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Abstract. The geometry of shapes made up of finite planes is considered in detail. Algorithms 
on maximal planes for performing shape arithmetic are developed. 

Introduction 
This paper is a sequel to Krishnamurti (1992) in which the representation of 
shapes in terms of maximal spatial elements is considered. As pointed out in that 
paper, the maximal representation provides for the definition of shapes as definite 
geometrical objects with indefinitely many geometrical parts. In this paper, I examine 
the geometry of shapes made up solely of finite planes of nonzero area. 

The following ideas are basic. 
The algebra Un, n > 0, is the least set of shapes made up of finite ^-dimensional 

hyperplanes with nonzero measure, and is obtained by taking the closure under 
union and the Euclidean transformations (augmented with scale) of an appropriate 
set of rc-dimensional hyperplanes (Stiny, 1991; see footnote (2) in Krishnamurti, 
1992). Thus, U2 is the algebra of shapes made up of finite planes of nonzero area. 

A shape may consist of elements from different algebras. A shape may also 
consist of elements from the same algebra and belong to different aspects. For 
example, the shape consisting of the plan, elevation, and section of a building is 
made up of points, lines, and planes that belong to each drawing that describes the 
building. Thus, this shape would belong to the Cartesian product of the algebras 
(U0x f/i x U2)x(U0x Uxx U2)x(U0x Uxx U2) where the parentheses are included 
merely for the purpose of illustration. 

In general, a shape s is an ordered tuple of shapes (s1, s2,...,sk,...), k > 0, 
where each sk is a shape in the algebra Uk. Two shapes, sl and sJ, i * / , may 
belong to the same algebra. Each Uk corresponds to an algebra Un, for some 
n > 0, of shapes made up of ^-dimensional planes. In this paper we concentrate 
on shapes in U2. 

A spatial element in a shape is maximal if it cannot be combined with other 
spatial elements (from the same algebra) in the shape to form a single larger spatial 
element. The maximal representation of a shape is its description in terms of its 
maximal spatial elements and is the smallest unique specification for the shape. 

A spatial element is described by its descriptor and boundary, where the 
descriptor identifies the orientation of the element in an appropriate Euclidean 
space and the boundary identifies the position, size, and geometry of the spatial 
element. The descriptor partitions the elements of a shape into co-equal (that is, 
coincident, colinear, coplanar, or cohyperplanar, etc) equivalence classes. A shape 
may be organized as an ordered arrangement of classes of co-equal elements, that 
is, sets of spatial elements that share the same descriptor. 

Spatial elements can be combined to form a larger element if they overlap, share 
boundaries, or if one element contains the other. Disjoint elements are relatively 
maximal and cannot be so combined. Spatial elements can be compared with 
other elements to form new elements. There are three basic operations to create 
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new elements and these correspond to the Boolean operations on shapes; union, 
difference, and intersection. Thus, spatial arithmetic can be captured by four basic 
geometric relations; disjoint, overlap, shareJyoundary, and contain, and by three 
basic operations; combine, complement, and common. In this paper, I develop the 
algorithms for these basic relations and operations on shapes defined by finite 
planes. 

The algorithmic notations employed in this paper are based on a logic programming 
approach introduced and explained in Krishnamurti (1992) as are some of the 
basic predicates, other terms, and notations not explicitly defined here. 

Last, as a visual prolegomenon, a cube with a square hole drilled through it is 
illustrated as a shape made up of maximal planes (figure 1). The maximal planes 
that make up the sides of the cube are shown. The reader may notice two of the 
maximal planes that define the cube have holes. 

Figure 1. A cube with a square hole and the maximal planes that make up the sides of the 
cube. 

Shapes in U2 

Shapes in U2 consist of maximal planes. A maximal plane is specified by its 
boundary which is a set of polygons one of which is the outer boundary of the 
plane and all others are the inner boundaries of the plane. A maximal plane is 
simple if it has no inner boundaries. Nonsimple maximal planes contain holes. 
For a maximal plane, the lines of the inner boundaries he inside the region defined 
by the outer boundary and at best touch the outer boundary at one point. Inner 
boundaries may touch another inner boundary at a point. Examples of maximal 
planes are shown in figure 2. 

The simplicity of a maximal plane is easily established. Let M denote a maximal 
plane. M is represented by the set of simple polygons {b0, bu ..., bm} where, by 
convention, b0 is the outer boundary and all others are inner boundaries of M. 
Then, 

simple(M) - M = {b0} . (SI) 

Figure 2. Examples of maximal planes. 
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Nonsimple maximal planes have an outer boundary and one or more inner 
boundaries. However, any boundary of a maximal plane, whether outer or inner, is 
a simple polygon as figure 2 illustrates. In some cases, the boundaries of a maximal 
plane are disconnected polygons as figure 3 demonstrates. In other cases, the 
combination of the outer and inner boundaries can be combined to form a single 
self-intersecting polygon as illustrated in figure 4. In still other cases, the boundaries 
of several maximal planes can be combined to form a single self-intersecting 
polygon. Figure 5 illustrates a self-intersecting polygon that is formed by four 
distinct maximal planes. Thus, a maximal plane can be considered to be formed 
by disconnected or disjoint planes each bounded by simple polygons some of 
which combine to form self-intersecting polygons. 

The process of extracting maximal planes from a specification of polygons 
consists of decomposing self-intersecting polygons into simple planes that make up 
the region defined by the polygons, and of determining whether the boundaries of 
a collection of disjoint or disconnected simple planes are outer or inner boundaries 
of maximal planes. 

D D 
Figure 3. The boundaries of a maximal plane can be disconnected. In this case, the maximal 
plane consists of a single outer boundary and four inner boundaries. 

Figure 4. A nonsimple maximal plane whose boundaries form a self-intersecting polygon. 

Figure 5. Four distinct simple maximal planes that form a single self-intersecting polygon. 

Converting a self-intersecting polygon into maximal planes 
The first step in decomposing a polygon into simple planes is to find the self-
intersecting points of the polygon. Self-intersecting points act as 'articulation' 
points in the sense that these are the points at which the polygon splits into 
simpler polygons. There are two possible ways that a polygon can split at self-
intersecting points. Either the split polygons share a common point which must be 
a self-intersecting point, or share a common side bounded by two self-intersecting 
points. These two cases are illustrated in figure 6. 

By the Jordan curve theorem, every polygon divides the plane into two regions, 
an inside and an outside. The points bounded by the outer boundary of a 
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maximal plane are interior points and those bounded by its holes are exterior 
points. Points outside a maximal plane are also exterior points. The notion of 
interior and exterior points is useful in designating a simple plane as interior if it 
bounds interior points and exterior otherwise. Thus, the outer boundary of a 
maximal plane is interior and the inner boundaries are exterior. When a polygon 
is split at a self-intersecting point, the polygons formed are either all relatively 
interior or some are relatively interior and some are relatively exterior. When a 
polygon is split at two self-intersecting points, a region on one side of the line is 
relatively interior and the other region is relatively exterior. Moreover, the exterior 
region will not be a hole in any maximal plane. These observations are illustrated 
in figure 7. 

It is convenient to treat a polygon P as a necklace^ of points {p 
where each consecutive pair of points {pt ,P[imodk)+ii m m e necklace is a side of 
the polygon. Moreover, the necklace can be rotated until px is the left-most 
bottom corner of the polygon and \pup2] is the side with the least gradient. This 
ensures that the necklace starts as a counterclockwise sequence of points around 
the polygon from the left-most corner. 

Suppose we traverse the sequence along the sides comparing the current side 
with the other sides for self-intersecting points. Let {p, q) be the current side and 
{r, s) be another distinct side of the polygon that is being compared with. There 
are two possibilities. Either the sides intersect at, say, m coincident with both line 
segments, or they do not. Suppose the former is the case. We can replace the two 
sides by at most four line segments by inserting m after p and r in the sequence. 
That is, m splits the two sides into at most four segments; {p, m], {m,q}, {r, m], and 
{m, s}. Point m may coincide with one of the endpoints in which case we exclude 
the side {m, m) from the sequence (see figure 8). 

If {p, q) intersects with two or more sides, we process the intersection points in 
order of their distance from p. Suppose the current sequence, P, is {..., p, q,..., r, s,...}. 

Figure 6. Splitting a polygon at self-intersecting points. 

Figure 7. Relative interior and exterior polygons formed at self-intersecting points. The 
shaded parts indicate interior regions. 

W A necklace is a sequence that wraps around onto itself. That is, each consecutive pair of 
elements, including the last and first, are related to each other in the same way. 
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Then, after inserting m into the sequence, we get a new sequence, Pr, 

P = {...,p,m,q,...,r,m,s,...} 
P' = {..., p , g,..., r,m,s,...\ 
P' = {...,p,m,q,...,r,s,...}' 
P' = {...,p,q,...,r,s,...} 

if m * p, q, r, s, 
if m = p or q and m ¥" r, s, 
if m ^p, q and m = r or s, 
if m = p or q and m = r or s. 

This process is repeated until all the self-intersecting points have been determined. 
Figure 9 illustrates the procedure for finding the five self-intersecting points in the 
polygon shown in figure 5. 

The routine resequence generates all self-intersecting points and places them in 
the proper position in a necklace of points specifying a polygon. The routine 
returns a sequence that contains the corners of the polygon and all self-intersecting 
points. A polygon will have at least three points, so the input to resequence will 
have at least four points, the first point being included at least twice. Resequence 
has the following definition. 

resequence({p}, 0 ) . (Rl) 

resequence{{p, q} + Necklace, Sequence) <-
U find all points of intersection of {p, q) and the other lines of the polygon 
IF such that the points are between p and q, and arrange them in increasing 
IT distance from p 

N) A selfJntersections({p, q}, Necklace, I , 
IF recursively traverse from q 
resequence({q} + N, S) A 

resequence_side({p, q], I , Spq) A 
merge_sequence(Spq, S, Sequence). (R2) 

Figure 8. Possible self-intersecting points when two sides intersect. 

P= {1,2, 3,4, 5,6, 7,8, 1} 

{2, 3} and {8, 1} intersect at p 
P = {1,2, p,3, 4,5,6,7,8,/?, 11 

{3, 4} and {6, 7} intersect at q 
P= [l,2,p,3,q,4,5,6,q,7,8,p,l] 

{4, 5} and {6, q] intersect at r 
P = {1, 2, p, 3, q, 4, f, 5, 6, f, q, 7, 8, p, 1} 

{5,6} and {8, p] intersect at s 
P = {1, 2, p, 3, q,4, r, 5, s, 6, r, q, 7, 8, s,p, 1} 

{6, r] and {8, s] intersect at / 
P = {1, 2, p, 3, q, 4, r, 5, s, 6, /, r, q, 7, 8, t, s,p,l] 

Figure 9. Finding the self-intersecting points of a polygon identifies the self-intersection point 
currently determined by the algorithm. 
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The first rule R l is a terminating rule when the processed sequence contains 
just one point, namely the start point. The second rule R2 needs further 
explanation. We take the first two points, {p, q}, in the sequence and find all its 
points of intersection with the remaining lines in the sequence. We continue 
resequencing starting at q. 

In the course of resequencing a polygon, in order to include the self-intersection 
points in their correct position in the sequence, we traverse the polygon a side at a 
time. Suppose {p, q) is the current side. At this stage, we determine all self-
intersection points that are coincident on the segment {p, q). The predicate 
self-intersections returns two lists. One is the list, Ipq, of self-intersection points 
coincident with line {p, q) in increasing order of their distance from p. The points 
in Ipq, if any, are inserted between p and q in the required sequence. The other is 
the updated list of points that have yet to be traversed. 

self.intersections({p, q}, {px}, 0 , 0 ) . (Sell) 

selfintersections({p, q}, {r, s} + Necklace, Ipq, {r} + Npq) «-
^{p,q} and [r, s] intersect at m 
MEET({p, q), [r, s}, m) A 
self.intersections({p, q}, {s} +Necklace, I, N) A 
II if m is not identical to either r or s, insert it between r and s in the sequence 
II if m is not identical to either p or q, insert it between p and q in the sequence 
ifelse(m = r V m = s, equate(Npq, N), equate(Npq,{m} +N)) A 
ifelse\m = p V m = q, equate{Ipq, I), INSERZPOINI(m,p, I, Ipq))... (SeI2) 

selfJntersections({p, q}, {r, s} + Necklace, Ipq, {r} + Npq) <-
IT {p, q) and {r, s] do not intersect at a point coincident with both segments 
not MEET({p, q], {r, s}, m) A 
self.intersections({p, q}, {s} + Necklace, Ipq, Npq). (SeI3) 

There are three cases that selfjntersections must consider: (1) when it reaches the 
end of the necklace; (2) when the current line meets another line at a self-intersecting 
point which is inserted into the sequence in at most two places, depending on 
whether the intersection point coincides with an endpoint of one of the two lines; 
(3) when the current line does not meet another line at a point coincident with 
either line. The routine MEET determines the intersection point that is considered 
between the endpoints of two given lines. MEET fails if there is no intersection 
point coincident with either line. MEET uses standard geometric properties and its 
definition is assumed. The routine INSERT.POINT inserts the self-intersection 
point m in a list containing all such points on the line {/?, q) arranged in increasing 
order of their distance from p. Its definition is straightforward and also left to the 
reader. 

The insertion mechanism in rule SeI2 is expressed by the two ifelse statements. 
The two ifelse rules subsume the four-case insertion rule given at the top of 
page 435. Ifelse has the following standard definition. 

ifelse(Cond, Then, Else) <- Cond A Then . (If 1) 

ifelse{Cond, Then, Else) <- not Cond A Else . (If2) 

The routine equate unifies the first argument which must be a variable to the 
second argument which has been instantiated. Equate has the following trivial 
definition. 

equate(X,X). 
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The sequence of points produced by procedure resequence includes the self-
intersecting points and each of these occurs at least twice. Hence, if each point in 
the sequence excluding the last point occurs just once, then the polygon and its 
corresponding maximal plane must be simple. 

Suppose the polygon is not simple and suppose we traverse the resequenced 
necklace of points in order. Then, three possibilities can occur and these are 
illustrated in figure 10. 

In the first case, the self-intersecting point, m, acts as an articulation point. 
That is, there is a subsequence of the form {m,pi,pi + 1,... ,pj9 m) where m denotes 
a self-intersecting point and pk9i < k < j are not self-intersecting. The sequence 
{m9pi9pi+l9... ,Pj} is a polygon which forms the outer boundary of a maximal plane 
or the inner boundary of a maximal plane. In either case, we can repeatedly 
remove these subsequences until it is no longer possible to do so, by applying the 
following rule: 

Pl9m9pi9pi + l9...9pj9m9P2 -
Pl9 m, P2 and {m9pi9pi+l9..., Pj} is a polygon . (1) 

That is, we replace the sequence Pl9 {m9pi9pi + l9... 9 Pj}9 m9 P2 by the sequence 
Pl9 m9 P2 and output {m,pi9pi+l9..., p;-} as a polygon. 

In the second and third cases, two distinct self-intersecting points m and n form 
a common side to two polygons. That is, there is subsequence {m9pi9pi+i9... ,pj9 n] 
where the pk9 i < k < j are no longer self-intersecting points. It may be that m 
and n are not connected. We are only interested in the case when {m, n] is a side of 
the polygon in which case there must be a subsequence {n, m) that occurs later in the 
sequence. When [n9m\ is a side of the self-intersecting polygon, two possibilities 
arise. Either the polygon formed from the sequence {m9pi9pi+l9... 9pJ9 n} is an 

Figure 10. Three possibilities that arise at self-intersecting points when traversing a sequence 
of points that describes a polygon. 
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interior polygon or the polygon defines a hole that shares sides with two or 
more interior polygons. In the first of these subcases, we apply the rule 

Pl,m,pi,pi + l,...,pj,n,P2,n,m,P3 -

Pun,P2,n, myP3 and {m, pi9 pi + 1,..., pj9 n) is a polygon. (2) 

In the second of these subcases, we apply the rule 

Pl,m,pi,pi + l9...,pJ,n,P2,n,m,P3 -
Pl9 m, n, Pl9 n, pj9 Pj_l9..., pi9 m, P3. (3) 

As an illustration, we apply these rules to the polygon in figure 9 to obtain the 
constituent simple polygons. We traverse the sequence in the given order, pushing 
points onto a stack until we visit a point that has already been pushed onto the 
stack at which stage we pop the stack till we hit the point again. The following 
table outlines the procedure. 

Current point 

r 

t 

t 

P 
1 

Stack 

1,'2,'p, 3, q, 4, r 

1, 2, p, 3, q, r, 5, s, 6, t 

1, 2, p, 3, q, r, 5, t, r, 4, q, 7, 8, t 

1, 2, p , 3, q, r, 5, s, p 

1, 2, p , 1 

Rule and polygon 

(3) 

(2) and {s, 6, t) 

(1) and {r, 4, 4, 7, 8, r} 

(1) and {3, q, r, 5, s, p 

(1) and {2, p , 1} 

This procedure will work if the following definitions for resequence.side and 
mergesequence invoked in rule R2 are adopted. 

resequence_side({p, q}9 Ipq9 {p} + Ipt 

merge.sequence{Spq, S, Sequence) +- APPEND(Spq, S', Sequence)^ . ->pqi 

Of course, we still need to split the sequence into simple polygons along the lines 
indicated above. 

Once the simple polygons have been determined, we can check whether these 
simple polygons correspond to inner or outer boundaries of maximal planes. 
Essentially we compare the simple polygons pairwise to see if one is inside the 
other.(3) If so, then one of the polygons is potentially an inner boundary of, and 
the other is potentially an outer boundary of, some maximal plane. If not, they 
belong to different maximal planes. In this way, we can build a list of polygons, 
some inside other polygons some outside. 

Before I present an algorithm to compare simple polygons to extract the 
maximal planes, we should take another look at the resequencing algorithm/4) The 
procedure described above for extracting simple polygons from a sequence of points 
is needlessly cumbersome, has many special cases, and involves extensive search. 
So, instead of simply producing a new sequence of points to describe the polygon, 
it is worth considering the lines that make up the sides of the polygon. 

Each side of a polygon can be considered to be made up of a list consisting of 
pairs or triples of points of the form {p, m} and \m9p9 q). In the case of triples, m 
denotes a self-intersection point. We add the convention that each side, {p9 q}9 of. 

(2) APPEND concatenates two lists and it is defined in Krishnamurti (1992). 
<3) We only need to check one point from each polygon to test for insideness. An algorithm 
for polygon checking is given in Preparata and Shamos (1985). 
(4) The versions of resequence, isolate^polygon and compare.planes described in the paper are 
based on improvements due to Rudi Stouffs (personal communication). 
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the polygon satisfies p < q. That is, each side is processed from its left-most 
(bottom-most) point. Thus, 

resequenceside({p, q], Ipq,Spq) <-
p < q A 
APPEND(IpqAq},I) A 
sequenceside({p} + I, S) A 

equate{Spq, {{p, car(I)}} + S). 

resequence_side({p, q), Ipq, Spq) «-
p > q A 
REVERSE(Ipq,Iqp)W A 
APPEND(Iqp,{p},I) A 
sequence_side{{q} + I, S) A 

equate(Spq,{{q,car{I)}} + S). 
Resequence.side returns a sorted list of pairs and triples, each consisting of a 

point and all points connected to it by a line. That is, if {p, ml9..., mk, q\ is the 
sequence of endpoints and self-intersecting points on the side {p, q}, p < q, of the 
polygon, then resequence_side produces the list {{/?, m^, {m1, p, ra2},..., {q, mk}}. 
Moreover, p < m1 < ... < mk < q. If the side has no self-intersecting points, the 
list {{p, q], \q,p}} is returned. 

The predicate car invoked in the ifelse clause returns the first element of a list. 

Sequence_side has the following simple definition. 
sequence.side({p,q},{{q,p}}\ 

sequence_side({p, q, r) + /, {{q, p, r}} + S) <-
sequence_side{{q,r} + I,S). 

Once a side of the polygon has been processed, the sorted list that is produced 
has to be merged with the sorted lists produced for the remaining sides of the 
polygon. The reason for this is given by the fact that a self-intersecting point is 
produced whenever at least two sides of the polygon cross each other. Thus, if 
{p, q) and {r, s} intersect at m, then the triple {m,p, q) produced when processing 
side {p, q\ and the triple \m, r, s} produced when processing side {r, s} have to be 
merged to form the quintuple {m,p, q, r, s} which indicates that m is linked to the 
points p, q, r, and s by lines. This is accomplished by merge_sequence which has 
the following definition. 

merge_sequence(S, 0 , 5 ) . 

merge_sequence{0, S, S) «- S ^ 0 . 

merge_sequence({P} + Seq_l, {Q} + Seqjl, {P} + Merged) <-
car(P) < car{Q) A 
merge_sequence(Seq_l,{Q} + Se(l-2, Merged). 

merge_sequence({P} + Seq_l, {Q} + SeqJ2, {M} + Merged) «-
car{P) = car(Q) A 
APPEND(P, cdr(Q), M) A 
merge_sequence(Seq_l, Seq.2, Merged). 

merge_sequence{{P) + Seq_l, {Q} + Seq_2, {Q} + Merged) «-
car{P) > car(Q) A 
merge_sequence({P} + Seq.l, Seq_2, Merged). 

(5> REVERSE reverses the order of the elements in a list. Its definition is straightforward 
and is omitted. 
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In other words, merge_sequence produces an adjacency list of points for each 
corner and self-intersecting point of the polygon. The predicates car and cdr have 
the same definition as in functional programming; that is, car returns the first 
element of a list and cdr returns the remaining list. 

The preceding discussion for determining the maximal planes from a self-
intersecting polygon can be summarized as follows. 

getmaximalplanes(Polygon, Planes) «-
resequence(Polygon, PointAdjacencyLists) A 
isolate_planes(PointAdjacencyLists, 0 , 0 , 0 , Planes). 

Isolatejplanes is described in the next section. 

Determining a set of maximal planes from a set of lines 
The analogous problem to splitting a self-intersecting polygon into planes is the 
determination of maximal planes from a given set of lines. The algorithm is quite 
simple. Although it is preferable that each line in the set corresponds to a side of 
a polygon, it is not necessary. Any line that is not the side of a polygon is 
ignored. We convert the lines into a sorted list of adjacency lists of points. We 
then isolate the maximal planes from the point adjacency lists. 

The routine maximalplanes takes a set of lines, constructs the point adjacency 
list and then isolates maximal planes. 

maximaLplanes(Lines, Planes) *-• 
make_adjacency_lists(Lines, PointAdjacencyLists) A 
isolate_planes{PointAdjacencyLists, 0 , 0 , 0 , Planes). 

To isolate the planes we do a depth-first search on the lines by starting each 
traversal in a counterclockwise direction starting from the left-most bottom point. 
We maintain a stack of points and search along a clockwise direction from the 
current top of stack. If the line has an endpoint already on the stack, we have 
found a polygon. There are two possibilities. Either the stack is empty or it is 
not. If the stack is not empty, then the polygon that is found must be interior to 
another polygon that has yet to be found (because the sides are traversed in a 
clockwise manner). If the stack is empty, the polygon that is found is exterior to 
all polygons found from the current path (because we always start a traversal in a 
counterclockwise manner from the left-most bottom available point). This polygon 
together with all polygons inner to it is then tested against the currently determined 
maximal planes to determine whether it can be the inner or outer boundaries of 
a maximal plane. The algorithm maintains two additional auxiliary lists, one for 
the polygons that are constructed from the current path and one for the list of 
maximal planes that have been previously found. The procedure terminates when 
all lines have been examined. 

isolate_planes{0, Stack, Polygons, Aux, Planes) <-
1f if the stack is not empty, the current path does not complete a polygon 
compare_each.plane(Polygons,Aux, Planes). (IP1) 

isolatejplanes^AdjList, 0 , 0,Aux, Planes) — 
H empty stack-start a counterclockwise traversal {p, q) from the left-most 
11 bottom available point 
U remove side from the adjacency lists 
AdjList > 0 A 
start.path{AdjList,{p, q), NewList) A 
isolate.planes(NewList,{q, p), 0 , Aux, Planes). (IP2) 
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isolate.planes[AdjList, {q, p] + Stack, Polygons, Aux, Planes) «-
IF find the most clockwise side {q,r} to {p, q) 
IF if r is on the the stack, we have found a polygon—process it 
MEMBER({q}+Q, AdjList) A 
continue_path{AdjList,{q,p},{r,q}, NewList) A 
MEMBER(r, Stack) A 

end.path(NewList, {r, q, p) + Stack, Polygons, Aux, Planes). (IP3) 

isolateiplanes{AdjList, {q, p} + Stack, Polygons, Aux, Planes) .«-
TF find the most clockwise side {q, r} to {p, q] 
IF if r is not on the stack, continue traversal 
MEMBER{{q} + Q, AdjList) A 
continue.path{AdjList, {q, p], {r, q), NewList) A 
notMEMBER{r, Stack) A 

isolate_planes(NewList, {r, q, p] + Stack, Polygons, Aux, Planes). (IP4) 

isolate_planes(AdjList, {q, p] + Stack, Polygons, Aux, Planes) «-
IF if we cannot find a side from q, {q,p} is a dangling line; backtrack to p 
IF and continue 
not MEMBER({q}+Q, AdjList) A 
isolate.planes{AdjList, {p} + Stac/:, Polygons, Aux, Planes). (IP5) 

In the course of traversing a polygon there are three kinds of decisions that 
have to be made. The first is to decide where to start a new path which is always 
along the counterclockwise edge at the left-most bottom available point. The edge 
will correspond to the one with the least gradient of all lines from this point. 

start.path({{p} + P} + AdjList, {p, q], {P'} + NewList) *-
find_ccw.edge(p, P, q) A 
IF remove side {p, q] from the adjacency lists of p and q 
DELETE(q,P,P')W A 
DELETE{{q)+Q, AdjList, A) A 
DELETE(p,Q,Q') A 
INSERT{{q\+Q', AdjList, NewList)W. 

Second, when we have traversed a sequence of lines, decide which edge to follow 
next which is at the least clockwise angle from the most recent edge traversed.(7) 

continue.path{AdjList,{q,p},\r, q), NewList) <-
IT find the nearest clockwise edge {q, r] to {/?, q] 
IF remove side {q,r} from the adjacency lists of q and r 
DELETE{{q}+Q, AdjList, A) A 
find.cw.edge{{q,p},Q,r) A 
DELETER, Q, Q') A 
DELETE({r} + R,A,A!) A 
DELETE(q,R,R') A 
APPEND{{r},R',R") A 
ifelse{Q' = 0, INSERT{{Rf'}, A, NewList), 

INSERT{{{q}+Q',R"),A,NewListTK 

<6> DELETE removes a member of a list and returns the remaining elements in the list. INSERT 
adds an element into a list in the correct position (determined by the imposed order relation). 
(7) If the adjacency list for a point is arranged as a doubly linked circular list of edges arranged 
in counterclockwise order around the point, the next edge in clockwise or counterclockwise 
order requires 0(1) pointer operations. 
(8) INSERT{{x, y], L, N) is shorthand for the conjunction INSERT{{x], L, M) A INSERT({y}, M, N). 
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The third and last decision to be made occurs when we have found a polygon. 
There are two possibilities. If the polygon returns to the start point of the current 
path, then it is an outer polygon to all polygons that have been thus far found 
from the current path. We take this polygon and all its inner polygons and compare 
them against the maximal planes that have been determined so far. If the polygon 
returns to a point which is not the start point of the current path, we have found a 
polygon which is inner to the polygon that returns to the start point. We save it 
and resume the traversal from the current point. The two possibilities are captured 
by the following rule. 

end.path(AdjList, {r,q\ + Stack, Polygons, Aux, Planes) «-
H extract polygon from current path 
11 if path is not empty, save polygon and continue traversal from current point 
POP.STACK(r, Stack, P, {r) + NewStack) A 
NewStack # 0 A 

isolate.planes(AdjList, {r} + NewStack, {P} + Polygons, Awe, Planes). 

end_path(AdjList, {r,q\ + Stack, Polygons, Aux, Planes) «-
H extract polygon from current path 
If if path is empty, compare polygon and its inner polygons with known planes 
U and start a new traversal from the leftmost available point 
POP.STACK(r, Stack, P,{r} + NewStack) A 
NewStack = 0 A 

compare.planes({P} +Polygons, Aux, NewPlanes), 
isolate_planes(AdjList, 0, 0, NewPlanes, Planes). 

Rule IP1 is the terminating rule. Under normal conditions, when each line is a 
side of a polygon, the stack will eventually become empty and all polygons found 
off the most recently traversed path would have been tested against the known 
maximal planes. Moreover, under these conditions rule IP5 will never be invoked. 
However, should the stack not be empty, then there are lines which are not sides 
of any polygon. Further, there may be polygons that have been found off the path 
corresponding to the points on the stack. Two possibilities arise. Either these 
polygons are all interior to some maximal plane or they are all simple planes. In 
all cases, the following rule for compare.eachjplane will work. 

compare_eacKplane{0, Planes, Planes). 

compare_each_plane({P} + Polygons, Aux, Planes) <-
compare.planes({P},Aux,NewAux)A 
compare_each.plane(Polygons, NewAux, Planes). 

Comparing a plane with a set of maximal planes 
We are now ready to test a plane for maximality against a known set of maximal 
planes. We make the assumption that the plane to be tested is known to be 
completely inside one of the maximal planes or is outside all the maximal planes. 
The condition is satisfied by the algorithms considered in the previous two sections. 

Essentially the algorithm compares the outer boundary of the given plane with 
the outer boundary of each of the maximal planes. Two possibilities arise. Either 
it lies inside the outer boundary of one maximal plane or it lies outside all. In the 
latter case, the given plane is maximal and is appended to the list of maximal 
planes. In the first case, two further possibilities arise. Either the outer boundary 
of the given plane lies inside one of the holes of the maximal plane in which case 
the given plane is maximal or it lies outside all the holes, in which case the outer 
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boundary of the tested plane becomes an inner boundary of the maximal plane and 
its inner boundaries become simple maximal planes. See figure 11. 

The routine compare^planes together with auxiliary routines insideJnnerplanes and 
innerjo_simple_planes compares a plane against a list of maximal planes by using the 
procedure described above. Initially the list of maximal planes is empty. Each 
plane is represented by the list of polygons {b0, bx, ...}, where b0 is the outer boundary. 
If the plane is simple, it is represented by the singleton list {b0}. 

compare.planes(P, 0 , {P}). (CP1) 

compare.planes(P, {M} + Planes, {M, P} + Planes) «-
IF if the outer boundary of P is inside the outer boundary of M, 
IF compare it against the inner boundaries of M 
inside(car(P), car(M)) A 
inside_innerplanes(car(P), cdr(M)). (CP2) 

compare_planes{P, {M} + Planes, {M'} + NewPlanes) <-
IF if the outer boundary of P is inside the outer boundary of M 
IF and outside the inner boundaries of M, it becomes an inner boundary of M 
IF and the inner boundaries of P become simple maximal planes. 
inside(car(P), car(M)) A 
not insideJnnerplanes(car(P), cdr(M)) A 

APPEND({car(M), car{P)}, cdr{M), Mf) A 
inner_to_simple_planes{cdr(P), IP) A 
APPEND{IP, Planes, NewPlanes). (CP3) 

compare.planes(P, {M} + Planes, {M} + NewPlanes) *-
IF if the outer boundary of P is not inside the outer boundary of M, 
IF repeat the procedure selecting another maximal plane. 
not inside(car(P), car(M)) A 
compare_planes(P, Planes, New_Planes). (CP4) 

IF insideJnnerplanes will not succeed if the maximal plane is originally simple 
insideJnnerplanes(P, {M} + Inner) <-

inside(P,M). 

inside.innerplanes(P, {M} + Inner) 
notinside(P,M)A 
insideJnnerplanes(P, Inner). 

IF innerjo.simple_planes converts a set of polygons to a set of simple planes 
innerjo.simple.planes{ 0 , 0 ) . 

innerjo_simple_planes({P) + Inner, {{P}} + Planes) *-
innerJo_simple_planes{Inner, Planes). 

M 

(a) (b) (c) 

Figure 11. Comparing a plane P against a maximal plane M. (a) Outer boundary of P is 
outside outer boundary of M. (b) Outer boundary of P is inside an inner boundary of M. 
(c) Outer boundary of P is inside outer boundary of M but outside inner boundaries of M. 
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Combining simple maximal planes into a maximal plane 
A basic operation on simple planes is to take two maximal planes and combine 
them into a single maximal plane. Because each plane is specified by its outer 
boundary, this is equivalent to comparing two polygons to produce a single 
polygon that encloses the area occupied by both polygons. We can make the 
following observation: if p is a corner of one of the polygons that is outside the 
other polygon, then p is a corner of the required polygon (see figure 12). 

Let us make some further observations. First, we note that the boundary of the 
combined maximal plane is made up of lines from the boundaries of both planes 
that lie outside the other. Consequently, we can take the shape union defined on 
sets of lines to combine these outer lines (with respect to the other plane) to form 
the boundaries of the combined maximal plane. The combination of two simple 
maximal planes can introduce holes as illustrated by figure 13. 

Second, we note that as a consequence of the Jordan curve theorem, any line 
joining two points outside (inside) a given polygon intersects the polygon no or an 
even number of times. Equivalently, a line jointing a point outside and a point inside 
a polygon must intersect the polygon an odd number of times. The exceptional 
case is when one or both endpoints of a line is coincident with a bounding line 
and these cases have to be treated separately. That is, we can preprocess each 
polygon with respect to the other by determining the intersection points, distinct 
from endpoints, coincident with each line by using a variation of the polygon 
resequencing algorithm described earlier. That is, each maximal line {pt,Pj} is 
replaced by the sequence of points {p(, m\^ ..., m~, pj] where mj- ¥" Pt,Pj,0 < k < n, 
is an intersection point on the line {pt, p},}; n = 0 or an even number if both 
endpoints are outside or if both endpoints are inside (see figure 14). 

Third, we may assume that the two planes overlap or share boundaries. The 
case when one plane contains the other is taken care of by the rules for shape 
union (see rules CU3 and CU4 in Krishnamurti, 1992). In the disjoint case, 
maximal planes do not combine. 

Last, we may assume that the boundaries are given by their maximal line 
representation. 

We consider the combination of two simple planes when the planes share 
bounding lines and when they overlap as separate cases. 

Figure 12. Two simple polygons and their combined polygon. 

j 

Figure 13. The combination of two simple planes can introduce holes. 
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Case 1: Suppose the two planes share bounding lines but do not overlap. 

In this case, the common lines are inside the combined region as can be observed 
from figure 23 (below). Hence, if we remove the common bounding lines from 
both boundaries we are left with lines whose union gives rise to polygons, one of 
which forms the outer boundary and others of which, if any, correspond to the 
inner boundaries. Thus, we may describe the algorithm for the combination of two 
simple planes P and Q as follows: 

simple_share_combine(P, Q, Planes) +-
shape.differenceJnM^P, Q,P) A 
shape^dijferenceJrLUX(Q, P, Q') A 
shapeMnionJn.Ui(P'', Q1', Lines) A 
maximaLplanes(Lines, Planes). 

This procedure is illustrated in figure 15. 

both endpoints of line outside polygon 

one endpoint of line outside polygon and the other inside 

both endpoints of line inside polygon 

both endpoints of line coincident with polygon 

one endpoint of line coincident with polygon 

Figure 14. The intersection of a line and a polygon. 

P Q 

- i * * L 

Figure 15. The combination of two maximal planes that share boundary lines. * is a 
reference point. 
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Case 2: Suppose the planes overlap. 

There are two subcases to consider. The first case is when neither shape shares 
any boundary lines; the second case is when some boundary lines are shared. 

Case 2.1: The overlapping planes do not share boundary lines. 

In this case, the fact that the two shapes do not share any boundary lines can 
be established by an empty shape intersection of the boundary lines of the two 
polygons. Here, we separate the boundary lines of a polygon into two categories: 
those that lie inside the other polygon and those that lie outside. That is, we can 
define a routine that splits the lines of the polygon P with respect to another 
polygon Q (and vice versa) into two sets: IP, comprising the lines of P inside Q; 
and 0P, comprising the lines of P outside Q. Figure 16 illustrates the inside and 
outside lines relative to two polygons. 

Thus, if the two polygons, P and Q, overlap, are unequal, and do not share 
boundary lines, we can define a rule split.polygons that splits the boundaries of 
both P and Q into outer and inner fragments with respect to the other. 

split_polygons{P, Q, IP, 0P, IQ,0Q, 0 ) -
IT an empty shape intersection establishes that two planes do not share 
IF boundary lines 
[shapeJntersectionJnM^P, Q, S) A S = 0 ] A 
IF split the boundary of a plane with respect to the other 
split_boundary{P, Q, IP, 0P ) A 
split_boundary(Q, P, IQ, OQ) . 

The version of split.boundary described below splits unshared bounding lines of 
any polygon into two classes: outer fragments and inner fragments. A modified 
version that deals with shared and unshared bounding lines is presented in a 
subsequent section. Here we assume that the lines are expressed as classes of 
co-equal lines. 

split_boundary{ 0 , Q, 0 , 0 ) . • (SpB 1) 

split_boundary([lP] + P, Q, I, O) «-
IF split the class of co-equal lines into inner and outer fragments with respects 
IT to Q 
splitJines([lP], Q, [i], [o]) A 
IT repeat the process for the other lines in P 
split_boundary{P, Q, I', O') A 
IT the fragment classes may be empty—so use append 
[APPEND{[i], / ' , I) A APPEND([o], O', O)]. (SpB2) 

Splitjines splits each line into fragments of the line that lie inside or outside Q. 
The procedure terminates when we have processed each class of lines in P. 

Figure 16. The inside and outside lines of a simple polygon with respect to another simple 
polygon. 
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splitlines(0,Q,0,0). (SpL'l) 

splitjines(l + sh Q, I, O) <- -
If / is a line—find all points of intersection of / with the boundary of Q 
IF cuts is the number of cuts that the scan line corresponding to / makes with 
IF Q to one side of the first endpoint of / 
intersection^, Q, M, cuts) A 
1F insert only those points coincident with / 
INSERT_POINTS(M, /, /') A 
IF if cuts is even or zero, first point of / is outside Q 
IT otherwise, the first point of / is inside Q 
ifelse(cuts mod 2 = 0, 

IF / represents an alternating sequence of outer and inner fragments 
owter(/',[//],[<>/]), 
IF else / represents an alternating sequence of inner and outer fragments 
inner(l', [/,], [o{]) A 

IF repeat the process for the remaining lines 
splitlines{sh Q, I', O') A 
IT the fragment classes may be empty—so use append 
[APPEND^], / ' , /) A APPEND^], O', O)]. (SpL2) 

Splitjines applies a scan-line technique where the current line defines a scan-
line. All points of intersection of the line with the boundary of the other polygon 
and coincident with the line are found. These points together with endpoints of 
the line are arranged as an ordered 'left-to-right' sequence of points. In addition, 
we compute the number of cuts of the scan-line with the boundary of the polygon 
which is to the 'left' side of or equal to the 'left' most endpoint of the line. As a 
consequence of the Jordan curve theorem, this endpoint is inner if the number of 
cuts is odd and outer, otherwise. 

The coincident points of intersection between the current line and the lines in Q 
are determined by intersection as are the number of cuts of the scan-line to the left 
of the current line. INSERT.POINTS inserts the intersection points into the 
specification of a line. That is, if {p, q) is a line which is coincident with a point 
of intersection m # p, q, then {p, q] is replaced by the set {p, m, q] to give rise to 
fragments {p, m) and {m, q\. If there are two or more intersection points coincident 
with a line, then the points are arranged in order of their distance from the tail of 
the line. If {p, q] are a pair of points that specify a line such that p < q, then 
tail p is the left-most point of the line. The definitions for intersection and 
INSERT_POINTS are left to the reader. 

The predicates inner and outer alternatively mark successive fragments of the 
current line as inner or outer with respect to the other polygon determined from a 
sequence of intersection points between the endpoints of a side of a polygon. 

inner({p}, 0,0). 
inner({p, q} + S, {p, q} + I, O) *- outer{{q} + S, I, O). 

outer{{p},0, 0). 
outer({p, q) + S, I, {p, q) + O) - inner{{q} + S,I,0). 

We can now define the procedure to combine the boundaries of two simple 
maximal planes into the boundary of a single maximal plane when they overlap but 
do not contain one another and do not share boundary. The combination rule 
when one plane contains the other is trivial to define and is omitted. 
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simple_combine{P, Q, Planes) — 
splitpotygons(P, Q, IP, 0P7IQ, 0Q, 0 ) A 
shapejinion_in_UX{0P, OQ, Lines) A 
maximalplanes(Lines, Planes). (SCI) 

The second line of the rule states that the bounding lines of the combined shape 
is given by the union of the outer bounding lines of the two shapes. 

Case 2.2: Planes overlap and share boundary lines. 

Since the shared fragments correspond to the shape intersection of the two 
boundary lines and other lines belong to the shape differences of the two shapes, 
we can combine these algorithms together to split the boundaries of the two 
polygons. 

split_polygons(P, Q, IP, OP,IQ,OQ,S) <-
IF a nonempty shape intersection establishes that two planes share boundary 
IF lines 
[shape_intersectionJn_Ui{P, Q, S) A S ^ 0 ] A 
IF obtain the nonshared fragments 
shape_difference_in_b\{P, S,P')A-
shape_difference_in_Ui(Q, S, Q') A 
IT split the nonshared boundaries of the two planes with respect to the other 
splitboundary(P', Q, OP, IP, 0 ) A 
split_boundary(Q\ P, OQ, IQ, 0 ) . 

In this case, the fragments of lines that coincide with a bounding line can be 
considered as outer or inner lines depending on the lines adjacent to the fragments. 
As the common fragment lies on simple polygons, each endpoint of the fragment is 
connected to exactly two lines, one from each polygon. These lines may themselves 
be outer, inner, or shared. So, a shared fragment may be regarded as outer to one 
of the polygons and inner to the other. 

If the two shapes are equal, all lines will be shared by the two polygons; 
otherwise there is at least one endpoint of a boundary line that lies outside the 
other polygon and there is at least one endpoint of a boundary line that lies inside 
the other polygon. However, the equality case is handled by the shape.union 
algorithm (see rule CU3 and in particular, by rule CU3a, in Krishnamurti, 1992). 

The possible neighborhood situations surrounding a shared fragment are 
illustrated in figure 17. Shared fragments are depicted by the thicker lines and 
inner fragments are depicted by dashed lines. In general, the lines in the upper 
half of each diagram belong to polygon P and the lines in the lower half belong to 
polygon Q. The central thick line indicates the shared fragment under consideration. 

The classification for shared lines for combining two simple planes can now be 
described. A shared fragment is included in the union of the two planes if and 
only if its endpoints are not adjacent to two outer fragments one from each plane; 
otherwise, we must include the shared fragment in order to complete a traversal of 
the boundary of the combined plane. In figure 17, this means that the shared 
fragments shown in cases (a), (b), and (f) are omitted in the union of the two 
polygons whereas those shown in cases (c) and (e) are included. The shared 
fragment in case (d) is included if and only if one of the adjacent shared fragment 
is also included. As all fragments will be shared if and only if the two polygons 
are equal, for unequal polygons there will be a nonshared fragment adjacent to a 
shared fragment. 
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classify_shared_lines_for_union(Ip, OP, IQ, 0Q, 0 , 0 ) . (CSLU1) 

classify_sharedJines_for_union(IP, OP, IQ, 0Q,{1} + S,{1} + SU) «-
IT if one endpoint is adjacent to a pair of inner-outer fragments, it is included 
1T for union 
[at_one_end{l, OP, IQ) V at_one_end(l, IP, 0Q)] A 
classify_sharedJines_for_union(IP, OP, IQ, OQ, S, SU). (CSLU2) 

classify_sharedJines_for_union(IP, 0P, IQ, 0Q, {/} + 5, SU) <-
H if both endpoints p, q of a shared fragment are adjacent to shared fragments, 
If postpone decision until later 
connectedlto(l, S, S) A 
APPEND{S,{l},S') A 
classify_sharedJines_for_union(IP, OP, IQ, OQ, S', SU). (CSLU3) 

classify_sharedJines_for_union{IP, OP, IQ, OQ,{1} + S, {l} + SU) ~̂ 
classify_sharedJines_for_union(IP, OP, IQ, OQ, S, SU) A 
H if one of the endpoints of a shared fragment is adjacent to a shared 
If fragment, 
If and the other to an included line or both are adjacent to included lines, 
If include this line 
[connectedjo{l, S,SU) V connectedjo(l, SU, SU)]. (CSLU4) 

(a) shared line incident to outer lines 

(b) shared line incident to outer lines at one endpoint and inner lines at the other 

(c) shared line incident to a pair of inner-outer lines at each endpoint 

Q 

(d) shared line incident to shared lines 

(e) shared line incident to a shared line at one endpoint and a pair of inner-outer lines at the other 

(f) shared line incident to a shared line at one endpoint and inner or outer lines at the other 

Figure 17. Possible neighborhood spatial situations at shared boundary lines. T h e central 
thick line denotes the shared fragment under consideration. In general, the lines on the 
upper half belong to polygon P and lines in the lower half belong to polygon Q. 
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classify_sharedJines_for_union(IP, OP, IQ, 0Q,{l\+S, SU) +-
IF otherwise, shared fragment is not included 
not[atone_end{l, 0P, IQ) V atone_end{l,IP, OQ)] A 
not connectedJo{l, S, S) A 
classijy_sharedJinesjor_union(IP, OP, IQ, OQ, S, SU). (CSLU5) 

At_one_end is a predicate that determines if one of the endpoints of the shared 
line is adjacent to two lines each taken from distinct sets of lines. Connectedjo 
determines if both endpoints of the shared line are each adjacent to a line from 
two sets. Both at_one_end and connectedjo rely on adjacentjo which determines if 
a point is an endpoint of a line in a list. 

at_one_end{{p, q}, Ll,L2) <-
l a line is given by its endpoints{p, q) 
[adjacentjo(p, Lx) A adjacentjo(p, L2)] V 
[adjacentjo(q, Lx) A adjacentjo{q, L2)]. 

connectecLto({p, q\, Lt, L2) +-
U a line is given by its endpoints {/?, q) 
\adjacentJo{p,Lx) A adjacenLto(q, L2)] V 
[adjacentJo{q, Lx) A adjacenLto{p, L2)]. 

adjacentto(p, L)<-
MEMBER{{p,r}, L) V MEMBER{{r, p}, L). 

The result of classifying shared boundary lines for the union of two simple 
planes is illustrated by the example in figure 18, where some shared fragments are 
included in the union and others are not, depending on the lines adjacent to them. 

We can now define the procedure to combine the boundaries of two simple 
maximal planes into the boundary of a single maximal plane when they overlap and 
share boundary lines. 

simple_combine{P, Q, Planes) <-
split_polygons{P, Q, IP, 0P, IQ,0Q,S) A 
classijy_sharedJines_for_union(IP, 0P, IQ, OQ, S, SU) A 
shape_union_in_Ui(0'P, 0'Q, 0PQ) A 

shapejmiondnJJX{SU, 0PQ, Lines) A 
maximal_planes(Lines, Planes). (SC2) 

Observe that the single rule SC2 subsumes rule SCI (when 5 = 0 ) and the 
definition for simple_share_combine (when IP = IQ = 0 ) . 

We can achieve the combination of simple planes including the classification of 
shared fragments via boundary traversal rather than by the scan-line techniques 
described above. An outline of the boundary-traversal approach for combining 
simple convex maximal planes is described in the next section. 

• " • • • • • • • • 

n z I ' r - ' ) 
Figure 18. Classifying shared boundary lines when combining simple planes. * is a reference 
point. Shared fragments are shown as emboldened lines. 
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Combining overlapping simple convex maximal planes via boundary traversal 
A convex plane is one whose boundary is a convex polygon. In this section we 
describe a boundary (polygon) traversal algorithm for combining convex maximal 
planes. The convexity of the planes will guarantee that the combined plane is 
simple but not necessarily convex. The crux of the algorithm is to construct the 
boundary of the combined maximal plane by extending a partial path made up of 
fragments of bounding lines. At each stage in the traversal, we determine which 
part of a bounding line the traversal must advance along. Obviously, the fragment 
of the line must lie outside the other polygon. By successively following a 
connected sequence of lines that lie outside the other polygon we can determine 
the boundary of the combined maximal line. 

Let p be the left-most bottom corner of a simple bounding polygon; p must be 
the tail of two lines. Let q be the head of one of the lines. If we follow line 
{p, q\ and then follow the other line connected to q and then follow the lines 
likewise connected, we obtain a traversal of the polygon. That is, we can determine 
a sequence of points for any polygon starting at the left-most point. If q is the 
head of the line with the smaller gradient, the traversal is counterclockwise; 
otherwise, the traversal is clockwise (see figure 19). 

For any two simple polygons, either one of their left-most bottom corners lies 
outside the other polygon or both corners may coincide. If they do not coincide, 
then both may lie outside the other polygon in which case we choose the left-most 
of the two. If they do coincide, we choose the polygon which has a line with the 
smaller of the two gradients. (Of course, if the endpoints points of this line coincide, 
we repeat the process with the endpoint of this line until we find a line with a 
smaller gradient.) Starting at this corner, say p0 in polygon P, we traverse the 
boundary along the line {p0,Pi} keeping the inside of the plane to the left or right 
of the line, depending on whether the traversal is counterclockwise or not. Three 
cases arise: ( l) the line does not intersect or overlap any other line; (2) the line 
intersects a bounding line of the other plane; (3) the line overlaps a bounding line 
of the other plane. 

Suppose we traverse the boundary counterclockwise. The sequence of points 
that specify the bounding polygon determines a counterclockwise traversal. 
Suppose {Pi-i,Pi} is the current edge and P the current polygon. 

For case (1), both pi_l and pt must lie outside Q. We add {p/_i,P;} onto the 
current path, which can be maintained as a stack, and advance along {pt, pi + 1}. 

For case (2), suppose {qj-i, qj} is the line that intersects with {Pi-i,pt} at m, then 
we have reached an alternating point and we have to traverse along the boundary 
of the other plane. Because we are traversing the boundary counterclockwise, the 
inside of P is to the left of {p;_i, #} . Moreover, qJ_l must be inside ? or be 
coincident with {#_! ,#}. Otherwise, we would have intersected the current path 
earlier and the traversal would be advancing along {#,_!, qj] instead. There are 
four spatial situations that can arise, depending on whether pt_x is the tail or head 
of line {Pi-uPi\- These are illustrated in figure 20. Though not illustrated in 
figure 20, m may equal q^_x without altering the spatial situations. In this case, we 
add {pi-i, m) to the path and advance along {m, q^, making Q the current polygon. 

C) 
Figure 19. Starting a traversal of a polygon at its left-most bottom corner. 
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For case (3), there are three subcases to consider. If qf > pt, we add {pt-i, g,} 
to the path and advance along {qj7 gy + 1}, making Q the current polygon. If pt > q^ 
we add side {#-i> A) t o t n e P a l n an<^ advance along {pi9pi + 1}. If pt = qJ9 we have 
to determine whether pi + 1 lies outside Q, or qJ+1 lies outside P. Only one of these 
points will do so. We add {#_!,#} to the path and advance along the appropriate 
bounding line, switching the current polygon if necessary. 

The algorithm terminates when we return to the start point of the traversal. 
If the planes are not convex, the algorithm will find the outer boundary of the 

combined plane. There may remain some processing to determine the inner 
boundaries. 

Pi-i ;^/-i 

Figure 20. The four intersection situations that can arise. The shaded part indicates the 
inside region. 

Intersection of two simple maximal planes 
The intersections of two simple maximal planes are the planes common to both 
planes. As before we can approach the problem as a boundary traversal algorithm 
or as the shape union of specific bounding lines. For convex simple planes we can 
adapt a boundary traversal algorithm described in Preparata and Shamos (1985). 
Here, we define an algorithm based on shape operations on sets of lines. Figure 21 
illustrates the intersection of simple maximal planes. The reader will notice that the 
shape common to the two simple planes is a shape made up of three maximal planes. 

As before, we split the boundary of each plane into three sets, one containing 
lines lying outside and the other containing lines lying inside the other plane and 
shared fragments. Now the intersection of the two planes consists of the inside 
lines of both planes together with certain shared lines. Thus, 

simple_common(P, Q, Planes) «-
split_polygons{P, Q, IP, 0P, IQ, 0Q, S) A 
classify_sharedJines_forJntersection(IP, OP, IQ, OQ, S, SI) A 
shape_union_in_Ui{IP, IQ, L) A 

shape_union_in_U\{L, SI, Lines) A 
maximal_planes(Lines, Planes). 

Note that, as figure 21 illustrates, the intersection may yield more than one 
maximal plane. The routine maximaLplanes will take a set of lines and return a set 
of disjoint maximal planes. For plane intersection, the set of lines will form a self-
intersecting polygon and the routine isolate_planes, suitably modified, can be used 
instead. 

Because the planes common to the two original planes are bounded by lines of 
the planes inner with respect to the other, we include just those shared fragments 

• • • • 

x 

Figure 21. The intersection of two simple maximal planes. * denotes a reference point. 
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whose endpoints are each adjacent to exactly one inner fragment or whose 
endpoints are adjacent to shared fragments one of which has been deemed to be 
included. In other words, the shared fragments that are included for intersection 
are precisely those that are included for union [see figure 17(c), (d) and (e)]. 

classify_sharecLlines_forJntersection(IP, 0P, IQ, 0Q, S, SI).<-
classify.sharedJines_for.union(IP, 0P, IQ, 0Q, S, SI). (CSLI1) 

The rule for plane intersection returns a nonempty plane only when the two 
planes overlap or when one contains the other. 

Relative complement of a simple maximal plane with respect to another 
Like plane intersection, the relative complement of one maximal plane with respect 
to the other may produce more than one maximal plane. But unlike plane 
intersection, the planes in the relative difference may not be simple. That is, they 
may contain holes. Thus, each plane in the difference is specified by an outer 
boundary and zero or more inner boundaries. 

The relative complement algorithm is approached in a similar fashion to union 
and intersection. The boundary of each plane is split into three sets, one containing 
lines lying outside, one containing lines lying inside the other plane, and one 
containing shared bounding lines. Now the difference of the two planes consists of 
the outer lines of the first plane, the inner lines of the second and some shared lines. 

simple_complement(P, Q, Planes) «- ' 
splitpolygons{P, Q, IPrOP,IQ,0Q,S) A 
classify_sharedJines_for_difference{IP, OP, IQ, 0Q, S, SD) A 
shapeMnionJnM^Op, IQ, L) A 

shape_unionJnMi(L,SD, Lines) A 
maximaLplanes(Lines, Planes). 

Shared fragments are bounding lines in the shape difference only if either an 
endpoint is adjacent to two outer or to two inner fragments [see figure 17(a), (b) 
and (f)], or both endpoints are adjacent to shared fragments one of which has been 
deemed to be included [see figure 17(d)]. 

classify_sharedJines_for_difference(IP, 0P, IQ, 0Q, 0 , 0 ) . (CSLD1) 

classify_sharedJines_for_difference(IP, 0P, IQ, 0Q, {/} + 5, {/} + SD) «-. 
IF if / is adjacent to outer(inner) fragments at one endpoint, it is included for 
IF difference 
[atone_end(l, 0P, 0Q) V atone.end{l, IF, IQ)] A 
classify_sharedJines_for_difference(IP, 0P, IQ, 0Q, S, SD). (CSLD2) 

classify_sharedJines_for_difference(IP, 0P, IQ, 0Q, {/} + S, SD) <-
IF if both endpoints p, q of a shared fragment are adjacent to shared fragments, 
IT postpone decision until later 
connectedJo(l, S, S) A 
APPEND(S,{liS') A 
classifyishared_lines_for_difference{IP, 0P, IQ, 0Q, S', SD). (CSLD3) 

classify.sharea\.linesJor.dijference{IP, 0P, IQ, 0Q, {/} + 5, {/} + SD) «- ' 
classify.sharedJines_for_difference(IP, 0P, IQ, 0Q, S, SD) A 
IF if one of the endpoints of a shared fragment is adjacent to a shared fragment, 
IF and the other to an included line or both are adjacent to included lines, 
IF include this line 
[connectedlto(l, S,SU) V connectedjo(l, SU, SU)]. (CSLD4) 
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classify_sharedJines_for_difference(IP, OP, IQ, 0Q, {/}+.£, SD) «-
If otherwise, it is not included for difference 
not[at_one_end(l, OP,DQ) V at_one_end(l, IP, IQ)] A 
notconnected{l,S,S)A 
classijy_sharedJines_for_difference(IP, OP, IQ, OQ, S, SD). (CSLD5) 

Simple_complement subsumes the case when P contains Q. Figure 22 shows 
three examples of the difference of two planes and the outline of the bounding 
lines that make up the boundaries of resultant shape difference. The examples 
illustrate the possibilities that may arise from comparing two simple planes. In the 
first example, three maximal planes result; in the second, the result remains a 
simple plane; and in the third, the shape difference is a single maximal plane with 
an inner boundary. 

Figure 22. Maximal planes formed by the difference of two simple maximal planes. * denotes 
a reference point. 

Unified treatment of shared fragments for shape operations on simple maximal planes 
We have just seen that shared fragments are classified for inclusion differently, 
depending on the type of operation and the neighborhood of the shared fragments. 
Although this classification is fine for operations on simple planes, it adds a measure 
of difficulty when considering operations on nonsimple maximal planes. A better 
approach is to classify the shared fragments in a uniform way independent of the 
underlying operation and to select just those fragments that have to be included for 
the specific operation. In this section, a uniform classification of shared fragments 
is considered. 

Consider any maximal line of the boundary of a polygon and compare it against 
the boundary of another polygon. The line can be fragmented by points of 
intersection into three classes: inner fragments, outer fragments, and shared 
fragments. Assume that the endpoints of any line, {p, q}, are arranged in 
lexicographical, termed left-to-right, order such that p < q. Consider the left-most 
endpoint of the first shared fragment. It is adjacent to an inner fragment, or an 
outer fragment, or it is the first fragment in the set of fragments that make up the 
line. Consider the line itself and treat it as a scan-line. Count the number of time 
it cuts the boundary of the other polygon at points less than, termed to the left of, 
or equal to the least endpoint of a fragment of the line. If the number of cuts is 
even or zero, the first fragment must be outer or is shared inside on the right. 
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If it is odd, the first fragment must be inner or shared inside on the left. That is, 
we can split each line of the boundary into inner and outer fragments, or left-shared 
or right-shared fragments. Observe that a left-shared fragment is a fragment that 
would have been deemed inner by considering an alternating sequence of fragments 
from left to right. Likewise, a right-shared fragment is a fragment that would have 
been deemed outer by an alternating sequence of fragments from left to right. 

Thus, when comparing two simple planes we split the boundary of each plane 
with respect to the other into inner, outer, left-shared, and right-shared fragments. 
The following modifications to spliLboundary and splitjines accomplish this. 

IF spliLboundary splits the bounding lines of a plane into inner, outer, left-shared, 
IF and right-shared fragments with respect to another plane 
split_boundary(0, Q, 0 , 0 , 0 , 0 ) . (SpB 1*) 

spliLboundary ([lP] + P, Q,I,0,L,R)+-
split_boundary(P, Q, l', O', ll, Rf) A 
splitjines{[lp], Q, [i], [o], [I], [r]) A 
APPEND([i],l',I) A 
APPEND([o], 0',0) A 
APPEND([I]X,L) A 
APPEND([r], R',R). (SpB2*) 

IF splitjines splits a class of co-equal lines of a plane into inner, outer, left-shared, 
IF and right-shared fragments with respect to the other plane 
splitJines(0, Q, 0,0, 0,0). (SpLI*) 

splitlines(l + sh Q, I, O, L, R) *-
IF this part is basically unchanged 
splitlines(sh Q, I', O', ll, Rf) A 
intersection^, Q, M, cuts) A 

INSERT_POINTS(l, M,l') A 
ifelse(leftmod2 = 0, owter(/',[//], [o/]), 

inner(lf,[i/], [o/])) A 
IF this part includes the changes 
IF compute the shared fragments on /, if any 
shapeJntersectionJnMi({l}, Q,S) A 
IF isolate the left-shared and right-shared fragments of / 
shapeJntersectionJn_Ui{[ii'], 5, [//]) A 

shapeJntersectionJnMxdo/], S,[rt]) A 
IF isolate the inner and outer fragments of / 
shape_diffferencejn_ Ĉ  ([//], [//], [//]) A 

shape.dtfferenceJrLU1([ol'],[rl],[ol]) A 
IF the fragment classes may be empty—so use append 
[APPENDdi^l',!) AAPPEND([o{],Of,0)]A 
[APPEND^], ll, L) A APPEND^], Rf, R)]. (SpL2*) 

The predicates inner and outer have been previously defined. 
We can now consider the descriptions for the shape operations on two simple 

planes. If we examine figure 17, we notice that the shared fragments that are 
included for union and intersection correspond to those that are identically classified 
with respect to the boundary of the other plane, and for difference the included 
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shared fragments correspond to those that are oppositely classified. Thus, 

simple_combine{P, Q, Planes) «-
splitboundary(P, Q, IP, 0P, LP, RP) A 
spliLboundary>(Q, P, IQ, 0Q, LQ, RQ) A 
shape_intersection_inJJl{LP, LQ, LPQ) A 
shape.intersection.in.UX{RP, RQ, RPQ) A 
shapeMnionJnM^LpQ, RPQ,S) A 
shape.union.in.U1 [0P, 0Q, L) A 
shape.union.inJJX{L, S, Lines) A 
maximaLplanes(Lines, Planes). 

simple_common(P, Q, Planes) <-
splitboundary(P, Q, IP, OP, LP, RP) A 
split.boundary(Q, P, IQ, 0Q, LQ, RQ) A 
shape_intersection_in_U1(LP, LQ, LPQ) A 
shape.intersection.inJJl[RP, RQ, RPQ) A 
shape_union_in.UX{LPQ, RPQ, S) A 
shape.union.in.Ul{IP, IQ, L) A 
shape.union.in.UX[L^ S, Lines) A 
maximal.planes(Lines, Planes). 

simple.complement(P, Q, Planes) «-
splitboundary(P, Q, IP, 0P, LP, RP ) A 
splitboundary(Q, P, IQ, 0Q, LQ, RQ) A 
shape_intersection_in_U1{LP, RQ, LPQ) A 
shape.intersectioYi.inJJl[RP, LQ, RPQ) A 
shape.unionJnJj\(LPQ, RPQ, S) A 
shape.union.in.UX[0P, IQ,L) A 
shape.union.inJj\(L, 5, Lines) A 
maximal.planes(Lines, Planes). 

Shape operations on maximal planes 
The preceding discussion pertains to simple maximal planes. However, it is not 
unreasonable to expect objects of interest to contain indentations or holes. That is, 
the planes of interest are nonsimple. The inclusion of inner boundaries adds a 
measure of difficulty in defining shape operations. The situation when the maximal 
planes are nonsimple is dealt with in the next three sections. 

Shape union 
Figure 23 illustrates examples of shape union of two arbitrary planes. 

Consider the two planes P and Q, one of which is nonsimple. We may assume 
that they can combine; that is, if P and Q overlap, share bounding lines, or one 
contains the other. In addition, the planes combine in different ways, depending 
on how Q overlaps the holes in P. 

Suppose P = {oP, iP), and Q = {oQ}. Let + , - and x respectively denote 
general union, difference, and intersection operators on planes or holes defined by 
simple polygons. We add the proviso that, if the polygons just share boundaries or 
are otherwise disjoint, the intersection operation produces an empty plane, and the 
difference operation returns the first plane. When the planes are disjoint, the 
union operation returns the two planes. 

http://shape.intersection.in
http://shape.union.in
http://shape.union.inJJ
http://shape.union.in
http://shape.union.inJj
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The shape union of P and Q is given by, 

I {{oP, iP}9{oQ}}9 # if P and Q are disjoint, 

{{(oP + oQ), {iP
 L oQ)}}, if P and Q overlap or if P contains Q, 

{{(oP + oQ), iP}}, if P and Q share boundary. 
The union of two overlapping planes is a simple plane if Q covers the hole in P 

completely and is nonsimple otherwise. In the latter case, the boundary of the hole 
in the shape union is given by the relative complement of the boundary of the hole 
(considered as a simple plane) and the outer boundary of Q. The overlapping case 
subsumes the containment case. 

If P contains Q, then (oP + oQ) = oP and (iP
LoQ) = iP. When the two planes 

share bounding lines, the inner boundary of P remains an inner boundary in the 
union of the two planes, because any inner boundary of P and the outer boundary 
of Q at most share boundary lines. 

Suppose P has more than one inner boundary. That is, P is given by the set of 
boundaries, {oP9 iPl9 iP,2,..., iPJ,...}. Then, 

P+Q = {(oP + oQ)9(iPtl
LoQ)9(iPt2

LoQ)9...9(iPJ
:-oQ)9-...}. 

Some of the differences will be empty and these can be ignored. We can prune 
the number of differences that need to be performed if the inner boundaries of P 
are suitably ordered. 

Suppose Q is also nonsimple. That is, Q is given by the set of boundaries, 
\°Q> IQ,U *Q,2> - 9 iQ,k> •••}• Then , 

P+Q = {(oP + oQ)9 

(b,i-°Q)>{ip,2-m
0Q)9'»>(ip,j~"0Q)9... 

(iQ,i-Op)9{iQf2-Op)9...9{iQ}k^Op)9... 

\ip, 1 x *Q, I)> {ip, I x IQ,I\ - ,-(h,j x IQ,k)> •••} 9 

with the proviso that, if an inner boundary and an outer boundary do not overlap, 
their intersection is empty and their difference is the inner boundary. The outer 
boundary of the shape union is given by the union of the outer boundaries of the 
two planes together with shared lines that are identically classified. The inner 
boundaries are given by the relative complements of the holes in one plane and the 
other plane, and by the holes common to both planes. Again, some of the differences 
and intersections will be empty and these can be ignored. Here, the number of 
differences and intersections to be performed can be reduced by ordering the 
boundaries in P and Q in a suitable fashion. 

• • =• 

• • 

ph r 
N iej 

Figure 23. Examples of shape union of two arbitrary planes. * denotes the reference point. 

q: 
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Thus, the shape union of two arbitrary planes can be expressed in terms of 
union, difference, and intersection operations on simple planes. 

From the discussion above it is clear that the union of two arbitrary planes can 
be treated in an analogous fashion to the union of two simple planes. Consider 
the plane formed by the sum (oP + oQ). Its boundary is made up of lines in oP 

outside oQ, and of lines in oQ outside oP. Equally, the hole formed by {ipj~oQ) is 
made up of lines in iPj outside oQ, and of lines in oQ inside iPj-. The hole formed 
by {iQk —Op) is similarly defined. Any common holes (iPJ x iQk) are formed by 
lines in iPj inside iQk and by lines in iQk inside iPj. In other words, we split the 
bounding lines of each plane into inner, outer, and shared lines with respect to the 
other plane, bearing in mind that the region inside an inner boundary is outside 
the plane. Thus, 

combine(P, Q, Planes) <-
H split the boundaries of P and Q into inner, outer, left-shared, and right-
H shared fragments 
splitplane(P, Q, IP, OP, LP, RP ) A 
splitplane(Q, P, IQ, 0Q, LQ, RQ) A 
H consider just the common left-shared and right-shared fragments for union 
shapeJntersectionJn.U^Lp, LQ, LPQ) A 
shapeJntersectionJnMi(RP, RQ, RPQ) A 
MERGE(LpQ,RPQX){9) A . 
U boundary of the union is made up of outer fragments and 
H shared fragments of the same type 
shapeMnionJnMi{Op, 0Q, L) A 

shapejmionSn.UX{L, L', Lines) A 
maximaLplanes(Lines, Planes). 

Splitplane is similar to splitboundary except each line of each boundary polygon 
in a plane is split into fragments that lie inside or outside the other plane which 
may not be simple, or into fragments that are left-shared or right-shared. 

splitplane{0, Q, 0 , 0 , 0 , 0 ) . (SpPll) 

splitplane{OBP + P, OBQ + Q,I,0,L,R) «-
splitboundary(OBP, OBQ, IP, 0P, LP, RP) A 
splitLlines_wrtholes{Ip, Q, IP, Op, LP , RP) A 
splitplane{P, OBQ + Q, Ip, 0P\ L"P, Rp) A 
APPEND(0P,Ip,Op,0)W A 
APPEND(Op, Ip, I) A 
APPEND{LP, Rp, l!lp, L) A 
APPEND(RP, lip, Rp, R). (SpP12) 

The rules need a little explanation. Essentially the algorithm iterates for each 
boundary of one of the planes, say P, and compares it (using splitboundary) with 
the outer boundary of the other, say Q. The lines of the boundary fall into three 
categories: those outside the outer boundary of Q, those inside the outer boundary 
of Q, and those that share boundary fragments. The inner bounding lines may 
now be further fragmented into lines that lie inside, outside, and on the inner 
boundaries of Q. This is done by invoking the routine splitJines„wrt_holes. 

(9) MERGE merges two lists into a single list and a naive version is described in 
Krishnamurti (1992). 
(io) APPEND(X, Y,Z,W) is shorthand for the conjunction 
APPEND{X, Y, U) A APPEND(U, Z,W). 
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There are two points to note. First, the inner boundaries of Q are, at best, point 
connected and consequently, any fragment of a bounding lines inside a hole in Q 
cannot also be inside another hole in Q. Second, any fragment of an inner line 
inside a hole in Q lies outside Q. This is why the inner fragments (with respect to 
the holes) of the bounding lines are concatenated with the outer fragments (with 
respect to the outer boundary of Q) as indicated by the first APPEND statement. 
For the same reason, the fragments outer to the holes are concatenated with the 
inner fragments with respect to the outer boundary, indicated by the second 
APPEND statement. Similarly, the left-shared fragments of the boundaries of P 
(with respect to the outer boundary of Q) are concatenated with the right-shared 
fragments of the boundaries of P with respect to the holes of Q (and vice versa). 
The first rule (SpPll) is a terminating rule which only applies when we have 
iterated through the boundaries of P. 

splitJines_wrt_holes{0, Q, 0,0, 0,0). (SpLHl) 

split_lines_wrt_holes{Lines, 0 , 0 , Lines, 0 , 0 ) *-
Lines * 0 . (SpLH2) 

split_lines_wrt_holes{Lines, H+ Q, I, O, L, R) *-
Lines ^ 0 A 
split_boundary(Lines, H, IH, OH, LH, RH) A 
splitJinesjvrt_holes(0H, Q, l', O, ll, R') A 
APPEND(IH,I',I) A 
APPEND(LH,ll,L) A 
APPEND{RH,R',R). (SpLH3) 

The rules are straightforward. The first two rules are terminating rules which 
apply either when there are no more lines to be fragmented or when Q has no inner 
boundaries. The third rule splits the current set of lines into four categories: 
fragments inside a hole, fragments outside a hole, left-shared fragments, and right-
shared fragments. As a fragment cannot be inside or on two holes, we need only 
consider the outer fragments with the respect to the remaining holes. The process 
is repeated until all the holes in Q are considered. 

The rules for combine hold even when the two maximal planes are simple, that 
is, when the planes have no holes. 

Shape difference 
Expressions can be derived for shape difference of two arbitrary maximal planes in 
much the same way as shape union. The shape difference of two planes P— Q can 
be constructed by iteratively removing holes from the plane formed by the relative 
difference of the outer boundary of P and the plane Q. Examples of shape difference 
are shown in figure 24. The holes correspond to the relative difference of the 
holes in P and the outer boundary of Q. Note that the difference between a plane 
and a hole is a plane whereas that between a hole and a plane is a hole. 
Suppose P = {oP, iP] and Q = {oQ}. Then, the shape difference is given by, 

P-Q = {(oP
LoQ)-(iP

LoQ)} 

If P has more than one hole, then the shape difference is given by 

P-Q = {(oP- oQ)-(iPA
L oQ)L{iPi2

L oQ) ...(iPJ
L oQ)...} 

Here the individual differences {iPj-oQ),j> 1, are all disjoint. Hence, if for 
some j > 0, (oP -oQ)-[iPj -oQ) is nonsimple, that is, we^may suppose its boundaries 
are given by {0P,Iptl9IPt2,...}9 then, {oP-oQ)L{iPJ - o Q ) - ( / P J + 1 - oQ) is given by 
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one of the following sets of boundaries: 

{Op — \ipj+i — OQ ), IP i, IP 2> ••»} J 

or 

{Op, Ip J + (/pf/-+ 1 -~ OQ ), /p^ 2 , .»} , 

or 

\Op9 Ipti, Ipt2 + \lptj+l OQ), ...} , 

and so on depending on which boundary shares a line or overlaps with ( /p / + 1 -o Q ) ; 
only one of them will. Note that the above expression holds only if the shape 
difference does not produce multiple maximal planes. 

If Q is nonsimple, then each of its inner boundaries potentially helps define a 
maximal plane. That is, iQk x oP defines a plane if iQk and oP overlap. However, 
this plane may overlap with holes in P. That is, for each such nonempty plane 
IQ kx °P> w e t ake its difference with the nonempty common holes (iQ k x iPJ\ for all 
y > 0 . 

The expression for shape difference thus becomes complex if we follow the 
above procedure to completion. With a little bit of shape arithmetical magic(!), it 
turns out to be an expression of the form: 

P-Q = {((OpLo0) + (opx(i( Q, 1 + lQ, 2 + •..)))- -(/p1 + /p2+ ...)} 

However, it is clear that, as in the case of shape union, we can split the boundary 
lines of the two planes into inner, outer, and shared lines with respect to the other 
plane. Here, the boundary lines in the shape difference are made up of lines in P 
outer with respect to Q, lines in Q inner with respect to P, and the shared lines 
that are oppositely classified. The algorithm for shape difference of two arbitrary 

G=I 

„ 

Figure 24. Examples of shape difference of two maximal planes. * denotes the reference 
point. 
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planes is: 

complement(P, Q, Planes) *-
H split the boundaries of P and Q into inner, outer, left-shared, and right-
1F snared fragments 
splitplane(P, Q, IP, 0P, LP, RP ) A 
splitplane{Q, P, IQ, 0Q, LQ, RQ) A 
IF consider just the oppositely classified shared fragments for difference 
shapeJntersection_in_UX(LP, RQ, LPQ) A 
shapejntersection_in_U^Rp, LQ, RPQ) A 
MERGE{LPQ,RPQ,L!) A 
IF boundary of the union is made up of outer fragments of P and inner 
IF fragments of Q and shared fragments of the opposite types 
shape_union_in_Ui(0P, IQ, L) A 

shape_union_in_Ui{L, L!, Lines) A 
maximalplanes(Lines, Planes). 

The rules for complement also hold for simple maximal planes. 

Shape intersection 
The shape intersection of two arbitrary maximal planes P and Q can be constructed 
by iteratively adding holes to the plane formed by the intersection of the regions 
defined by the outer boundaries of P and Q. The holes that are added correspond 
to the intersection of the inner boundaries of the one plane and the outer boundary 
of the other. At the end of this procedure, we may have to postprocess the resulting 
outer, inner, and shared boundaries, because the holes may lie outside the outer 
boundaries, in which case they can be ignored. It should be noted that the intersection 
of a hole with any plane or hole is a hole. Examples of shape intersection are 
shown in figure 25. 

U Ul 

• 

rr t=j—i 

LLE±IJ 

[Eh] 
ud 

Figure 25. Examples of shape intersection of two maximal planes. * denotes the reference 
point. 
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As with shape difference, the expressions for shape intersection when Q is 
simple are easily defined. The expressions become complex when both P and Q 
are nonsimple. For completeness, the expression for shape intersection of two 
planes is given and has the form: 

PxQ = (opXoQ)1((ip i l + ip>2+..0 + (/Qfi + i(2>2+ •••)). 

An easier approach is to look at the bounding lines of the two planes and 
determine which fragments correspond to the bounding lines of the resulting shape 
intersection. According to arguments similar to those given for shape union and 
shape difference, the fragments correspond to precisely those lines in the boundary 
of each plane that lie inside the other plane and the shared lines that are identically 
classified. That is, 

common(P, Q, Planes) «- . 
1F split the boundaries of P and Q into inner, outer, left-shared, and right-
1T shared fragments 
split_plane(P, Q, IP, OP, LP, RP) A 
split_plane{Q, P, IQ, OQ, LQ, RQ) A 
1T consider just the common left-shared and right-shared fragments for 
IT intersection 
shapeJntersection_in_U\{LP, LQ, LPQ) A 
shape_intersectionJnMi{RP, RQ, RPQ) A 
MERGE(LPQ,RPQ,ll) A 
IT boundary of the union is made up of inner fragments and shared fragments 
1T of the same type 
shape_union_in_U^Ip, IQ, L) A 

shape_union_inJJ X{L, ll, Lines) A 
maximal_planes(Lines, Planes). 

As in the case of combine and complement, common also works for simple maximal 
planes. 

Spatial conditions on shapes in U2 

All that remains is to define the predicates disjoint, contain, overlap, and 
share_boundary. Each of these can be defined in terms of the bounding lines of the 
planes. 

Consider two planes P and Q. Then, P and Q are disjoint whenever every 
bounding line of one plane lies outside the other and there are no shared fragments. 
However, as the simple example in figure 26 demonstrates, the converse situation 
does not hold. Hence, 

disjoint(P, Q) - split_plane(P, Q,0,OP,0,0) A split_plane{Q, P,0,OQ,0,0) 

That is, the bounding lines of P inner with respect to Q is empty and the converse 
also applies. 

P 

Q 

Figure 26. A simple counterexample to show that disjointedness requires examining the 
boundaries of both planes. 



The arithmetic of maximal planes 

P contains Q whenever every bounding line in Q is inside P and every inner 
bounding line of P is outside Q. As in the case of disjointedness of planes, it is 
not sufficient to consider just the outer boundary of the planes as illustrated by 
figure 27. 

In figure 27(a), the outer boundary of Q lies inside P, whereas part of its inner 
boundary lies outside P. In figure 27(b), the boundaries of Q lie inside P, whereas 
the inner boundary of P lies inside Q. That is, 

contain(P, Q) *-
splitplane(P, Q, 0 , OP, LP, RP ) A 
splitplane(Q, P,IQ,0, LQ, RQ) A 
[LP n RQ] = 0 A [RP n LQ] = 0 . 

The last line ensures that P and Q do not share boundary segments that are 
oppositely oriented with respect to the other; for example, this occurs when Q 
matches a hole in P exactly. 

As containment includes all fragments of a bounding line of one plane that are 
coincident with bounding lines of the other, it follows that 

equal(P, Q) *- contain{P, Q) A contain(Q, P), 

which is what we expect. 
Overlapping of two planes is likewise defined. In the case of overlapping planes, 

the bounding lines will split into two nonempty sets of lines that lie inside and 
outside the other plane. That is, 

overlap(P, Q) «-
splitplane(P, Q, IP, 0P, LP, RP ) A 
splitplane{Q, P, IQ, 0Q, LQ, RQ) A 
[[Ip ¥> 0 A 0P # 0 ] V [IQ * 0 A 0Q ± 0 ] ] . 

The sharing of boundaries is a little trickier. Suppose we split the bounding 
lines of one plane into inner and outer lines with respect to the other. Then, the 
two planes share boundaries if and only if there are no inner bounding lines for 
either plane and there are some outer bounding lines and some shared fragments. 
In other words, 

share.boundary(P, Q) <-
splitplane(P, Q, 0 , 0P, LP, RP ) A 
splitplane{Q, P, 0 , 0Q, LQ, RQ) A 
[LP * 0 V RP ± 0 ] A 
[LP fl LQ] = 0 A [RP fl' RQ] = 0 . 

• 
(a) Q p P*Q (b) Q P P^Q 
Figure 27. Counterexamples to show that containment requires examining the bounding lines 
of both planes. 

Conclusion 
The geometry of shapes made up of finite planes of nonzero area has been considered 
with a view to being able to compare such shapes and to produce new shapes 
thereof. By doing so, we have completed the computational framework necessary 

• 

" * 
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to construct systems based on maximal representations of shapes (Krishnamurti, 
1992) for shapes in U2. This complements the framework, previously established, 
for shapes in U0 and U1. 

We have shown that the Boolean operations on shapes made up of planes can 
be expressed in terms of shape operations on lines which in turn can be expressed as 
set operations on points. Further, we have shown that nonmanifold shapes such as 
those with holes require no special treatment. In other words, all shapes in U2 can 
be handled in a uniform and consistent fashion. 

The geometry of spatial objects is encapsulated in four basic relations: disjoint, 
overlap, share_boundary, and contain', and by three basic operations: combine, 
complement, and common. Algorithms to test for these relations and to perform 
these operations have been developed and presented. The algorithms are expressed 
in logic, via a resolution-based programming notation through unification of variables, 
and thereby, demonstrate their own correctness. In one sense, no additional proof 
is required. 

Postscript—the GRAIL project 
The maximal representation of shapes described in Krishnamurti (1992) and the 
maximal planes algorithms presented in this paper form the kernel of the GRAIL*11* 
project which is in progress at Carnegie Mellon University. G R A I L is a quest for 
an environment for the interactive representation, modelling, and generative 
composition (shape editing) of two-dimensional and three-dimensional geometric 
objects with or without nonspatial attributes. Currently, work in GRAIL focuses 
on efficient implementations of the algorithms(12) based on the maximal representation 
of shapes, on user-interaction issues related to rule-based generative and drawing 
systems, on radiosity-based rendering techniques, on semantic interface issues, and 
on shape grammar applications with or without associated descriptions (Stiny, 
1990). Planned work on GRAIL includes the maximal representation of solids and 
subshape recognition in three dimensions for line, plane, and solid shapes. 
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