
Environment and Planning B: Planning and Design, 1992, volume 19, pages 431-464

The arithmetic of maximal planes

R Krishnamurti
Department of Architecture, Carnegie-Mellon University, Pittsburgh, PA 15213, USA
Received 17 December 1991

Abstract. The geometry of shapes made up of finite planes is considered in detail. Algorithms
on maximal planes for performing shape arithmetic are developed.

Introduction
This paper is a sequel to Krishnamurti (1992) in which the representation of
shapes in terms of maximal spatial elements is considered. As pointed out in that
paper, the maximal representation provides for the definition of shapes as definite
geometrical objects with indefinitely many geometrical parts. In this paper, I examine
the geometry of shapes made up solely of finite planes of nonzero area.

The following ideas are basic.
The algebra Un, n > 0, is the least set of shapes made up of finite ^-dimensional

hyperplanes with nonzero measure, and is obtained by taking the closure under
union and the Euclidean transformations (augmented with scale) of an appropriate
set of rc-dimensional hyperplanes (Stiny, 1991; see footnote (2) in Krishnamurti,
1992). Thus, U2 is the algebra of shapes made up of finite planes of nonzero area.

A shape may consist of elements from different algebras. A shape may also
consist of elements from the same algebra and belong to different aspects. For
example, the shape consisting of the plan, elevation, and section of a building is
made up of points, lines, and planes that belong to each drawing that describes the
building. Thus, this shape would belong to the Cartesian product of the algebras
(U0x f/i x U2)x(U0x Uxx U2)x(U0x Uxx U2) where the parentheses are included
merely for the purpose of illustration.

In general, a shape s is an ordered tuple of shapes (s1, s2,...,sk,...), k > 0,
where each sk is a shape in the algebra Uk. Two shapes, sl and sJ, i * / , may
belong to the same algebra. Each Uk corresponds to an algebra Un, for some
n > 0, of shapes made up of ^-dimensional planes. In this paper we concentrate
on shapes in U2.

A spatial element in a shape is maximal if it cannot be combined with other
spatial elements (from the same algebra) in the shape to form a single larger spatial
element. The maximal representation of a shape is its description in terms of its
maximal spatial elements and is the smallest unique specification for the shape.

A spatial element is described by its descriptor and boundary, where the
descriptor identifies the orientation of the element in an appropriate Euclidean
space and the boundary identifies the position, size, and geometry of the spatial
element. The descriptor partitions the elements of a shape into co-equal (that is,
coincident, colinear, coplanar, or cohyperplanar, etc) equivalence classes. A shape
may be organized as an ordered arrangement of classes of co-equal elements, that
is, sets of spatial elements that share the same descriptor.

Spatial elements can be combined to form a larger element if they overlap, share
boundaries, or if one element contains the other. Disjoint elements are relatively
maximal and cannot be so combined. Spatial elements can be compared with
other elements to form new elements. There are three basic operations to create

432 R Krishnamurti

new elements and these correspond to the Boolean operations on shapes; union,
difference, and intersection. Thus, spatial arithmetic can be captured by four basic
geometric relations; disjoint, overlap, shareJyoundary, and contain, and by three
basic operations; combine, complement, and common. In this paper, I develop the
algorithms for these basic relations and operations on shapes defined by finite
planes.

The algorithmic notations employed in this paper are based on a logic programming
approach introduced and explained in Krishnamurti (1992) as are some of the
basic predicates, other terms, and notations not explicitly defined here.

Last, as a visual prolegomenon, a cube with a square hole drilled through it is
illustrated as a shape made up of maximal planes (figure 1). The maximal planes
that make up the sides of the cube are shown. The reader may notice two of the
maximal planes that define the cube have holes.

Figure 1. A cube with a square hole and the maximal planes that make up the sides of the
cube.

Shapes in U2

Shapes in U2 consist of maximal planes. A maximal plane is specified by its
boundary which is a set of polygons one of which is the outer boundary of the
plane and all others are the inner boundaries of the plane. A maximal plane is
simple if it has no inner boundaries. Nonsimple maximal planes contain holes.
For a maximal plane, the lines of the inner boundaries he inside the region defined
by the outer boundary and at best touch the outer boundary at one point. Inner
boundaries may touch another inner boundary at a point. Examples of maximal
planes are shown in figure 2.

The simplicity of a maximal plane is easily established. Let M denote a maximal
plane. M is represented by the set of simple polygons {b0, bu ..., bm} where, by
convention, b0 is the outer boundary and all others are inner boundaries of M.
Then,

simple(M) - M = {b0} . (SI)

Figure 2. Examples of maximal planes.

The arithmetic of maximal planes 433

Nonsimple maximal planes have an outer boundary and one or more inner
boundaries. However, any boundary of a maximal plane, whether outer or inner, is
a simple polygon as figure 2 illustrates. In some cases, the boundaries of a maximal
plane are disconnected polygons as figure 3 demonstrates. In other cases, the
combination of the outer and inner boundaries can be combined to form a single
self-intersecting polygon as illustrated in figure 4. In still other cases, the boundaries
of several maximal planes can be combined to form a single self-intersecting
polygon. Figure 5 illustrates a self-intersecting polygon that is formed by four
distinct maximal planes. Thus, a maximal plane can be considered to be formed
by disconnected or disjoint planes each bounded by simple polygons some of
which combine to form self-intersecting polygons.

The process of extracting maximal planes from a specification of polygons
consists of decomposing self-intersecting polygons into simple planes that make up
the region defined by the polygons, and of determining whether the boundaries of
a collection of disjoint or disconnected simple planes are outer or inner boundaries
of maximal planes.

D D
Figure 3. The boundaries of a maximal plane can be disconnected. In this case, the maximal
plane consists of a single outer boundary and four inner boundaries.

Figure 4. A nonsimple maximal plane whose boundaries form a self-intersecting polygon.

Figure 5. Four distinct simple maximal planes that form a single self-intersecting polygon.

Converting a self-intersecting polygon into maximal planes
The first step in decomposing a polygon into simple planes is to find the self-
intersecting points of the polygon. Self-intersecting points act as 'articulation'
points in the sense that these are the points at which the polygon splits into
simpler polygons. There are two possible ways that a polygon can split at self-
intersecting points. Either the split polygons share a common point which must be
a self-intersecting point, or share a common side bounded by two self-intersecting
points. These two cases are illustrated in figure 6.

By the Jordan curve theorem, every polygon divides the plane into two regions,
an inside and an outside. The points bounded by the outer boundary of a

434 R Krishnamurti

maximal plane are interior points and those bounded by its holes are exterior
points. Points outside a maximal plane are also exterior points. The notion of
interior and exterior points is useful in designating a simple plane as interior if it
bounds interior points and exterior otherwise. Thus, the outer boundary of a
maximal plane is interior and the inner boundaries are exterior. When a polygon
is split at a self-intersecting point, the polygons formed are either all relatively
interior or some are relatively interior and some are relatively exterior. When a
polygon is split at two self-intersecting points, a region on one side of the line is
relatively interior and the other region is relatively exterior. Moreover, the exterior
region will not be a hole in any maximal plane. These observations are illustrated
in figure 7.

It is convenient to treat a polygon P as a necklace^ of points {p
where each consecutive pair of points {pt ,P[imodk)+ii m m e necklace is a side of
the polygon. Moreover, the necklace can be rotated until px is the left-most
bottom corner of the polygon and \pup2] is the side with the least gradient. This
ensures that the necklace starts as a counterclockwise sequence of points around
the polygon from the left-most corner.

Suppose we traverse the sequence along the sides comparing the current side
with the other sides for self-intersecting points. Let {p, q) be the current side and
{r, s) be another distinct side of the polygon that is being compared with. There
are two possibilities. Either the sides intersect at, say, m coincident with both line
segments, or they do not. Suppose the former is the case. We can replace the two
sides by at most four line segments by inserting m after p and r in the sequence.
That is, m splits the two sides into at most four segments; {p, m], {m,q}, {r, m], and
{m, s}. Point m may coincide with one of the endpoints in which case we exclude
the side {m, m) from the sequence (see figure 8).

If {p, q) intersects with two or more sides, we process the intersection points in
order of their distance from p. Suppose the current sequence, P, is {..., p, q,..., r, s,...}.

Figure 6. Splitting a polygon at self-intersecting points.

Figure 7. Relative interior and exterior polygons formed at self-intersecting points. The
shaded parts indicate interior regions.

W A necklace is a sequence that wraps around onto itself. That is, each consecutive pair of
elements, including the last and first, are related to each other in the same way.

The arithmetic of maximal planes 435

Then, after inserting m into the sequence, we get a new sequence, Pr,

P = {...,p,m,q,...,r,m,s,...}
P' = {..., p , g,..., r,m,s,...\
P' = {...,p,m,q,...,r,s,...}'
P' = {...,p,q,...,r,s,...}

if m * p, q, r, s,
if m = p or q and m ¥" r, s,
if m ^p, q and m = r or s,
if m = p or q and m = r or s.

This process is repeated until all the self-intersecting points have been determined.
Figure 9 illustrates the procedure for finding the five self-intersecting points in the
polygon shown in figure 5.

The routine resequence generates all self-intersecting points and places them in
the proper position in a necklace of points specifying a polygon. The routine
returns a sequence that contains the corners of the polygon and all self-intersecting
points. A polygon will have at least three points, so the input to resequence will
have at least four points, the first point being included at least twice. Resequence
has the following definition.

resequence({p}, 0) . (Rl)

resequence{{p, q} + Necklace, Sequence) <-
U find all points of intersection of {p, q) and the other lines of the polygon
IF such that the points are between p and q, and arrange them in increasing
IT distance from p

N) A selfJntersections({p, q}, Necklace, I ,
IF recursively traverse from q
resequence({q} + N, S) A

resequence_side({p, q], I , Spq) A
merge_sequence(Spq, S, Sequence). (R2)

Figure 8. Possible self-intersecting points when two sides intersect.

P= {1,2, 3,4, 5,6, 7,8, 1}

{2, 3} and {8, 1} intersect at p
P = {1,2, p,3, 4,5,6,7,8,/?, 11

{3, 4} and {6, 7} intersect at q
P= [l,2,p,3,q,4,5,6,q,7,8,p,l]

{4, 5} and {6, q] intersect at r
P = {1, 2, p, 3, q, 4, f, 5, 6, f, q, 7, 8, p, 1}

{5,6} and {8, p] intersect at s
P = {1, 2, p, 3, q,4, r, 5, s, 6, r, q, 7, 8, s,p, 1}

{6, r] and {8, s] intersect at /
P = {1, 2, p, 3, q, 4, r, 5, s, 6, /, r, q, 7, 8, t, s,p,l]

Figure 9. Finding the self-intersecting points of a polygon identifies the self-intersection point
currently determined by the algorithm.

436 R Krishnamurti

The first rule R l is a terminating rule when the processed sequence contains
just one point, namely the start point. The second rule R2 needs further
explanation. We take the first two points, {p, q}, in the sequence and find all its
points of intersection with the remaining lines in the sequence. We continue
resequencing starting at q.

In the course of resequencing a polygon, in order to include the self-intersection
points in their correct position in the sequence, we traverse the polygon a side at a
time. Suppose {p, q) is the current side. At this stage, we determine all self-
intersection points that are coincident on the segment {p, q). The predicate
self-intersections returns two lists. One is the list, Ipq, of self-intersection points
coincident with line {p, q) in increasing order of their distance from p. The points
in Ipq, if any, are inserted between p and q in the required sequence. The other is
the updated list of points that have yet to be traversed.

self.intersections({p, q}, {px}, 0 , 0) . (Sell)

selfintersections({p, q}, {r, s} + Necklace, Ipq, {r} + Npq) «-
^{p,q} and [r, s] intersect at m
MEET({p, q), [r, s}, m) A
self.intersections({p, q}, {s} +Necklace, I, N) A
II if m is not identical to either r or s, insert it between r and s in the sequence
II if m is not identical to either p or q, insert it between p and q in the sequence
ifelse(m = r V m = s, equate(Npq, N), equate(Npq,{m} +N)) A
ifelse\m = p V m = q, equate{Ipq, I), INSERZPOINI(m,p, I, Ipq))... (SeI2)

selfJntersections({p, q}, {r, s} + Necklace, Ipq, {r} + Npq) <-
IT {p, q) and {r, s] do not intersect at a point coincident with both segments
not MEET({p, q], {r, s}, m) A
self.intersections({p, q}, {s} + Necklace, Ipq, Npq). (SeI3)

There are three cases that selfjntersections must consider: (1) when it reaches the
end of the necklace; (2) when the current line meets another line at a self-intersecting
point which is inserted into the sequence in at most two places, depending on
whether the intersection point coincides with an endpoint of one of the two lines;
(3) when the current line does not meet another line at a point coincident with
either line. The routine MEET determines the intersection point that is considered
between the endpoints of two given lines. MEET fails if there is no intersection
point coincident with either line. MEET uses standard geometric properties and its
definition is assumed. The routine INSERT.POINT inserts the self-intersection
point m in a list containing all such points on the line {/?, q) arranged in increasing
order of their distance from p. Its definition is straightforward and also left to the
reader.

The insertion mechanism in rule SeI2 is expressed by the two ifelse statements.
The two ifelse rules subsume the four-case insertion rule given at the top of
page 435. Ifelse has the following standard definition.

ifelse(Cond, Then, Else) <- Cond A Then . (If 1)

ifelse{Cond, Then, Else) <- not Cond A Else . (If2)

The routine equate unifies the first argument which must be a variable to the
second argument which has been instantiated. Equate has the following trivial
definition.

equate(X,X).

The arithmetic of maximal planes 437

The sequence of points produced by procedure resequence includes the self-
intersecting points and each of these occurs at least twice. Hence, if each point in
the sequence excluding the last point occurs just once, then the polygon and its
corresponding maximal plane must be simple.

Suppose the polygon is not simple and suppose we traverse the resequenced
necklace of points in order. Then, three possibilities can occur and these are
illustrated in figure 10.

In the first case, the self-intersecting point, m, acts as an articulation point.
That is, there is a subsequence of the form {m,pi,pi + 1,... ,pj9 m) where m denotes
a self-intersecting point and pk9i < k < j are not self-intersecting. The sequence
{m9pi9pi+l9... ,Pj} is a polygon which forms the outer boundary of a maximal plane
or the inner boundary of a maximal plane. In either case, we can repeatedly
remove these subsequences until it is no longer possible to do so, by applying the
following rule:

Pl9m9pi9pi + l9...9pj9m9P2 -
Pl9 m, P2 and {m9pi9pi+l9..., Pj} is a polygon . (1)

That is, we replace the sequence Pl9 {m9pi9pi + l9... 9 Pj}9 m9 P2 by the sequence
Pl9 m9 P2 and output {m,pi9pi+l9..., p;-} as a polygon.

In the second and third cases, two distinct self-intersecting points m and n form
a common side to two polygons. That is, there is subsequence {m9pi9pi+i9... ,pj9 n]
where the pk9 i < k < j are no longer self-intersecting points. It may be that m
and n are not connected. We are only interested in the case when {m, n] is a side of
the polygon in which case there must be a subsequence {n, m) that occurs later in the
sequence. When [n9m\ is a side of the self-intersecting polygon, two possibilities
arise. Either the polygon formed from the sequence {m9pi9pi+l9... 9pJ9 n} is an

Figure 10. Three possibilities that arise at self-intersecting points when traversing a sequence
of points that describes a polygon.

438 R Krishnamurti

interior polygon or the polygon defines a hole that shares sides with two or
more interior polygons. In the first of these subcases, we apply the rule

Pl,m,pi,pi + l,...,pj,n,P2,n,m,P3 -

Pun,P2,n, myP3 and {m, pi9 pi + 1,..., pj9 n) is a polygon. (2)

In the second of these subcases, we apply the rule

Pl,m,pi,pi + l9...,pJ,n,P2,n,m,P3 -
Pl9 m, n, Pl9 n, pj9 Pj_l9..., pi9 m, P3. (3)

As an illustration, we apply these rules to the polygon in figure 9 to obtain the
constituent simple polygons. We traverse the sequence in the given order, pushing
points onto a stack until we visit a point that has already been pushed onto the
stack at which stage we pop the stack till we hit the point again. The following
table outlines the procedure.

Current point

r

t

t

P
1

Stack

1,'2,'p, 3, q, 4, r

1, 2, p, 3, q, r, 5, s, 6, t

1, 2, p, 3, q, r, 5, t, r, 4, q, 7, 8, t

1, 2, p , 3, q, r, 5, s, p

1, 2, p , 1

Rule and polygon

(3)

(2) and {s, 6, t)

(1) and {r, 4, 4, 7, 8, r}

(1) and {3, q, r, 5, s, p

(1) and {2, p , 1}

This procedure will work if the following definitions for resequence.side and
mergesequence invoked in rule R2 are adopted.

resequence_side({p, q}9 Ipq9 {p} + Ipt

merge.sequence{Spq, S, Sequence) +- APPEND(Spq, S', Sequence)^ . ->pqi

Of course, we still need to split the sequence into simple polygons along the lines
indicated above.

Once the simple polygons have been determined, we can check whether these
simple polygons correspond to inner or outer boundaries of maximal planes.
Essentially we compare the simple polygons pairwise to see if one is inside the
other.(3) If so, then one of the polygons is potentially an inner boundary of, and
the other is potentially an outer boundary of, some maximal plane. If not, they
belong to different maximal planes. In this way, we can build a list of polygons,
some inside other polygons some outside.

Before I present an algorithm to compare simple polygons to extract the
maximal planes, we should take another look at the resequencing algorithm/4) The
procedure described above for extracting simple polygons from a sequence of points
is needlessly cumbersome, has many special cases, and involves extensive search.
So, instead of simply producing a new sequence of points to describe the polygon,
it is worth considering the lines that make up the sides of the polygon.

Each side of a polygon can be considered to be made up of a list consisting of
pairs or triples of points of the form {p, m} and \m9p9 q). In the case of triples, m
denotes a self-intersection point. We add the convention that each side, {p9 q}9 of.

(2) APPEND concatenates two lists and it is defined in Krishnamurti (1992).
<3) We only need to check one point from each polygon to test for insideness. An algorithm
for polygon checking is given in Preparata and Shamos (1985).
(4) The versions of resequence, isolate^polygon and compare.planes described in the paper are
based on improvements due to Rudi Stouffs (personal communication).

The arithmetic of maximal planes 439

the polygon satisfies p < q. That is, each side is processed from its left-most
(bottom-most) point. Thus,

resequenceside({p, q], Ipq,Spq) <-
p < q A
APPEND(IpqAq},I) A
sequenceside({p} + I, S) A

equate{Spq, {{p, car(I)}} + S).

resequence_side({p, q), Ipq, Spq) «-
p > q A
REVERSE(Ipq,Iqp)W A
APPEND(Iqp,{p},I) A
sequence_side{{q} + I, S) A

equate(Spq,{{q,car{I)}} + S).
Resequence.side returns a sorted list of pairs and triples, each consisting of a

point and all points connected to it by a line. That is, if {p, ml9..., mk, q\ is the
sequence of endpoints and self-intersecting points on the side {p, q}, p < q, of the
polygon, then resequence_side produces the list {{/?, m^, {m1, p, ra2},..., {q, mk}}.
Moreover, p < m1 < ... < mk < q. If the side has no self-intersecting points, the
list {{p, q], \q,p}} is returned.

The predicate car invoked in the ifelse clause returns the first element of a list.

Sequence_side has the following simple definition.
sequence.side({p,q},{{q,p}}\

sequence_side({p, q, r) + /, {{q, p, r}} + S) <-
sequence_side{{q,r} + I,S).

Once a side of the polygon has been processed, the sorted list that is produced
has to be merged with the sorted lists produced for the remaining sides of the
polygon. The reason for this is given by the fact that a self-intersecting point is
produced whenever at least two sides of the polygon cross each other. Thus, if
{p, q) and {r, s} intersect at m, then the triple {m,p, q) produced when processing
side {p, q\ and the triple \m, r, s} produced when processing side {r, s} have to be
merged to form the quintuple {m,p, q, r, s} which indicates that m is linked to the
points p, q, r, and s by lines. This is accomplished by merge_sequence which has
the following definition.

merge_sequence(S, 0 , 5) .

merge_sequence{0, S, S) «- S ^ 0 .

merge_sequence({P} + Seq_l, {Q} + Seqjl, {P} + Merged) <-
car(P) < car{Q) A
merge_sequence(Seq_l,{Q} + Se(l-2, Merged).

merge_sequence({P} + Seq_l, {Q} + SeqJ2, {M} + Merged) «-
car{P) = car(Q) A
APPEND(P, cdr(Q), M) A
merge_sequence(Seq_l, Seq.2, Merged).

merge_sequence{{P) + Seq_l, {Q} + Seq_2, {Q} + Merged) «-
car{P) > car(Q) A
merge_sequence({P} + Seq.l, Seq_2, Merged).

(5> REVERSE reverses the order of the elements in a list. Its definition is straightforward
and is omitted.

440 R Krishnamurti

In other words, merge_sequence produces an adjacency list of points for each
corner and self-intersecting point of the polygon. The predicates car and cdr have
the same definition as in functional programming; that is, car returns the first
element of a list and cdr returns the remaining list.

The preceding discussion for determining the maximal planes from a self-
intersecting polygon can be summarized as follows.

getmaximalplanes(Polygon, Planes) «-
resequence(Polygon, PointAdjacencyLists) A
isolate_planes(PointAdjacencyLists, 0 , 0 , 0 , Planes).

Isolatejplanes is described in the next section.

Determining a set of maximal planes from a set of lines
The analogous problem to splitting a self-intersecting polygon into planes is the
determination of maximal planes from a given set of lines. The algorithm is quite
simple. Although it is preferable that each line in the set corresponds to a side of
a polygon, it is not necessary. Any line that is not the side of a polygon is
ignored. We convert the lines into a sorted list of adjacency lists of points. We
then isolate the maximal planes from the point adjacency lists.

The routine maximalplanes takes a set of lines, constructs the point adjacency
list and then isolates maximal planes.

maximaLplanes(Lines, Planes) *-•
make_adjacency_lists(Lines, PointAdjacencyLists) A
isolate_planes{PointAdjacencyLists, 0 , 0 , 0 , Planes).

To isolate the planes we do a depth-first search on the lines by starting each
traversal in a counterclockwise direction starting from the left-most bottom point.
We maintain a stack of points and search along a clockwise direction from the
current top of stack. If the line has an endpoint already on the stack, we have
found a polygon. There are two possibilities. Either the stack is empty or it is
not. If the stack is not empty, then the polygon that is found must be interior to
another polygon that has yet to be found (because the sides are traversed in a
clockwise manner). If the stack is empty, the polygon that is found is exterior to
all polygons found from the current path (because we always start a traversal in a
counterclockwise manner from the left-most bottom available point). This polygon
together with all polygons inner to it is then tested against the currently determined
maximal planes to determine whether it can be the inner or outer boundaries of
a maximal plane. The algorithm maintains two additional auxiliary lists, one for
the polygons that are constructed from the current path and one for the list of
maximal planes that have been previously found. The procedure terminates when
all lines have been examined.

isolate_planes{0, Stack, Polygons, Aux, Planes) <-
1f if the stack is not empty, the current path does not complete a polygon
compare_each.plane(Polygons,Aux, Planes). (IP1)

isolatejplanes^AdjList, 0 , 0,Aux, Planes) —
H empty stack-start a counterclockwise traversal {p, q) from the left-most
11 bottom available point
U remove side from the adjacency lists
AdjList > 0 A
start.path{AdjList,{p, q), NewList) A
isolate.planes(NewList,{q, p), 0 , Aux, Planes). (IP2)

The arithmetic of maximal planes 441

isolate.planes[AdjList, {q, p] + Stack, Polygons, Aux, Planes) «-
IF find the most clockwise side {q,r} to {p, q)
IF if r is on the the stack, we have found a polygon—process it
MEMBER({q}+Q, AdjList) A
continue_path{AdjList,{q,p},{r,q}, NewList) A
MEMBER(r, Stack) A

end.path(NewList, {r, q, p) + Stack, Polygons, Aux, Planes). (IP3)

isolateiplanes{AdjList, {q, p} + Stack, Polygons, Aux, Planes) .«-
TF find the most clockwise side {q, r} to {p, q]
IF if r is not on the stack, continue traversal
MEMBER{{q} + Q, AdjList) A
continue.path{AdjList, {q, p], {r, q), NewList) A
notMEMBER{r, Stack) A

isolate_planes(NewList, {r, q, p] + Stack, Polygons, Aux, Planes). (IP4)

isolate_planes(AdjList, {q, p] + Stack, Polygons, Aux, Planes) «-
IF if we cannot find a side from q, {q,p} is a dangling line; backtrack to p
IF and continue
not MEMBER({q}+Q, AdjList) A
isolate.planes{AdjList, {p} + Stac/:, Polygons, Aux, Planes). (IP5)

In the course of traversing a polygon there are three kinds of decisions that
have to be made. The first is to decide where to start a new path which is always
along the counterclockwise edge at the left-most bottom available point. The edge
will correspond to the one with the least gradient of all lines from this point.

start.path({{p} + P} + AdjList, {p, q], {P'} + NewList) *-
find_ccw.edge(p, P, q) A
IF remove side {p, q] from the adjacency lists of p and q
DELETE(q,P,P')W A
DELETE{{q)+Q, AdjList, A) A
DELETE(p,Q,Q') A
INSERT{{q\+Q', AdjList, NewList)W.

Second, when we have traversed a sequence of lines, decide which edge to follow
next which is at the least clockwise angle from the most recent edge traversed.(7)

continue.path{AdjList,{q,p},\r, q), NewList) <-
IT find the nearest clockwise edge {q, r] to {/?, q]
IF remove side {q,r} from the adjacency lists of q and r
DELETE{{q}+Q, AdjList, A) A
find.cw.edge{{q,p},Q,r) A
DELETER, Q, Q') A
DELETE({r} + R,A,A!) A
DELETE(q,R,R') A
APPEND{{r},R',R") A
ifelse{Q' = 0, INSERT{{Rf'}, A, NewList),

INSERT{{{q}+Q',R"),A,NewListTK

<6> DELETE removes a member of a list and returns the remaining elements in the list. INSERT
adds an element into a list in the correct position (determined by the imposed order relation).
(7) If the adjacency list for a point is arranged as a doubly linked circular list of edges arranged
in counterclockwise order around the point, the next edge in clockwise or counterclockwise
order requires 0(1) pointer operations.
(8) INSERT{{x, y], L, N) is shorthand for the conjunction INSERT{{x], L, M) A INSERT({y}, M, N).

442 R Krishnamurti

The third and last decision to be made occurs when we have found a polygon.
There are two possibilities. If the polygon returns to the start point of the current
path, then it is an outer polygon to all polygons that have been thus far found
from the current path. We take this polygon and all its inner polygons and compare
them against the maximal planes that have been determined so far. If the polygon
returns to a point which is not the start point of the current path, we have found a
polygon which is inner to the polygon that returns to the start point. We save it
and resume the traversal from the current point. The two possibilities are captured
by the following rule.

end.path(AdjList, {r,q\ + Stack, Polygons, Aux, Planes) «-
H extract polygon from current path
11 if path is not empty, save polygon and continue traversal from current point
POP.STACK(r, Stack, P, {r) + NewStack) A
NewStack # 0 A

isolate.planes(AdjList, {r} + NewStack, {P} + Polygons, Awe, Planes).

end_path(AdjList, {r,q\ + Stack, Polygons, Aux, Planes) «-
H extract polygon from current path
If if path is empty, compare polygon and its inner polygons with known planes
U and start a new traversal from the leftmost available point
POP.STACK(r, Stack, P,{r} + NewStack) A
NewStack = 0 A

compare.planes({P} +Polygons, Aux, NewPlanes),
isolate_planes(AdjList, 0, 0, NewPlanes, Planes).

Rule IP1 is the terminating rule. Under normal conditions, when each line is a
side of a polygon, the stack will eventually become empty and all polygons found
off the most recently traversed path would have been tested against the known
maximal planes. Moreover, under these conditions rule IP5 will never be invoked.
However, should the stack not be empty, then there are lines which are not sides
of any polygon. Further, there may be polygons that have been found off the path
corresponding to the points on the stack. Two possibilities arise. Either these
polygons are all interior to some maximal plane or they are all simple planes. In
all cases, the following rule for compare.eachjplane will work.

compare_eacKplane{0, Planes, Planes).

compare_each_plane({P} + Polygons, Aux, Planes) <-
compare.planes({P},Aux,NewAux)A
compare_each.plane(Polygons, NewAux, Planes).

Comparing a plane with a set of maximal planes
We are now ready to test a plane for maximality against a known set of maximal
planes. We make the assumption that the plane to be tested is known to be
completely inside one of the maximal planes or is outside all the maximal planes.
The condition is satisfied by the algorithms considered in the previous two sections.

Essentially the algorithm compares the outer boundary of the given plane with
the outer boundary of each of the maximal planes. Two possibilities arise. Either
it lies inside the outer boundary of one maximal plane or it lies outside all. In the
latter case, the given plane is maximal and is appended to the list of maximal
planes. In the first case, two further possibilities arise. Either the outer boundary
of the given plane lies inside one of the holes of the maximal plane in which case
the given plane is maximal or it lies outside all the holes, in which case the outer

The arithmetic of maximal planes 443

boundary of the tested plane becomes an inner boundary of the maximal plane and
its inner boundaries become simple maximal planes. See figure 11.

The routine compare^planes together with auxiliary routines insideJnnerplanes and
innerjo_simple_planes compares a plane against a list of maximal planes by using the
procedure described above. Initially the list of maximal planes is empty. Each
plane is represented by the list of polygons {b0, bx, ...}, where b0 is the outer boundary.
If the plane is simple, it is represented by the singleton list {b0}.

compare.planes(P, 0 , {P}). (CP1)

compare.planes(P, {M} + Planes, {M, P} + Planes) «-
IF if the outer boundary of P is inside the outer boundary of M,
IF compare it against the inner boundaries of M
inside(car(P), car(M)) A
inside_innerplanes(car(P), cdr(M)). (CP2)

compare_planes{P, {M} + Planes, {M'} + NewPlanes) <-
IF if the outer boundary of P is inside the outer boundary of M
IF and outside the inner boundaries of M, it becomes an inner boundary of M
IF and the inner boundaries of P become simple maximal planes.
inside(car(P), car(M)) A
not insideJnnerplanes(car(P), cdr(M)) A

APPEND({car(M), car{P)}, cdr{M), Mf) A
inner_to_simple_planes{cdr(P), IP) A
APPEND{IP, Planes, NewPlanes). (CP3)

compare.planes(P, {M} + Planes, {M} + NewPlanes) *-
IF if the outer boundary of P is not inside the outer boundary of M,
IF repeat the procedure selecting another maximal plane.
not inside(car(P), car(M)) A
compare_planes(P, Planes, New_Planes). (CP4)

IF insideJnnerplanes will not succeed if the maximal plane is originally simple
insideJnnerplanes(P, {M} + Inner) <-

inside(P,M).

inside.innerplanes(P, {M} + Inner)
notinside(P,M)A
insideJnnerplanes(P, Inner).

IF innerjo.simple_planes converts a set of polygons to a set of simple planes
innerjo.simple.planes{ 0 , 0) .

innerjo_simple_planes({P) + Inner, {{P}} + Planes) *-
innerJo_simple_planes{Inner, Planes).

M

(a) (b) (c)

Figure 11. Comparing a plane P against a maximal plane M. (a) Outer boundary of P is
outside outer boundary of M. (b) Outer boundary of P is inside an inner boundary of M.
(c) Outer boundary of P is inside outer boundary of M but outside inner boundaries of M.

444 R Krishnamurti

Combining simple maximal planes into a maximal plane
A basic operation on simple planes is to take two maximal planes and combine
them into a single maximal plane. Because each plane is specified by its outer
boundary, this is equivalent to comparing two polygons to produce a single
polygon that encloses the area occupied by both polygons. We can make the
following observation: if p is a corner of one of the polygons that is outside the
other polygon, then p is a corner of the required polygon (see figure 12).

Let us make some further observations. First, we note that the boundary of the
combined maximal plane is made up of lines from the boundaries of both planes
that lie outside the other. Consequently, we can take the shape union defined on
sets of lines to combine these outer lines (with respect to the other plane) to form
the boundaries of the combined maximal plane. The combination of two simple
maximal planes can introduce holes as illustrated by figure 13.

Second, we note that as a consequence of the Jordan curve theorem, any line
joining two points outside (inside) a given polygon intersects the polygon no or an
even number of times. Equivalently, a line jointing a point outside and a point inside
a polygon must intersect the polygon an odd number of times. The exceptional
case is when one or both endpoints of a line is coincident with a bounding line
and these cases have to be treated separately. That is, we can preprocess each
polygon with respect to the other by determining the intersection points, distinct
from endpoints, coincident with each line by using a variation of the polygon
resequencing algorithm described earlier. That is, each maximal line {pt,Pj} is
replaced by the sequence of points {p(, m\^ ..., m~, pj] where mj- ¥" Pt,Pj,0 < k < n,
is an intersection point on the line {pt, p},}; n = 0 or an even number if both
endpoints are outside or if both endpoints are inside (see figure 14).

Third, we may assume that the two planes overlap or share boundaries. The
case when one plane contains the other is taken care of by the rules for shape
union (see rules CU3 and CU4 in Krishnamurti, 1992). In the disjoint case,
maximal planes do not combine.

Last, we may assume that the boundaries are given by their maximal line
representation.

We consider the combination of two simple planes when the planes share
bounding lines and when they overlap as separate cases.

Figure 12. Two simple polygons and their combined polygon.

j

Figure 13. The combination of two simple planes can introduce holes.

The arithmetic of maximal planes 445

Case 1: Suppose the two planes share bounding lines but do not overlap.

In this case, the common lines are inside the combined region as can be observed
from figure 23 (below). Hence, if we remove the common bounding lines from
both boundaries we are left with lines whose union gives rise to polygons, one of
which forms the outer boundary and others of which, if any, correspond to the
inner boundaries. Thus, we may describe the algorithm for the combination of two
simple planes P and Q as follows:

simple_share_combine(P, Q, Planes) +-
shape.differenceJnM^P, Q,P) A
shape^dijferenceJrLUX(Q, P, Q') A
shapeMnionJn.Ui(P'', Q1', Lines) A
maximaLplanes(Lines, Planes).

This procedure is illustrated in figure 15.

both endpoints of line outside polygon

one endpoint of line outside polygon and the other inside

both endpoints of line inside polygon

both endpoints of line coincident with polygon

one endpoint of line coincident with polygon

Figure 14. The intersection of a line and a polygon.

P Q

- i * * L

Figure 15. The combination of two maximal planes that share boundary lines. * is a
reference point.

446 R Krishnamurti

Case 2: Suppose the planes overlap.

There are two subcases to consider. The first case is when neither shape shares
any boundary lines; the second case is when some boundary lines are shared.

Case 2.1: The overlapping planes do not share boundary lines.

In this case, the fact that the two shapes do not share any boundary lines can
be established by an empty shape intersection of the boundary lines of the two
polygons. Here, we separate the boundary lines of a polygon into two categories:
those that lie inside the other polygon and those that lie outside. That is, we can
define a routine that splits the lines of the polygon P with respect to another
polygon Q (and vice versa) into two sets: IP, comprising the lines of P inside Q;
and 0P, comprising the lines of P outside Q. Figure 16 illustrates the inside and
outside lines relative to two polygons.

Thus, if the two polygons, P and Q, overlap, are unequal, and do not share
boundary lines, we can define a rule split.polygons that splits the boundaries of
both P and Q into outer and inner fragments with respect to the other.

split_polygons{P, Q, IP, 0P, IQ,0Q, 0) -
IT an empty shape intersection establishes that two planes do not share
IF boundary lines
[shapeJntersectionJnM^P, Q, S) A S = 0] A
IF split the boundary of a plane with respect to the other
split_boundary{P, Q, IP, 0P) A
split_boundary(Q, P, IQ, OQ) .

The version of split.boundary described below splits unshared bounding lines of
any polygon into two classes: outer fragments and inner fragments. A modified
version that deals with shared and unshared bounding lines is presented in a
subsequent section. Here we assume that the lines are expressed as classes of
co-equal lines.

split_boundary{ 0 , Q, 0 , 0) . • (SpB 1)

split_boundary([lP] + P, Q, I, O) «-
IF split the class of co-equal lines into inner and outer fragments with respects
IT to Q
splitJines([lP], Q, [i], [o]) A
IT repeat the process for the other lines in P
split_boundary{P, Q, I', O') A
IT the fragment classes may be empty—so use append
[APPEND{[i], / ' , I) A APPEND([o], O', O)]. (SpB2)

Splitjines splits each line into fragments of the line that lie inside or outside Q.
The procedure terminates when we have processed each class of lines in P.

Figure 16. The inside and outside lines of a simple polygon with respect to another simple
polygon.

The arithmetic of maximal planes 447

splitlines(0,Q,0,0). (SpL'l)

splitjines(l + sh Q, I, O) <- -
If / is a line—find all points of intersection of / with the boundary of Q
IF cuts is the number of cuts that the scan line corresponding to / makes with
IF Q to one side of the first endpoint of /
intersection^, Q, M, cuts) A
1F insert only those points coincident with /
INSERT_POINTS(M, /, /') A
IF if cuts is even or zero, first point of / is outside Q
IT otherwise, the first point of / is inside Q
ifelse(cuts mod 2 = 0,

IF / represents an alternating sequence of outer and inner fragments
owter(/',[//],[<>/]),
IF else / represents an alternating sequence of inner and outer fragments
inner(l', [/,], [o{]) A

IF repeat the process for the remaining lines
splitlines{sh Q, I', O') A
IT the fragment classes may be empty—so use append
[APPEND^], / ' , /) A APPEND^], O', O)]. (SpL2)

Splitjines applies a scan-line technique where the current line defines a scan-
line. All points of intersection of the line with the boundary of the other polygon
and coincident with the line are found. These points together with endpoints of
the line are arranged as an ordered 'left-to-right' sequence of points. In addition,
we compute the number of cuts of the scan-line with the boundary of the polygon
which is to the 'left' side of or equal to the 'left' most endpoint of the line. As a
consequence of the Jordan curve theorem, this endpoint is inner if the number of
cuts is odd and outer, otherwise.

The coincident points of intersection between the current line and the lines in Q
are determined by intersection as are the number of cuts of the scan-line to the left
of the current line. INSERT.POINTS inserts the intersection points into the
specification of a line. That is, if {p, q) is a line which is coincident with a point
of intersection m # p, q, then {p, q] is replaced by the set {p, m, q] to give rise to
fragments {p, m) and {m, q\. If there are two or more intersection points coincident
with a line, then the points are arranged in order of their distance from the tail of
the line. If {p, q] are a pair of points that specify a line such that p < q, then
tail p is the left-most point of the line. The definitions for intersection and
INSERT_POINTS are left to the reader.

The predicates inner and outer alternatively mark successive fragments of the
current line as inner or outer with respect to the other polygon determined from a
sequence of intersection points between the endpoints of a side of a polygon.

inner({p}, 0,0).
inner({p, q} + S, {p, q} + I, O) *- outer{{q} + S, I, O).

outer{{p},0, 0).
outer({p, q) + S, I, {p, q) + O) - inner{{q} + S,I,0).

We can now define the procedure to combine the boundaries of two simple
maximal planes into the boundary of a single maximal plane when they overlap but
do not contain one another and do not share boundary. The combination rule
when one plane contains the other is trivial to define and is omitted.

448 R Krishnamurti

simple_combine{P, Q, Planes) —
splitpotygons(P, Q, IP, 0P7IQ, 0Q, 0) A
shapejinion_in_UX{0P, OQ, Lines) A
maximalplanes(Lines, Planes). (SCI)

The second line of the rule states that the bounding lines of the combined shape
is given by the union of the outer bounding lines of the two shapes.

Case 2.2: Planes overlap and share boundary lines.

Since the shared fragments correspond to the shape intersection of the two
boundary lines and other lines belong to the shape differences of the two shapes,
we can combine these algorithms together to split the boundaries of the two
polygons.

split_polygons(P, Q, IP, OP,IQ,OQ,S) <-
IF a nonempty shape intersection establishes that two planes share boundary
IF lines
[shape_intersectionJn_Ui{P, Q, S) A S ^ 0] A
IF obtain the nonshared fragments
shape_difference_in_b\{P, S,P')A-
shape_difference_in_Ui(Q, S, Q') A
IT split the nonshared boundaries of the two planes with respect to the other
splitboundary(P', Q, OP, IP, 0) A
split_boundary(Q\ P, OQ, IQ, 0) .

In this case, the fragments of lines that coincide with a bounding line can be
considered as outer or inner lines depending on the lines adjacent to the fragments.
As the common fragment lies on simple polygons, each endpoint of the fragment is
connected to exactly two lines, one from each polygon. These lines may themselves
be outer, inner, or shared. So, a shared fragment may be regarded as outer to one
of the polygons and inner to the other.

If the two shapes are equal, all lines will be shared by the two polygons;
otherwise there is at least one endpoint of a boundary line that lies outside the
other polygon and there is at least one endpoint of a boundary line that lies inside
the other polygon. However, the equality case is handled by the shape.union
algorithm (see rule CU3 and in particular, by rule CU3a, in Krishnamurti, 1992).

The possible neighborhood situations surrounding a shared fragment are
illustrated in figure 17. Shared fragments are depicted by the thicker lines and
inner fragments are depicted by dashed lines. In general, the lines in the upper
half of each diagram belong to polygon P and the lines in the lower half belong to
polygon Q. The central thick line indicates the shared fragment under consideration.

The classification for shared lines for combining two simple planes can now be
described. A shared fragment is included in the union of the two planes if and
only if its endpoints are not adjacent to two outer fragments one from each plane;
otherwise, we must include the shared fragment in order to complete a traversal of
the boundary of the combined plane. In figure 17, this means that the shared
fragments shown in cases (a), (b), and (f) are omitted in the union of the two
polygons whereas those shown in cases (c) and (e) are included. The shared
fragment in case (d) is included if and only if one of the adjacent shared fragment
is also included. As all fragments will be shared if and only if the two polygons
are equal, for unequal polygons there will be a nonshared fragment adjacent to a
shared fragment.

The arithmetic of maximal planes 449

classify_shared_lines_for_union(Ip, OP, IQ, 0Q, 0 , 0) . (CSLU1)

classify_sharedJines_for_union(IP, OP, IQ, 0Q,{1} + S,{1} + SU) «-
IT if one endpoint is adjacent to a pair of inner-outer fragments, it is included
1T for union
[at_one_end{l, OP, IQ) V at_one_end(l, IP, 0Q)] A
classify_sharedJines_for_union(IP, OP, IQ, OQ, S, SU). (CSLU2)

classify_sharedJines_for_union(IP, 0P, IQ, 0Q, {/} + 5, SU) <-
H if both endpoints p, q of a shared fragment are adjacent to shared fragments,
If postpone decision until later
connectedlto(l, S, S) A
APPEND{S,{l},S') A
classify_sharedJines_for_union(IP, OP, IQ, OQ, S', SU). (CSLU3)

classify_sharedJines_for_union{IP, OP, IQ, OQ,{1} + S, {l} + SU) ~̂
classify_sharedJines_for_union(IP, OP, IQ, OQ, S, SU) A
H if one of the endpoints of a shared fragment is adjacent to a shared
If fragment,
If and the other to an included line or both are adjacent to included lines,
If include this line
[connectedjo{l, S,SU) V connectedjo(l, SU, SU)]. (CSLU4)

(a) shared line incident to outer lines

(b) shared line incident to outer lines at one endpoint and inner lines at the other

(c) shared line incident to a pair of inner-outer lines at each endpoint

Q

(d) shared line incident to shared lines

(e) shared line incident to a shared line at one endpoint and a pair of inner-outer lines at the other

(f) shared line incident to a shared line at one endpoint and inner or outer lines at the other

Figure 17. Possible neighborhood spatial situations at shared boundary lines. T h e central
thick line denotes the shared fragment under consideration. In general, the lines on the
upper half belong to polygon P and lines in the lower half belong to polygon Q.

450 R Krishnamurti

classify_sharedJines_for_union(IP, OP, IQ, 0Q,{l\+S, SU) +-
IF otherwise, shared fragment is not included
not[atone_end{l, 0P, IQ) V atone_end{l,IP, OQ)] A
not connectedJo{l, S, S) A
classijy_sharedJinesjor_union(IP, OP, IQ, OQ, S, SU). (CSLU5)

At_one_end is a predicate that determines if one of the endpoints of the shared
line is adjacent to two lines each taken from distinct sets of lines. Connectedjo
determines if both endpoints of the shared line are each adjacent to a line from
two sets. Both at_one_end and connectedjo rely on adjacentjo which determines if
a point is an endpoint of a line in a list.

at_one_end{{p, q}, Ll,L2) <-
l a line is given by its endpoints{p, q)
[adjacentjo(p, Lx) A adjacentjo(p, L2)] V
[adjacentjo(q, Lx) A adjacentjo{q, L2)].

connectecLto({p, q\, Lt, L2) +-
U a line is given by its endpoints {/?, q)
\adjacentJo{p,Lx) A adjacenLto(q, L2)] V
[adjacentJo{q, Lx) A adjacenLto{p, L2)].

adjacentto(p, L)<-
MEMBER{{p,r}, L) V MEMBER{{r, p}, L).

The result of classifying shared boundary lines for the union of two simple
planes is illustrated by the example in figure 18, where some shared fragments are
included in the union and others are not, depending on the lines adjacent to them.

We can now define the procedure to combine the boundaries of two simple
maximal planes into the boundary of a single maximal plane when they overlap and
share boundary lines.

simple_combine{P, Q, Planes) <-
split_polygons{P, Q, IP, 0P, IQ,0Q,S) A
classijy_sharedJines_for_union(IP, 0P, IQ, OQ, S, SU) A
shape_union_in_Ui(0'P, 0'Q, 0PQ) A

shapejmiondnJJX{SU, 0PQ, Lines) A
maximal_planes(Lines, Planes). (SC2)

Observe that the single rule SC2 subsumes rule SCI (when 5 = 0) and the
definition for simple_share_combine (when IP = IQ = 0) .

We can achieve the combination of simple planes including the classification of
shared fragments via boundary traversal rather than by the scan-line techniques
described above. An outline of the boundary-traversal approach for combining
simple convex maximal planes is described in the next section.

• " • • • • • • • •

n z I ' r - ')
Figure 18. Classifying shared boundary lines when combining simple planes. * is a reference
point. Shared fragments are shown as emboldened lines.

The arithmetic of maximal planes 451

Combining overlapping simple convex maximal planes via boundary traversal
A convex plane is one whose boundary is a convex polygon. In this section we
describe a boundary (polygon) traversal algorithm for combining convex maximal
planes. The convexity of the planes will guarantee that the combined plane is
simple but not necessarily convex. The crux of the algorithm is to construct the
boundary of the combined maximal plane by extending a partial path made up of
fragments of bounding lines. At each stage in the traversal, we determine which
part of a bounding line the traversal must advance along. Obviously, the fragment
of the line must lie outside the other polygon. By successively following a
connected sequence of lines that lie outside the other polygon we can determine
the boundary of the combined maximal line.

Let p be the left-most bottom corner of a simple bounding polygon; p must be
the tail of two lines. Let q be the head of one of the lines. If we follow line
{p, q\ and then follow the other line connected to q and then follow the lines
likewise connected, we obtain a traversal of the polygon. That is, we can determine
a sequence of points for any polygon starting at the left-most point. If q is the
head of the line with the smaller gradient, the traversal is counterclockwise;
otherwise, the traversal is clockwise (see figure 19).

For any two simple polygons, either one of their left-most bottom corners lies
outside the other polygon or both corners may coincide. If they do not coincide,
then both may lie outside the other polygon in which case we choose the left-most
of the two. If they do coincide, we choose the polygon which has a line with the
smaller of the two gradients. (Of course, if the endpoints points of this line coincide,
we repeat the process with the endpoint of this line until we find a line with a
smaller gradient.) Starting at this corner, say p0 in polygon P, we traverse the
boundary along the line {p0,Pi} keeping the inside of the plane to the left or right
of the line, depending on whether the traversal is counterclockwise or not. Three
cases arise: (l) the line does not intersect or overlap any other line; (2) the line
intersects a bounding line of the other plane; (3) the line overlaps a bounding line
of the other plane.

Suppose we traverse the boundary counterclockwise. The sequence of points
that specify the bounding polygon determines a counterclockwise traversal.
Suppose {Pi-i,Pi} is the current edge and P the current polygon.

For case (1), both pi_l and pt must lie outside Q. We add {p/_i,P;} onto the
current path, which can be maintained as a stack, and advance along {pt, pi + 1}.

For case (2), suppose {qj-i, qj} is the line that intersects with {Pi-i,pt} at m, then
we have reached an alternating point and we have to traverse along the boundary
of the other plane. Because we are traversing the boundary counterclockwise, the
inside of P is to the left of {p;_i, #} . Moreover, qJ_l must be inside ? or be
coincident with {#_! ,#}. Otherwise, we would have intersected the current path
earlier and the traversal would be advancing along {#,_!, qj] instead. There are
four spatial situations that can arise, depending on whether pt_x is the tail or head
of line {Pi-uPi\- These are illustrated in figure 20. Though not illustrated in
figure 20, m may equal q^_x without altering the spatial situations. In this case, we
add {pi-i, m) to the path and advance along {m, q^, making Q the current polygon.

C)
Figure 19. Starting a traversal of a polygon at its left-most bottom corner.

452 R Krishnamurti

For case (3), there are three subcases to consider. If qf > pt, we add {pt-i, g,}
to the path and advance along {qj7 gy + 1}, making Q the current polygon. If pt > q^
we add side {#-i> A) t o t n e P a l n an<^ advance along {pi9pi + 1}. If pt = qJ9 we have
to determine whether pi + 1 lies outside Q, or qJ+1 lies outside P. Only one of these
points will do so. We add {#_!,#} to the path and advance along the appropriate
bounding line, switching the current polygon if necessary.

The algorithm terminates when we return to the start point of the traversal.
If the planes are not convex, the algorithm will find the outer boundary of the

combined plane. There may remain some processing to determine the inner
boundaries.

Pi-i ;^/-i

Figure 20. The four intersection situations that can arise. The shaded part indicates the
inside region.

Intersection of two simple maximal planes
The intersections of two simple maximal planes are the planes common to both
planes. As before we can approach the problem as a boundary traversal algorithm
or as the shape union of specific bounding lines. For convex simple planes we can
adapt a boundary traversal algorithm described in Preparata and Shamos (1985).
Here, we define an algorithm based on shape operations on sets of lines. Figure 21
illustrates the intersection of simple maximal planes. The reader will notice that the
shape common to the two simple planes is a shape made up of three maximal planes.

As before, we split the boundary of each plane into three sets, one containing
lines lying outside and the other containing lines lying inside the other plane and
shared fragments. Now the intersection of the two planes consists of the inside
lines of both planes together with certain shared lines. Thus,

simple_common(P, Q, Planes) «-
split_polygons{P, Q, IP, 0P, IQ, 0Q, S) A
classify_sharedJines_forJntersection(IP, OP, IQ, OQ, S, SI) A
shape_union_in_Ui{IP, IQ, L) A

shape_union_in_U\{L, SI, Lines) A
maximal_planes(Lines, Planes).

Note that, as figure 21 illustrates, the intersection may yield more than one
maximal plane. The routine maximaLplanes will take a set of lines and return a set
of disjoint maximal planes. For plane intersection, the set of lines will form a self-
intersecting polygon and the routine isolate_planes, suitably modified, can be used
instead.

Because the planes common to the two original planes are bounded by lines of
the planes inner with respect to the other, we include just those shared fragments

• • • •

x

Figure 21. The intersection of two simple maximal planes. * denotes a reference point.

The arithmetic of maximal planes 453

whose endpoints are each adjacent to exactly one inner fragment or whose
endpoints are adjacent to shared fragments one of which has been deemed to be
included. In other words, the shared fragments that are included for intersection
are precisely those that are included for union [see figure 17(c), (d) and (e)].

classify_sharecLlines_forJntersection(IP, 0P, IQ, 0Q, S, SI).<-
classify.sharedJines_for.union(IP, 0P, IQ, 0Q, S, SI). (CSLI1)

The rule for plane intersection returns a nonempty plane only when the two
planes overlap or when one contains the other.

Relative complement of a simple maximal plane with respect to another
Like plane intersection, the relative complement of one maximal plane with respect
to the other may produce more than one maximal plane. But unlike plane
intersection, the planes in the relative difference may not be simple. That is, they
may contain holes. Thus, each plane in the difference is specified by an outer
boundary and zero or more inner boundaries.

The relative complement algorithm is approached in a similar fashion to union
and intersection. The boundary of each plane is split into three sets, one containing
lines lying outside, one containing lines lying inside the other plane, and one
containing shared bounding lines. Now the difference of the two planes consists of
the outer lines of the first plane, the inner lines of the second and some shared lines.

simple_complement(P, Q, Planes) «- '
splitpolygons{P, Q, IPrOP,IQ,0Q,S) A
classify_sharedJines_for_difference{IP, OP, IQ, 0Q, S, SD) A
shapeMnionJnM^Op, IQ, L) A

shape_unionJnMi(L,SD, Lines) A
maximaLplanes(Lines, Planes).

Shared fragments are bounding lines in the shape difference only if either an
endpoint is adjacent to two outer or to two inner fragments [see figure 17(a), (b)
and (f)], or both endpoints are adjacent to shared fragments one of which has been
deemed to be included [see figure 17(d)].

classify_sharedJines_for_difference(IP, 0P, IQ, 0Q, 0 , 0) . (CSLD1)

classify_sharedJines_for_difference(IP, 0P, IQ, 0Q, {/} + 5, {/} + SD) «-.
IF if / is adjacent to outer(inner) fragments at one endpoint, it is included for
IF difference
[atone_end(l, 0P, 0Q) V atone.end{l, IF, IQ)] A
classify_sharedJines_for_difference(IP, 0P, IQ, 0Q, S, SD). (CSLD2)

classify_sharedJines_for_difference(IP, 0P, IQ, 0Q, {/} + S, SD) <-
IF if both endpoints p, q of a shared fragment are adjacent to shared fragments,
IT postpone decision until later
connectedJo(l, S, S) A
APPEND(S,{liS') A
classifyishared_lines_for_difference{IP, 0P, IQ, 0Q, S', SD). (CSLD3)

classify.sharea\.linesJor.dijference{IP, 0P, IQ, 0Q, {/} + 5, {/} + SD) «- '
classify.sharedJines_for_difference(IP, 0P, IQ, 0Q, S, SD) A
IF if one of the endpoints of a shared fragment is adjacent to a shared fragment,
IF and the other to an included line or both are adjacent to included lines,
IF include this line
[connectedlto(l, S,SU) V connectedjo(l, SU, SU)]. (CSLD4)

454 R Krishnamurti

classify_sharedJines_for_difference(IP, OP, IQ, 0Q, {/}+.£, SD) «-
If otherwise, it is not included for difference
not[at_one_end(l, OP,DQ) V at_one_end(l, IP, IQ)] A
notconnected{l,S,S)A
classijy_sharedJines_for_difference(IP, OP, IQ, OQ, S, SD). (CSLD5)

Simple_complement subsumes the case when P contains Q. Figure 22 shows
three examples of the difference of two planes and the outline of the bounding
lines that make up the boundaries of resultant shape difference. The examples
illustrate the possibilities that may arise from comparing two simple planes. In the
first example, three maximal planes result; in the second, the result remains a
simple plane; and in the third, the shape difference is a single maximal plane with
an inner boundary.

Figure 22. Maximal planes formed by the difference of two simple maximal planes. * denotes
a reference point.

Unified treatment of shared fragments for shape operations on simple maximal planes
We have just seen that shared fragments are classified for inclusion differently,
depending on the type of operation and the neighborhood of the shared fragments.
Although this classification is fine for operations on simple planes, it adds a measure
of difficulty when considering operations on nonsimple maximal planes. A better
approach is to classify the shared fragments in a uniform way independent of the
underlying operation and to select just those fragments that have to be included for
the specific operation. In this section, a uniform classification of shared fragments
is considered.

Consider any maximal line of the boundary of a polygon and compare it against
the boundary of another polygon. The line can be fragmented by points of
intersection into three classes: inner fragments, outer fragments, and shared
fragments. Assume that the endpoints of any line, {p, q}, are arranged in
lexicographical, termed left-to-right, order such that p < q. Consider the left-most
endpoint of the first shared fragment. It is adjacent to an inner fragment, or an
outer fragment, or it is the first fragment in the set of fragments that make up the
line. Consider the line itself and treat it as a scan-line. Count the number of time
it cuts the boundary of the other polygon at points less than, termed to the left of,
or equal to the least endpoint of a fragment of the line. If the number of cuts is
even or zero, the first fragment must be outer or is shared inside on the right.

The arithmetic of maximal planes 455

If it is odd, the first fragment must be inner or shared inside on the left. That is,
we can split each line of the boundary into inner and outer fragments, or left-shared
or right-shared fragments. Observe that a left-shared fragment is a fragment that
would have been deemed inner by considering an alternating sequence of fragments
from left to right. Likewise, a right-shared fragment is a fragment that would have
been deemed outer by an alternating sequence of fragments from left to right.

Thus, when comparing two simple planes we split the boundary of each plane
with respect to the other into inner, outer, left-shared, and right-shared fragments.
The following modifications to spliLboundary and splitjines accomplish this.

IF spliLboundary splits the bounding lines of a plane into inner, outer, left-shared,
IF and right-shared fragments with respect to another plane
split_boundary(0, Q, 0 , 0 , 0 , 0) . (SpB 1*)

spliLboundary ([lP] + P, Q,I,0,L,R)+-
split_boundary(P, Q, l', O', ll, Rf) A
splitjines{[lp], Q, [i], [o], [I], [r]) A
APPEND([i],l',I) A
APPEND([o], 0',0) A
APPEND([I]X,L) A
APPEND([r], R',R). (SpB2*)

IF splitjines splits a class of co-equal lines of a plane into inner, outer, left-shared,
IF and right-shared fragments with respect to the other plane
splitJines(0, Q, 0,0, 0,0). (SpLI*)

splitlines(l + sh Q, I, O, L, R) *-
IF this part is basically unchanged
splitlines(sh Q, I', O', ll, Rf) A
intersection^, Q, M, cuts) A

INSERT_POINTS(l, M,l') A
ifelse(leftmod2 = 0, owter(/',[//], [o/]),

inner(lf,[i/], [o/])) A
IF this part includes the changes
IF compute the shared fragments on /, if any
shapeJntersectionJnMi({l}, Q,S) A
IF isolate the left-shared and right-shared fragments of /
shapeJntersectionJn_Ui{[ii'], 5, [//]) A

shapeJntersectionJnMxdo/], S,[rt]) A
IF isolate the inner and outer fragments of /
shape_diffferencejn_ Ĉ ([//], [//], [//]) A

shape.dtfferenceJrLU1([ol'],[rl],[ol]) A
IF the fragment classes may be empty—so use append
[APPENDdi^l',!) AAPPEND([o{],Of,0)]A
[APPEND^], ll, L) A APPEND^], Rf, R)]. (SpL2*)

The predicates inner and outer have been previously defined.
We can now consider the descriptions for the shape operations on two simple

planes. If we examine figure 17, we notice that the shared fragments that are
included for union and intersection correspond to those that are identically classified
with respect to the boundary of the other plane, and for difference the included

456 R Krishnamurti

shared fragments correspond to those that are oppositely classified. Thus,

simple_combine{P, Q, Planes) «-
splitboundary(P, Q, IP, 0P, LP, RP) A
spliLboundary>(Q, P, IQ, 0Q, LQ, RQ) A
shape_intersection_inJJl{LP, LQ, LPQ) A
shape.intersection.in.UX{RP, RQ, RPQ) A
shapeMnionJnM^LpQ, RPQ,S) A
shape.union.in.U1 [0P, 0Q, L) A
shape.union.inJJX{L, S, Lines) A
maximaLplanes(Lines, Planes).

simple_common(P, Q, Planes) <-
splitboundary(P, Q, IP, OP, LP, RP) A
split.boundary(Q, P, IQ, 0Q, LQ, RQ) A
shape_intersection_in_U1(LP, LQ, LPQ) A
shape.intersection.inJJl[RP, RQ, RPQ) A
shape_union_in.UX{LPQ, RPQ, S) A
shape.union.in.Ul{IP, IQ, L) A
shape.union.in.UX[L^ S, Lines) A
maximal.planes(Lines, Planes).

simple.complement(P, Q, Planes) «-
splitboundary(P, Q, IP, 0P, LP, RP) A
splitboundary(Q, P, IQ, 0Q, LQ, RQ) A
shape_intersection_in_U1{LP, RQ, LPQ) A
shape.intersectioYi.inJJl[RP, LQ, RPQ) A
shape.unionJnJj\(LPQ, RPQ, S) A
shape.union.in.UX[0P, IQ,L) A
shape.union.inJj\(L, 5, Lines) A
maximal.planes(Lines, Planes).

Shape operations on maximal planes
The preceding discussion pertains to simple maximal planes. However, it is not
unreasonable to expect objects of interest to contain indentations or holes. That is,
the planes of interest are nonsimple. The inclusion of inner boundaries adds a
measure of difficulty in defining shape operations. The situation when the maximal
planes are nonsimple is dealt with in the next three sections.

Shape union
Figure 23 illustrates examples of shape union of two arbitrary planes.

Consider the two planes P and Q, one of which is nonsimple. We may assume
that they can combine; that is, if P and Q overlap, share bounding lines, or one
contains the other. In addition, the planes combine in different ways, depending
on how Q overlaps the holes in P.

Suppose P = {oP, iP), and Q = {oQ}. Let + , - and x respectively denote
general union, difference, and intersection operators on planes or holes defined by
simple polygons. We add the proviso that, if the polygons just share boundaries or
are otherwise disjoint, the intersection operation produces an empty plane, and the
difference operation returns the first plane. When the planes are disjoint, the
union operation returns the two planes.

http://shape.intersection.in
http://shape.union.in
http://shape.union.inJJ
http://shape.union.in
http://shape.union.inJj

The arithmetic of maximal planes 457

The shape union of P and Q is given by,

I {{oP, iP}9{oQ}}9 # if P and Q are disjoint,

{{(oP + oQ), {iP
 L oQ)}}, if P and Q overlap or if P contains Q,

{{(oP + oQ), iP}}, if P and Q share boundary.
The union of two overlapping planes is a simple plane if Q covers the hole in P

completely and is nonsimple otherwise. In the latter case, the boundary of the hole
in the shape union is given by the relative complement of the boundary of the hole
(considered as a simple plane) and the outer boundary of Q. The overlapping case
subsumes the containment case.

If P contains Q, then (oP + oQ) = oP and (iP
LoQ) = iP. When the two planes

share bounding lines, the inner boundary of P remains an inner boundary in the
union of the two planes, because any inner boundary of P and the outer boundary
of Q at most share boundary lines.

Suppose P has more than one inner boundary. That is, P is given by the set of
boundaries, {oP9 iPl9 iP,2,..., iPJ,...}. Then,

P+Q = {(oP + oQ)9(iPtl
LoQ)9(iPt2

LoQ)9...9(iPJ
:-oQ)9-...}.

Some of the differences will be empty and these can be ignored. We can prune
the number of differences that need to be performed if the inner boundaries of P
are suitably ordered.

Suppose Q is also nonsimple. That is, Q is given by the set of boundaries,
\°Q> IQ,U *Q,2> - 9 iQ,k> •••}• Then ,

P+Q = {(oP + oQ)9

(b,i-°Q)>{ip,2-m
0Q)9'»>(ip,j~"0Q)9...

(iQ,i-Op)9{iQf2-Op)9...9{iQ}k^Op)9...

\ip, 1 x *Q, I)> {ip, I x IQ,I\ - ,-(h,j x IQ,k)> •••} 9

with the proviso that, if an inner boundary and an outer boundary do not overlap,
their intersection is empty and their difference is the inner boundary. The outer
boundary of the shape union is given by the union of the outer boundaries of the
two planes together with shared lines that are identically classified. The inner
boundaries are given by the relative complements of the holes in one plane and the
other plane, and by the holes common to both planes. Again, some of the differences
and intersections will be empty and these can be ignored. Here, the number of
differences and intersections to be performed can be reduced by ordering the
boundaries in P and Q in a suitable fashion.

• • =•

• •

ph r
N iej

Figure 23. Examples of shape union of two arbitrary planes. * denotes the reference point.

q:

458 R Krishnamurti

Thus, the shape union of two arbitrary planes can be expressed in terms of
union, difference, and intersection operations on simple planes.

From the discussion above it is clear that the union of two arbitrary planes can
be treated in an analogous fashion to the union of two simple planes. Consider
the plane formed by the sum (oP + oQ). Its boundary is made up of lines in oP

outside oQ, and of lines in oQ outside oP. Equally, the hole formed by {ipj~oQ) is
made up of lines in iPj outside oQ, and of lines in oQ inside iPj-. The hole formed
by {iQk —Op) is similarly defined. Any common holes (iPJ x iQk) are formed by
lines in iPj inside iQk and by lines in iQk inside iPj. In other words, we split the
bounding lines of each plane into inner, outer, and shared lines with respect to the
other plane, bearing in mind that the region inside an inner boundary is outside
the plane. Thus,

combine(P, Q, Planes) <-
H split the boundaries of P and Q into inner, outer, left-shared, and right-
H shared fragments
splitplane(P, Q, IP, OP, LP, RP) A
splitplane(Q, P, IQ, 0Q, LQ, RQ) A
H consider just the common left-shared and right-shared fragments for union
shapeJntersectionJn.U^Lp, LQ, LPQ) A
shapeJntersectionJnMi(RP, RQ, RPQ) A
MERGE(LpQ,RPQX){9) A .
U boundary of the union is made up of outer fragments and
H shared fragments of the same type
shapeMnionJnMi{Op, 0Q, L) A

shapejmionSn.UX{L, L', Lines) A
maximaLplanes(Lines, Planes).

Splitplane is similar to splitboundary except each line of each boundary polygon
in a plane is split into fragments that lie inside or outside the other plane which
may not be simple, or into fragments that are left-shared or right-shared.

splitplane{0, Q, 0 , 0 , 0 , 0) . (SpPll)

splitplane{OBP + P, OBQ + Q,I,0,L,R) «-
splitboundary(OBP, OBQ, IP, 0P, LP, RP) A
splitLlines_wrtholes{Ip, Q, IP, Op, LP , RP) A
splitplane{P, OBQ + Q, Ip, 0P\ L"P, Rp) A
APPEND(0P,Ip,Op,0)W A
APPEND(Op, Ip, I) A
APPEND{LP, Rp, l!lp, L) A
APPEND(RP, lip, Rp, R). (SpP12)

The rules need a little explanation. Essentially the algorithm iterates for each
boundary of one of the planes, say P, and compares it (using splitboundary) with
the outer boundary of the other, say Q. The lines of the boundary fall into three
categories: those outside the outer boundary of Q, those inside the outer boundary
of Q, and those that share boundary fragments. The inner bounding lines may
now be further fragmented into lines that lie inside, outside, and on the inner
boundaries of Q. This is done by invoking the routine splitJines„wrt_holes.

(9) MERGE merges two lists into a single list and a naive version is described in
Krishnamurti (1992).
(io) APPEND(X, Y,Z,W) is shorthand for the conjunction
APPEND{X, Y, U) A APPEND(U, Z,W).

The arithmetic of maximal planes 459

There are two points to note. First, the inner boundaries of Q are, at best, point
connected and consequently, any fragment of a bounding lines inside a hole in Q
cannot also be inside another hole in Q. Second, any fragment of an inner line
inside a hole in Q lies outside Q. This is why the inner fragments (with respect to
the holes) of the bounding lines are concatenated with the outer fragments (with
respect to the outer boundary of Q) as indicated by the first APPEND statement.
For the same reason, the fragments outer to the holes are concatenated with the
inner fragments with respect to the outer boundary, indicated by the second
APPEND statement. Similarly, the left-shared fragments of the boundaries of P
(with respect to the outer boundary of Q) are concatenated with the right-shared
fragments of the boundaries of P with respect to the holes of Q (and vice versa).
The first rule (SpPll) is a terminating rule which only applies when we have
iterated through the boundaries of P.

splitJines_wrt_holes{0, Q, 0,0, 0,0). (SpLHl)

split_lines_wrt_holes{Lines, 0 , 0 , Lines, 0 , 0) *-
Lines * 0 . (SpLH2)

split_lines_wrt_holes{Lines, H+ Q, I, O, L, R) *-
Lines ^ 0 A
split_boundary(Lines, H, IH, OH, LH, RH) A
splitJinesjvrt_holes(0H, Q, l', O, ll, R') A
APPEND(IH,I',I) A
APPEND(LH,ll,L) A
APPEND{RH,R',R). (SpLH3)

The rules are straightforward. The first two rules are terminating rules which
apply either when there are no more lines to be fragmented or when Q has no inner
boundaries. The third rule splits the current set of lines into four categories:
fragments inside a hole, fragments outside a hole, left-shared fragments, and right-
shared fragments. As a fragment cannot be inside or on two holes, we need only
consider the outer fragments with the respect to the remaining holes. The process
is repeated until all the holes in Q are considered.

The rules for combine hold even when the two maximal planes are simple, that
is, when the planes have no holes.

Shape difference
Expressions can be derived for shape difference of two arbitrary maximal planes in
much the same way as shape union. The shape difference of two planes P— Q can
be constructed by iteratively removing holes from the plane formed by the relative
difference of the outer boundary of P and the plane Q. Examples of shape difference
are shown in figure 24. The holes correspond to the relative difference of the
holes in P and the outer boundary of Q. Note that the difference between a plane
and a hole is a plane whereas that between a hole and a plane is a hole.
Suppose P = {oP, iP] and Q = {oQ}. Then, the shape difference is given by,

P-Q = {(oP
LoQ)-(iP

LoQ)}

If P has more than one hole, then the shape difference is given by

P-Q = {(oP- oQ)-(iPA
L oQ)L{iPi2

L oQ) ...(iPJ
L oQ)...}

Here the individual differences {iPj-oQ),j> 1, are all disjoint. Hence, if for
some j > 0, (oP -oQ)-[iPj -oQ) is nonsimple, that is, we^may suppose its boundaries
are given by {0P,Iptl9IPt2,...}9 then, {oP-oQ)L{iPJ - o Q) - (/ P J + 1 - oQ) is given by

460 R Krishnamurti

one of the following sets of boundaries:

{Op — \ipj+i — OQ), IP i, IP 2> ••»} J

or

{Op, Ip J + (/pf/-+ 1 -~ OQ), /p^ 2 , .»} ,

or

\Op9 Ipti, Ipt2 + \lptj+l OQ), ...} ,

and so on depending on which boundary shares a line or overlaps with (/p / + 1 -o Q) ;
only one of them will. Note that the above expression holds only if the shape
difference does not produce multiple maximal planes.

If Q is nonsimple, then each of its inner boundaries potentially helps define a
maximal plane. That is, iQk x oP defines a plane if iQk and oP overlap. However,
this plane may overlap with holes in P. That is, for each such nonempty plane
IQ kx °P> w e t ake its difference with the nonempty common holes (iQ k x iPJ\ for all
y > 0 .

The expression for shape difference thus becomes complex if we follow the
above procedure to completion. With a little bit of shape arithmetical magic(!), it
turns out to be an expression of the form:

P-Q = {((OpLo0) + (opx(i(Q, 1 + lQ, 2 + •..)))- -(/p1 + /p2+ ...)}

However, it is clear that, as in the case of shape union, we can split the boundary
lines of the two planes into inner, outer, and shared lines with respect to the other
plane. Here, the boundary lines in the shape difference are made up of lines in P
outer with respect to Q, lines in Q inner with respect to P, and the shared lines
that are oppositely classified. The algorithm for shape difference of two arbitrary

G=I

„

Figure 24. Examples of shape difference of two maximal planes. * denotes the reference
point.

The arithmetic of maximal planes 461

planes is:

complement(P, Q, Planes) *-
H split the boundaries of P and Q into inner, outer, left-shared, and right-
1F snared fragments
splitplane(P, Q, IP, 0P, LP, RP) A
splitplane{Q, P, IQ, 0Q, LQ, RQ) A
IF consider just the oppositely classified shared fragments for difference
shapeJntersection_in_UX(LP, RQ, LPQ) A
shapejntersection_in_U^Rp, LQ, RPQ) A
MERGE{LPQ,RPQ,L!) A
IF boundary of the union is made up of outer fragments of P and inner
IF fragments of Q and shared fragments of the opposite types
shape_union_in_Ui(0P, IQ, L) A

shape_union_in_Ui{L, L!, Lines) A
maximalplanes(Lines, Planes).

The rules for complement also hold for simple maximal planes.

Shape intersection
The shape intersection of two arbitrary maximal planes P and Q can be constructed
by iteratively adding holes to the plane formed by the intersection of the regions
defined by the outer boundaries of P and Q. The holes that are added correspond
to the intersection of the inner boundaries of the one plane and the outer boundary
of the other. At the end of this procedure, we may have to postprocess the resulting
outer, inner, and shared boundaries, because the holes may lie outside the outer
boundaries, in which case they can be ignored. It should be noted that the intersection
of a hole with any plane or hole is a hole. Examples of shape intersection are
shown in figure 25.

U Ul

•

rr t=j—i

LLE±IJ

[Eh]
ud

Figure 25. Examples of shape intersection of two maximal planes. * denotes the reference
point.

462 R Krishnamurti

As with shape difference, the expressions for shape intersection when Q is
simple are easily defined. The expressions become complex when both P and Q
are nonsimple. For completeness, the expression for shape intersection of two
planes is given and has the form:

PxQ = (opXoQ)1((ip i l + ip>2+..0 + (/Qfi + i(2>2+ •••)).

An easier approach is to look at the bounding lines of the two planes and
determine which fragments correspond to the bounding lines of the resulting shape
intersection. According to arguments similar to those given for shape union and
shape difference, the fragments correspond to precisely those lines in the boundary
of each plane that lie inside the other plane and the shared lines that are identically
classified. That is,

common(P, Q, Planes) «- .
1F split the boundaries of P and Q into inner, outer, left-shared, and right-
1T shared fragments
split_plane(P, Q, IP, OP, LP, RP) A
split_plane{Q, P, IQ, OQ, LQ, RQ) A
1T consider just the common left-shared and right-shared fragments for
IT intersection
shapeJntersection_in_U\{LP, LQ, LPQ) A
shape_intersectionJnMi{RP, RQ, RPQ) A
MERGE(LPQ,RPQ,ll) A
IT boundary of the union is made up of inner fragments and shared fragments
1T of the same type
shape_union_in_U^Ip, IQ, L) A

shape_union_inJJ X{L, ll, Lines) A
maximal_planes(Lines, Planes).

As in the case of combine and complement, common also works for simple maximal
planes.

Spatial conditions on shapes in U2

All that remains is to define the predicates disjoint, contain, overlap, and
share_boundary. Each of these can be defined in terms of the bounding lines of the
planes.

Consider two planes P and Q. Then, P and Q are disjoint whenever every
bounding line of one plane lies outside the other and there are no shared fragments.
However, as the simple example in figure 26 demonstrates, the converse situation
does not hold. Hence,

disjoint(P, Q) - split_plane(P, Q,0,OP,0,0) A split_plane{Q, P,0,OQ,0,0)

That is, the bounding lines of P inner with respect to Q is empty and the converse
also applies.

P

Q

Figure 26. A simple counterexample to show that disjointedness requires examining the
boundaries of both planes.

The arithmetic of maximal planes

P contains Q whenever every bounding line in Q is inside P and every inner
bounding line of P is outside Q. As in the case of disjointedness of planes, it is
not sufficient to consider just the outer boundary of the planes as illustrated by
figure 27.

In figure 27(a), the outer boundary of Q lies inside P, whereas part of its inner
boundary lies outside P. In figure 27(b), the boundaries of Q lie inside P, whereas
the inner boundary of P lies inside Q. That is,

contain(P, Q) *-
splitplane(P, Q, 0 , OP, LP, RP) A
splitplane(Q, P,IQ,0, LQ, RQ) A
[LP n RQ] = 0 A [RP n LQ] = 0 .

The last line ensures that P and Q do not share boundary segments that are
oppositely oriented with respect to the other; for example, this occurs when Q
matches a hole in P exactly.

As containment includes all fragments of a bounding line of one plane that are
coincident with bounding lines of the other, it follows that

equal(P, Q) *- contain{P, Q) A contain(Q, P),

which is what we expect.
Overlapping of two planes is likewise defined. In the case of overlapping planes,

the bounding lines will split into two nonempty sets of lines that lie inside and
outside the other plane. That is,

overlap(P, Q) «-
splitplane(P, Q, IP, 0P, LP, RP) A
splitplane{Q, P, IQ, 0Q, LQ, RQ) A
[[Ip ¥> 0 A 0P # 0] V [IQ * 0 A 0Q ± 0]] .

The sharing of boundaries is a little trickier. Suppose we split the bounding
lines of one plane into inner and outer lines with respect to the other. Then, the
two planes share boundaries if and only if there are no inner bounding lines for
either plane and there are some outer bounding lines and some shared fragments.
In other words,

share.boundary(P, Q) <-
splitplane(P, Q, 0 , 0P, LP, RP) A
splitplane{Q, P, 0 , 0Q, LQ, RQ) A
[LP * 0 V RP ± 0] A
[LP fl LQ] = 0 A [RP fl' RQ] = 0 .

•
(a) Q p P*Q (b) Q P P^Q
Figure 27. Counterexamples to show that containment requires examining the bounding lines
of both planes.

Conclusion
The geometry of shapes made up of finite planes of nonzero area has been considered
with a view to being able to compare such shapes and to produce new shapes
thereof. By doing so, we have completed the computational framework necessary

•

" *

464 R Krishnamurti

to construct systems based on maximal representations of shapes (Krishnamurti,
1992) for shapes in U2. This complements the framework, previously established,
for shapes in U0 and U1.

We have shown that the Boolean operations on shapes made up of planes can
be expressed in terms of shape operations on lines which in turn can be expressed as
set operations on points. Further, we have shown that nonmanifold shapes such as
those with holes require no special treatment. In other words, all shapes in U2 can
be handled in a uniform and consistent fashion.

The geometry of spatial objects is encapsulated in four basic relations: disjoint,
overlap, share_boundary, and contain', and by three basic operations: combine,
complement, and common. Algorithms to test for these relations and to perform
these operations have been developed and presented. The algorithms are expressed
in logic, via a resolution-based programming notation through unification of variables,
and thereby, demonstrate their own correctness. In one sense, no additional proof
is required.

Postscript—the GRAIL project
The maximal representation of shapes described in Krishnamurti (1992) and the
maximal planes algorithms presented in this paper form the kernel of the GRAIL*11*
project which is in progress at Carnegie Mellon University. G R A I L is a quest for
an environment for the interactive representation, modelling, and generative
composition (shape editing) of two-dimensional and three-dimensional geometric
objects with or without nonspatial attributes. Currently, work in GRAIL focuses
on efficient implementations of the algorithms(12) based on the maximal representation
of shapes, on user-interaction issues related to rule-based generative and drawing
systems, on radiosity-based rendering techniques, on semantic interface issues, and
on shape grammar applications with or without associated descriptions (Stiny,
1990). Planned work on GRAIL includes the maximal representation of solids and
subshape recognition in three dimensions for line, plane, and solid shapes.

Acknowledgement. I would like to thank George Stiny for convincing me that the time is ripe
to tackle the subject matter of this paper. I would like to add my appreciation to Chris Earl
for pointing out serious and careless errors in earlier versions of this paper and for his
invaluable suggestions to improve its content. I am indebted to Rudi Stouffs for his inspired
enhancements to earlier versions of the algorithms and for implementing and testing all the
algorithms described in this paper. Lastly but not least, I would like to thank the original
GRAIL team consisting of Churn Der Hwang, Marc Schindewolf, Rudi Stouffs, and
Robert Ching Ping Tseng who share my faith in this quest.

References
Krishnamurti R, 1992, "The maximal representation of a shape" Environment and Planning B:

Planning and Design 19 267-288
Preparata F P, Shamos I, 1985 Computational Geometry: An Introduction (Springer, New York)
Stiny G, 1990, "What is a design?" Environment and Planning B: Planning and Design 17

97-103
Stiny G, 1991, "The algebras of design" Research in Engineering Design 2 171-181

<n) GRAIL does not stand for any one thing and can be expanded in several ways. The current
favourite is 'generative representation of artefacts illustrated by lines'. Work on GRAIL will
be documented in various reports both individually and collectively.
<12) Computational complexity of maximal plane algorithms is the subject of a forthcoming
paper by Stouffs and Krishnamurti.

Jtr © 1992 a Pion publication printed in Great Britain

