpendiculars are given by 

L o X ( L x L o - L ; x L 0 ) / ' = L /
0 x(LxL / o-L / xL 0 ) 

L0 -[LxL) ' J £ 0 • ( £ * £ ) 

and the descriptor of the common perpendicular line is ( l x i ' ? Lxl!0-l! xL0) 
The common perpendicular of two skew rational lines is a rational line. 

(14) 

Transformations 
A transformation, x, of a shape s is the shape x(s). The transformation x acts on 
the lines in s so that a line with endpoints p and g in 5 is transformed to a line 
with endpoints %{p) and x(g) in x(s). The transformation x: p ~* p' acting on 
general points p = (*, y, z, w) to give points /?' = ( x ' , y ' , z \ w') can be represented 
by a matrix T of point coordinates: 

X 
t 

y 
z 

f 

w 

_ dy 

0 0 0 £ 
a7 

= T{x,y,z,wj (15) 

Note that £ ¥" 0. A transformation is determined if the correspondence between 
two sets of four noncoplanar points is given. The treatment will be restricted to 
Euclidean transformations augmented by scale. The appropriate correspondences 
are thus the similarity transformations of the tetrahedra formed by the sets of 
points. 

Consider the correspondence between two sets of noncoplanar points (pl9 p2, p3, p4) 
and {p[,P2,p'3,p*) in which pt and pi correspond for i = 1, 2, 3, 4. The points 
are expressed in homogeneous coordinates of the forms (xi9 yt, zi9 wt) and 
(x/,y/,z/, w[). It is assumed that the two sets of noncoplanar points are similar 
tetrahedra under the correspondence. If the tetrahedra have symmetry, then there 
are further correspondences involving the two sets of points which give rise to 
distinct transformations related by the symmetry. 

In order to determine the transformation it is necessary to find the coefficients 
of the matrix T which satisfy equation (15) for the points (*,•,#, zt, wt),' 
(JC/, v/, z/, w[\ i = 1, 2, 3, 4. The matrix equation (15) provides three groups of 
four equations in four unknowns: {aX9 bx, cx, dx], {ay9 by, cy, dy}9 or {az,bz, cz,dz}. 
Each group can be solved provided the equations are nonsingular. This is guaranteed 
by the requirement that the points are noncoplanar. 

However, we note that the solution is not quite as straightforward in the 
formulation proposed for the matrix representation. The points are represented in 
homogeneous coordinates which means that points (x, y, z, w) and {kx, ky, kz, kw) 
are the same. The matrix will transform these onto the same point. The difficulty 
arises because the four pairs of points in the correspondence will not in general be 
expressed in a way which allows direct use in a system of linear equations. 
Essentially, the value of E for each pair of points will be different. This is dealt 
with by using the scalar freedom in the homogeneous point representation. We 
notice that, if each of the matrix elements is multiplied by the same scalar factor, 
then the transformation remains unchanged. The freedom to express points and 
transformations in homogeneous coordinates can be incorporated in the equations 
derived from the matrix representation of the transformation as follows. 
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(16) 

The matrix gives the following sets of equations 

«**« + Kyi + cxZt + dxwt = k{x[ , 
ayxt + byyt + cyZi + dywt = ktyl , 

az*i + Kyi + cz*i + dzwi = ktz'i , 
Ewt = ktwj , 

for / = 1, 2, 3, 4. The value of E can be chosen as convenient, giving a value for 
kt and thus three sets of four equations in four unknowns. Essentially what is 
happening here is that we are choosing a scale factor for all the matrix entries. 
This does not affect the transformation because homogeneous coordinates are 
being used. 

Define the determinant 

A = 

yi 

yi 

ys 

yA 

Zl 

z2 

z3 

z4 WA 

The equations (16) have a solution provided they are nonsingular. This is guaranteed 
by the condition A ^ 0, which is equivalent to the condition that the four points 
are noncoplanar. Assign E = A, which sets values for kh i = 1, 2, 3, 4. With 
this assignment, the solution of the equations are found by standard results to be 

Uy ^*y'yzw? 

Jz yzw> 

by 

b= A 

^*xx'zw> ~x ^*xyx'w> dY = Ar 

®y ^xy'zw? Cy ^xyy'wy ^y ^*xyzy'i 

c7 = Ax d7 = Ar 

(17) 

Ax>yzw is the determinant derived from A by replacing the first column by the 
corresponding x' entries. The other determinants are defined similarly. For 
example, the determinant cy = Axyy>w is the determinant derived from A by 
replacing the third column by y' entries. 

For real shapes, the transformation matrix is most conveniently given by dividing 
each element by A and setting E = 1. For rational shapes, each coefficient of the 
transformation can be calculated by using integer arithmetic. The points are expressed 
as integer coordinates and thus determinants are calculated by integer arithmetic. 

The transformation can be considered graphically in a number of ways. One of 
these is described below (figure 3). There are five steps in all. 
(1) Translation xx taking px to the origin, that is, ti(/?i) = 0. 
(2) Translation x2 taking p[ to the origin, that is, %2(p[) = 0. 
(3) Rotation and scale t 3 about the common normal of the lines i\{{PuPc}) and 
x2({Pi>Pc}) such that the lines x3x1({pl9pc}) and x2{{p[,Pc}) coincide and the points 
x3xi(Pc) a n d x2(Pc) coincide, where pc and p[ denote the centroids of the triangles 
formed by the points p2,p^pA and p2, p'3, p'4, respectively. 
(4) Rotation and scale x4 about the line through x3x1(pc) = x2(Pc) normal to the 
plane formed by x3x1{p2), x3x1(/?3), and x3x1(/?4) such that x4x3x1(/?2) and x2{p2) 
coincide, x4x3x1(^3) and x2(/?3) coincide, and x4x3x1(p4), and x2(p4) coincide. 
[For similarity (isometric) transformations, these latter correspondences will always 
hold provided the two tetrahedra are initially similar (congruent).] 
(5) Translation (.-x2) taking the origin to p[. 
The composition x = (~x2)x4x3x1 gives the desired transformation. 



592 R Krishnamurti, C F Earl 
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Ti(P2) 

*P* 
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(d) 
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< ^ ^ ( - T 2 ) T 4 X 3 X 1 ( p 4 ) 

(f) 

Figure 3. Graphical construction of the transformation between a pair of similar tetrahedra: 
(a) correspondence p, - p\ between similar tetrahedra; (b) step 1: translation xup{ to the 
origin; (c) step 2: translation t2 , pj to the origin; (d) step 3: rotation and scale x3 about the 
common normal to position vectors xx(pc) and t2(pc'); (e) step 4: rotation and scale x4 about 
the common normal through x2(pc'); (f) step 5: translation - x 2 back to ph 
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Subshape recognition under similarity transformations 
When composing shapes by the recursive application of shape rules, it is imperative 
to know when two shapes are equal under a linear transformation. Of particular 
interest are the similarity transformations that are made up from finite compositions 
of the Euclidean transformations of translation, rotation, and reflection, augmented 
by a scale transformation. In the sequel, we restrict the discussion to the similarity 
transformations. 

Under similarity, transformed shapes maintain the same spatial relation between 
the lines composing the shape. That is, angles and separation among lines are 
preserved. 

When considering the problem of determining when a shape is a subshape of 
another, difficulties arise because there are general cases where there are an 
indeterminate number of valid transformations under which the subshape relation 
will be satisfied. This difficulty is compounded by the fact that endpoints of lines 
cannot be used as distinguished points because endpoints are not necessarily 
preserved in a subshape relation. Nevertheless, it is possible to demonstrate that, 
in such cases where there are an indeterminate number of valid transformations, 
one can isolate a 'base' transformation from which the other transformations can be 
generated. 

Before this problem is addressed, the augmentation of shapes by labelled points 
is considered. In the generation of shapes, labelled points are used to guide both 
the choice of shape rules and the locations where they are applied. A labelled 
point is a point p with an associated label set A, and is denoted by p:A. The 
convention is adopted that no two distinct labelled points in a shape share the 
same coordinates. That is, if there are two labelled points p: A1 and p: A2 with 
Ax ¥" A2, they may be replaced by a single maximally labelled point p: Ax U A2, 
where U denotes set union. The label set A does not carry any geometrical 
import in the sense that under a linear transformation x, the labelled point p: A 
maps onto the labelled point x{p):A. 

Labelled points are distinguished in the sense that the spatial relations of the 
lines and labelled points in a labelled shape are preserved under a similarity 
transformation. A labelled point p: A is a subshape of p : A whenever p = p and 
A< A. 

The procedures to determine the set, T, of possible similarity transformations x 
of a shape s augmented with a set of labelled points P, denoted by o = (s, P), such 
that x(a) = [x(s), X(P)] is a subshape of the second shape of = (s\ P') are enumerated 
in a series of cases which depend on certain conditions being satisfied in o. Precisely, 
one of these cases must hold for o. The subshape expression x(o) < o' is used as 
a shorthand for the pair of subshape expressions x(s) < s' and x(P) < P'. 

To determine whether or not the subshape relation between o and o' holds, it is 
more than sufficient to examine the mapping between corresponding sets of four 
noncolinear distinguished points in the two shapes. We start by selecting labelled 
points as candidates for distinguished points. If there are an insufficient number of 
these, other points are selected as possible candidates. If this is still not possible, 
we have a situation where there are potentially indeterminately many ways of 
satisfying the subshape relation between o and o'. 

In the next two sections we exhaustively enumerate the determinate and 
indeterminate cases, respectively. The cases are enumerated in decreasing order of 
the number of labelled points in o. That is, case 1 prefixes the case when there 
are four labelled points, case 2 corresponds to cases when there are three labelled 
points and so on. The case numbering is preserved over the two sections. 
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In some of the cases, we separate the discussion into shapes when they are 
rational and into shapes when they are real. In all other cases, the constructions 
apply equally both to rational and to real shapes. 

The determinate cases 
Case 1: There are at least four noncoplanar labelled points in P. Let the labelled 
points be p^A^Pi = (xi9yi9zi9 wt), 1 < i < 4. The four points are noncoplanar if 
and only if A ¥> 0 (as defined in the previous section). For each set of labelled 
points pi :At in P', satisfying At < At and with {pt} similar to {/?/}, 1 < i < 4, 
a transformation t can be generated by the procedure described in the previous 
section. If %{o) < o is satisfied, then x is added to the set of valid transformations. 
Distinct correspondences of labelled points generate distinct transformations. Distinct 
correspondences on the same sets of points are possible if the labelled tetrahedra 
possess symmetries. 

If all possible correspondences are examined, then the procedure is exhaustive. 
If the labelled points in both sets are rational, the valid transformations will 

have rational coefficients. 

Case 2: There are three labelled points in P and they are not all colinear. Let the three 
labelled points be pt: Ai9pt = (*,, yi9 zi9 wt\ i = 1, 2, 3. If there is a line which is 
not in the plane of the points and not perpendicular to the plane, then it is possible 
to construct distinguished points as feet of the perpendiculars from pt to the line 
which is not in the plane of the points. The procedure in case 1 is then used. 

If there is no such line, then define the points c+(pl9p2,p3) and c~(pl9p29p3) 
as illustrated in figure 4 and given by the expression, 

C±{Pl,P2,P3) = c(p1,p29p3)±k[(p1-p2)X(p1-p3)], 

where 

c{Pi,p2,P3) = HP1+P2+P3) 

is the centroid of the points Pi,p2, and p3, and k is a scale factor equal to the 
inverse of the magnitude of (p1 —p2\ The vector product (pt ~~p2)

x{Pi-p3) 
represents a line normal to the plane of the three labelled points. Fix 
PA = c + {pupl9p3): 

Pi • ^3 • 

z 

k' 

Ax < Ax 
A2 < A2 
A3 < A3 

?PA = c + (pup2,p3) 

Am vector normal to the plane formed 
/ m by the triangle px, p2 and p3 

: / Pi'M 

^ c(Pi,p2,P3) 
• 

p x \ A x 

PA = c + (Pi,P2,P3) 

\ # P'l '• A 

\ 

• 
Pi: A2 

^^ c(p[, p2, p3) 

• P3-A3 

h PA = c~(p[fp'2,p3) 

Figure 4. Constructing possible correspondences from similar triangles. 
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For each set of three labelled points p't :At, i = 1,2,3, in P!, satisfying 
At < At, and with triangles {pj} and {/?/} similar under the correspondence pt to 
pi, i = 1,2,3, construct the points c + (p[, p2, p3) and c~(p[,p'2,P3\ Potential 
transformations x can be generated by setting p4 to each of these points in turn. 
The construction of the fourth point guarantees that the tetrahedra are similar if 
the original triangles are similar. If x(a) < a' is satisfied, then x is added to the 
set of valid transformations. Distinct correspondences of labelled points generate 
distinct transformations. Distinct correspondences on the same sets of points are 
possible if the labelled triangles possess symmetries. 

If all possible correspondences are examined, then the procedure is exhaustive. 
The above argument demonstrates that the correspondence between two sets 

of three noncolinear distinguished points is sufficient to generate possible 
transformations. 

This above procedure will not always succeed for rational shapes in the sense 
that the constructed points may not be rational and thus the transformation may 
not be rational. However, if the constructed points in a and a' are both irrational, 
then the transformation may be rational. This can only occur if the values of k 
and k' used to construct c±(p1,p2,p3) and c±{p'1,p2.,p3), respectively, have k/k' 
rational. Clever choice of the constructed points is irrelevant and one construction 
is as good as another for the purpose of determining the transformation. If only 
one of the constructed points in o or a' is rational, then the transformation is 
irrational as the following examples indicate. 

Examples 
(1) Let Pi = (0, 0, 0), p2 = (0, 2, 0), and p3 = (2, 0, 0) be the (*, y, z)-coordinates of 
the three labelled points. Let pf = f[pl9 (p2,p3)]

 = (1, 1, 0). Two possible choices 
for p4 based on pf are (1, 1, ±21 / 2) . That is, p4 is irrational. Note that p4 is not 
constructed according to the above procedure but is given by an equivalent 
construction corresponding to a right triangle {Pi,Pf,p4} orthogonal to the 
triangle'{pl9p2,p3}. Let p[ = (0, 0, 0), p2 = ( - 1 , 1 0), and p3 = (1, 1, 0) be the 
corresponding labelled points. Let p} = f\p[,{p2, Pi)] = (0> 1, 0). The corresponding 
choices for p4 are (0, 1, ±1). That is, p4 is rational. The similarity transformation 
that maps between the two tetrahedra has a scale factor of 2 _ 1 / 2 and, hence, must 
have irrational coefficients. 
(2) Let Pi,p2, and p3 be the same points as above. Let p[,p2 and p3 be their 
mirror images in the yz-plane. Then, p4 and p4 are not rational but the similarity 
transformation between the two tetrahedra has rational coefficients. 
(3) Let px = (0, 0, 0), p2 = (0, 1, 0), and p3 = (2, 0, 0). Then, a possible choice 
for p4 is (2/5, 4/5, 1/51/2) which is clearly not rational. Let p[ = (0, 0, 0), 
p2 = (1, - 1 , 0 ) , and p3 = ( - 2 , - 2 , 0). The corresponding choices for p4 are 
(2/5, - 6 / 5 , ±2 1 / 2 /5 1 / 2) which are clearly not rational. The two tetrahedra are 
similar with a scale factor of 21 / 2 . 

Thus, it is not always possible to find valid transformations with rational 
coefficients that map a rational shape as a subshape of another rational shape. 

Case 3: There are two labelled points in P. Let the two labelled points be px :A1 

and p2 :A2. There are a number of subcases which are conveniently enumerated 
by considering the lines in the shape o if they are present. The maximum number 
of lines considered is limited to one. In general, it may be possible to use a 
number of lines in o for the construction of distinguished points, thus allowing the 
application of cases already considered. However, this is not always a sensible 
strategy to be considered in checking subshape because the number of possible 
constructions in o' increases exponentially with the number of extra lines. As will 
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be demonstrated below, the use of a single extra line, if it exists, is sufficient to 
determine the possible transformations. This guideline is augmented by the use of 
distinguished points if they are available within the configuration selected in a. 
This is relevant to case 3 because it is possible to specify a general construction 
for two labelled points and a noncoincident line, but determining which of the 
resulting transformations are valid requires checking the subshape relation in all 
cases. However, with the use of distinguished points, an initial similarity check can 
be done before transformation generation. This reduces the operations required in 
subshape recognition. The result of these observations is that the minimum of 
extra lines are used in constructing the distinguished points, and all the distinguished 
points available ark used. In all there are three determinate subcases to be 
considered. 

Subcase 3(a): There is a line I not coplanar and not perpendicular to (ph p2) The 
condition on the line descriptor and the point for this condition is straightforward. 
The feet of the perpendiculars from p1 and p2 to the line (figure 5) are distinct and 
can be used as two additional points to construct possible transformations as in the 
procedure for case 1. All possible constructions of the additional points must be 
made in a' to enumerate the transformations exhaustively. However, repetitions of 
valid transformations will be generated if there are two or more colinear lines in o' 
used in the construction of the additional points. This is avoided by using only 
one line from each colinear class of lines in o' during the construction. 

.. Pi: M 

Figure 5. Constructing distinguished points on a line not coplanar and not perpendicular to 
the line specified by two labelled points. 

Subcase 3(b): There is a line I: (1) perpendicular and not coplanar to (ply p2), or (2) 
coplanar, not perpendicular, and not coincident with (plf p2). In this subcase the foot 
of the perpendicular from px or p2 defines a third point p3 noncolinear with px 

and p2 (figure 6). Using this additional point the procedure for constructing the 
transformations is as case 2 above. All possible constructions of the additional points 
must be made in a' based upon pairs of labelled points (p[,p2), p[ \AiyA{ ^ At. 
Associated correspondences are then used as the basis for generating possible 
transformations. Further, the constructions in of should follow the choice of px or 
p2 in the construction of the third point in o. 

p x \ A x 

\p* 

••;.::•• Pi : ^ 2 

p , : A ,»•••'• 

(2) 

Pi: &i 

Figure 6. Constructing a distinguished point on a line which is exclusively (1) perpendicular, 
or (2) coplanar with (and distinct from) the line specified by two labelled points. 
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Subcase 3(c): There is a line I coplanar and perpendicular to (php2). There are 
several ways of considering this case (figure 7). One of these will be examined. 
Let the point of intersection of / and {pi,p2) be c. Construct points a± on / at a 
distance from c equal to the length of {pi,p2), where a+ lies along the positive 
direction of / as determined by the descriptor. Further, construct the line m through 
c and perpendicular to / and (pl9p2) and points b± on m at a distance from c 
equal to the length of {pi,p2), where b+ lies along the positive direction of m as 
determined by its descriptor. Assign p3 = a+ and pA = b+. 

For each set of two labelled points /?/: Ai9 i = 1, 2, in P\ satisfying At < At and 
lines / ' in s' perpendicular and coplanar with (p[, p'2) such that the intersection point 
c on /' and (p[,p2) divides (p[9p2) in the same ratio as c divides {p1,p2), construct 
points ar± and br±. For each pairwise selection of the constructed points, assigned 
to p'3, /?4, generate the transformation for the associated correspondence between 
{Pi,p2,p3,p4} and {p[, p2, p'3, p^}- Transformations with x(a) < o' represent valid 
transformations. Add these to the list of transformations. All possible constructions 
of the additional points must be made for the exhaustive enumeration of potential 
transformations. The procedure can generate repetitions of the transformations if 
there are two or more colinear lines in o' which are used in the generation. To 
avoid this only one line from each colinear class of lines in a' is considered in the 
construction of the additional points. 

\ / .....-•• Pi: M 

pl:Al •••-"" / \ 

\ a 

* b \ 

Figure 7. Distinguished points from a configuration consisting of a line which is coplanar and 
perpendicular to the line specified by two labelled points. 

Case 4: There is one labelled point in P. 
Subcase 4(a): There is a line I in s not coincident with the labelled point pv Let 
Pi = f{Pu 0 t>e t n e f ° o t °f t n e perpendicular from px to / (figure 8). The case is 
similar to case 3(c) with all lines in o' not coincident with a corresponding labelled 
point /?{, satisfying Ax < Ax. Note that the constructed transformations may 
produce transformations that do not have rational coefficients. 

lP4=b + 

P3 = « + 

""•• ' - • Pi :A, 

Figure 8. Distinguished points constructed from a line not coincident with a given labelled 
point. 
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We illustrate by a simple example a situation where rational shapes are mapped 
onto irrational shapes. Figure 9(a) illustrates a shape rule with the left-hand shape 
consisting of single rational line and a single rational labelled point. Figure 9(b) is 
a subshape of the 'current' shape to which it applies. The appropriate transformation 
that maps the left-hand shape of the rule to the current shape has irrational 
coefficients and when applied to the right-hand side of the rule will produce an 
irrational shape. 

(0,0,2) 

(1,0,1) 
(0,0,2) 

• (0, 1,0): A 
(1,0, I K > ( - l , 0 , l ) 

- * ( o , o , o ) V ( 0 ' 1 ' 0 ) ^ 

( -1 ,0 , -1 ) 
(0,0, -2) 

(a) (b) 
Figure 9. A simple example to show that a rational shape rule (a) applied to a rational shape 
(b) may produce irrational shapes. 

Case 5: There are no labelled points in P That is, P = 0 . There are two determinate 
cases depending on the configuration of lines in o. 

Case 5(a): There are two skew lines in s. Skew lines are not parallel by definition. 
Let the lines be lx and l2. Construct their common perpendicular and denote the 
corresponding intersections with lx and l2 by px and p2 (figure 10). This case may 
be considered similarly to case 3(c) using just one of those lines. However, this 
ignores some of the geometrical information in the shape. A variant of the 
treatment is considered. Construct points a^, i = 1,2 on lx at a distance from p{ 

equal to the length of (px, p2), where at
+ lies along the positive direction of /, as 

determined by the descriptor. Assign p3 = ax and pA = a2
+. 

For each pair of skew lines l[ and l2 in o' construct the common perpendicular 
and denote the feet by p[ and p2. Further construct the points a'^ and a^. For 
each pairwise selection from {aj*, a^} assigned to p'3,p'4 generate the transformation 
from the associated correspondence between {px,p2,p3,pA) and {p[,p2,p3,p'4}. A 
preliminary check is made to ensure similarity of the correspondence. This effectively 
checks that the skew lines have equal twist angle. All possible constructions of the 
additional points must be made for the exhaustive enumeration of potential 
transformations. Colinear lines can give rise to repetitions of the constructions and 
the corresponding transformations. As with previous cases only one line from each 
colinear class in o' is considered. 

Pi 

H 

Figure 10. Distinguished points from two skew lines. 
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Case 5(b): There are three coplanar lines in s not all parallel and not all concurrent at 
a common point The situation considered here is that of three lines forming the 
sides of a triangle [figure 11(a)] or of parallel lines with transversal [figure 11(b)]. 
These two situations are similar to cases 2 and 3(b), respectively. However, if the 
transversal is perpendicular to the parallel lines [figure 11(c)], then a situation 
similar to case 3(c) arises. 

Figure 11. The determinate cases when there are no labelled points and three coplanar lines 
in a. 

The indeterminate cases 
The cases in which there are an indeterminate number of transformations are now 
considered. In these cases the number of valid transformations effecting subshape 
relation may not be finite, but the nature of the indeterminacy is specified. The 
first instance arises in case 3. 

Case 3: There are two labelled points in P. 
Subcase 3(d): All labelled points in P and all lines in s are colinear. This case 
subsumes the case when s is empty. For each set of two labelled points p't :Ah 

i = 1, 2 in P', satisfying At < At, one possible transformation is generated by a 
combination of translations, rotations, and scale taking\Pi,p2) to {p[,p2). The 
particular transformation is not critical. The complete set of transformations is 
generated by composing this with rotations about the axis (p[,p2) and with a 
reflection in a plane containing p[ and p2. The first transformation may be 
considered as a base transformation for the complete set. 

The base transformation can be constructed as follows (figure 12). At px construct 
the lines l{ and /2, where lx has the descriptor [LuL0l\Lx = Pi*p2 and 
An = Pix(Pi xPi)i a n d k has the descriptor (L2, L02), L2 = {pl -p2)*Pi><p2 and 
^02 = Pi xiiPi -Pi)xP\ xPi\ The expressions for L01 and L02 are not used. 
Construct the points a* on lines lh i = 1, 2 at a distance frompx equal to the length 
°f (P\>Pi)> Select p3 = af and p4 = a2. For each pairwise selection {«{*, a^} 

/..••*' t a2 

*Pi''Ai 

Figure 12. The distinguished points generated from two labelled points. 
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assigned to p'3, p\ generate the transformation from the associated correspondence 
between {pl9p2,p3,p4} and {p[, p2, p'3, p'4}. These base transformations will 
incorporate possible reflections. We can construct the complete set of transformations 
by taking the composition of these base transformations with rotations about the 
axis {p[,p2). Note that there is a degree of redundancy in this specification, arising 
from the generation of four base transformations three of which incorporate 
reflections. Only one of these three is required when composing with the general 
rotation. 

Case 4: There is exactly one labelled point, p} :AU in P. There are three 
indeterminate situations. These are illustrated in figure 13. 

subcase 4(b) subcase 4(c) subcase 4(d) 
Figure 13. The three indeterminate subshape conditions with one labelled point in o. 

Subcase 4(b): p} is coincident with all lines in s and there are two noncolinear lines in 
s. Let p2 be an endpoint of a line in s distinct from px. For each labelled point 
p[: Ax in P', satisfying Ax < Au consider each endpoint p2 7̂  p[ of lines through p[. 
For each pair (p[,p2) and each line through p[ but not through p2, generate the 
transformation as in cases 3(b) or 3(c) above. The full set of transformations is 
obtained by composing this transformation with scales keeping p[ as the fixed 
centre of the scale. 

Subcase 4(c): pl is coincident with all lines in s and all lines are colinear. Let p2 be 
an endpoint of a line in s. For each labelled points p[ :AX in P', satisfying 
Ax < Al9 consider each endpoint p2 ¥> p[ of lines through p[. For each pair 
(Pu Pi) generate the base transformation as in case 3(d) above. The full set of 
transformations is obtained by composing these transformations with rotations 
about> (p[,p2) and with scale having p[ as the fixed centre of the scale. 

Subcase 4(d): There are no lines in s. For each labelled point p[: Ax in P\ 
satisfying Ax < Au construct the translation that takes px into p[. The full set of 
transformations consists of this base transformation composed with rotations and 
scales having p[ as a fixed point and a reflection in a plane through p[. 

Case 5: There are no labelled points in P. There are three possible indeterminate 
cases as shown in figure 14. 

/.Pi 

subcase 5(c) subcase 5(d) subcase 5(e) 
Figure 14. The three indeterminate subshape conditions with no labelled points in o. 
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Subcase 5(c): All lines in s are coincident at a common point and are not all colinear. 
Let px be the common point and construct the transformations as in case 4(b). 

Subcase 5(d): All lines in s are parallel and are not all colinear. Choose two lines /x 

and l2. Let px be an endpoint of ll9 and p2 the foot of the perpendicular from px 

to l2. For each pair of parallel lines (/{, l'2) in s' construct in a similar way the two 
pairs of points (p[, p2) corresponding to the choice of endpoint of l[. The base 
transformations are then generated as for case 3(c). The full set of transformations 
is generated by composing these with translations along the direction of the lines /{ 
and l'2 together with a reflection in a plane perpendicular to the parallel lines. 
This case may have either a determinate or an indeterminate number of valid 
transformations. 

Subcase 5(e): All lines in s are colinear. Select endpoints {pi,p2} of a line in s. 
Find all pairs of endpoints {/?1? p2) of all lines in s and generate transformations 
for each pair {p[,p2) as in the generation of the base transformations in case 3(d). 
The full set of possible transformations is found by composing the base set with 
rotations about {p[,p'2\ appropriate scale reductions, translations along {p[,P2), and 
reflections in a plane containing p[ and p2 and perpendicular to (p[,P2\ 

This completes the enumeration of the determinate and indeterminate cases. 

The symmetries of a shape 
We have considered the problem of, given two shapes, determining all possible 
similarity transformations of one shape such that the transformed shape is a 
subshape of the second shape. In this section we consider the related problem of 
determining the possible similarity transformations which render two unlabelled 
shapes equal. Procedures will now be given to determine all possible similarity 
transformations which maintain shape equality. A corollary of these procedures is 
that, if we are given two equal shapes, then the possible similarity transformations that 
take a shape into itself (other than the identity transformation) may be determined. 
That is, each transformation defines a symmetry of the shape. The symmetries of 
a given shape may thus be determined by these transformations. 

In general, the set of transformations that preserve equality of shape is finite. 
There are three exceptional cases to consider: namely, when two unlabelled shapes 
each consist of single sets of finite colinear lines, and when the shape consists of 
no more than two labelled points and has no lines. In all cases, the shapes are 
always equal and there are an indeterminate number of potential transformations 
that yield equality. For the unlabelled shapes with single sets of finite colinear 
lines and the labelled shapes with two labelled points and no lines, one particular 
transformation can be singled out, from which the other transformations can be 
derived. This is the screw transformation along the common perpendicular with a 
translation along the direction of one of the lines—the two labelled points may be 
treated as a line—and a scale transformation. Further, note that the heads and tails 
are preserved. 

To determine the potential transformation for shape equality four noncoplanar 
distinguished points in each shape are mapped onto one another. The coordinates 
of these points are sufficient to calculate the coefficients of a linear transformation. 
For rational points that map onto rational points, the coefficients are also rational. 
If distinguished points of the shapes are arbitrarily chosen, say the endpoints of 
line segments, or their points of intersection or the feet of the common perpendicular 
of two skew lines, then many potential transformations may have to be considered. 
Thus, labelled points are used whenever possible. 
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In situations where there are insufficient labelled points, other suitable distinguished 
points are used. If there are still insufficient distinguished points, then transformations 
of point and line descriptors are invoked by constructing additional points. The only 
case where this is not possible are the three cases mentioned above. 

The procedure for determining the symmetries of a shape is summarised as 
follows. In principle, four distinguished points in a shape are kept fixed. Then, 
each possible transformation corresponds to a permutation of four distinguished 
points in the shape such that corresponding points are identical in type or label. 
That is, a labelled point in the shape must map onto another labelled point with 
the same label set in the shape; an endpoint of a line must map onto an endpoint 
of another line in the shape; and so on. Moreover, the tetrahedra formed by the 
two sets of corresponding points must be congruent. Once a correspondence 
between distinguished points in the shape has been constructed, the shape equality 
procedure can be applied to compare the shape and its transformation. 

Conclusion 
We have shown the existence of procedures for solving the recognition problem for 
three-dimensional line shapes. We have also shown that valid transformations that 
map between rational shapes may not have rational coefficients; consequently, it is 
not always possible to resolve the shape recognition problem using exact arithmetic. 
This would inexorably lead to round-off and other numerical errors that would 
have to be taken care of in practice. However, if computations for shape recognition 
are restricted to integers, we would then have to take greater care in the way in 
which we specify shape rules. Principally, this means that the shape rules have to 
be sufficiently dense to ensure that there are always four noncoplanar labelled or 
other distinguished points(1). 

Nonetheless, we believe, we have established that a grammatical approach to the 
construction of form-led three-dimensional spatial designs is a viable proposition. 
In doing so, we have accomplished one half of a two-part objective, laid out and 
argued for by Earl (1986), namely, to develop a constructive computational 
paradigm for the creation of worlds of designs. To fulfill this ambition and to 
provide a practical computational framework we would need to implement the 
theory described here, taking into consideration the numerical problems that are 
introduced by arithmetic on reals, or by the constraints that would have to be 
imposed on the specification of shape rules as a result of limiting arithmetic to 
integers. That, however, remains the object of another endeavour, the actions of 
another incarnation, and the subject of another report. 
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W There are other issues that surface when we restrict shapes to rational descriptors. More 
often than not, we are interested in shapes that have rational or integral dimensions rather 
than have rational endpoints. Rational shapes raise issues that are more of a theoretical nature, 
whereas real shapes raise practical issues that demand accuracy of numerical computation. 
One permits exact subshape testing and hence, accurate shape recognition; the other greater 
flexibility in shape representation, for example, the unit cube rotated through 45° about the 
z-axis inevitably has nonrational descriptors. A fuller discussion of the rational - real divide 
requires greater depth and is beyond the scope of this paper. 
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