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Abstract. The maximal representation of a shape is defined and algorithms for shape 
arithmetic are developed. 

Introduction 
A shape is any arrangement of spatial elements from among points, or lines, 
planes, volumes, or higher dimensional hyperplanes of limited but nonzero measure. 
According to Stiny (1991), a shape is in algebra U, or simply in U, whenever it is 
made up of elements from U. Thus, a shape is in U0 if it consists of points; in Ux 

if it consists of lines; and, in general, in Un if it consists of n-dimensional 
hyperplanes. Un, n > 0, is constructed by taking the closure under union and the 
Euclidean transformations(1) of any appropriate set of n-dimensional hyperplanes(2). 
A shape may consist of more than one type of spatial element, in which case its 
algebra is given by the Cartesian product of the algebras of its spatial element 
types. Thus, a shape that is made up from points, lines, and planes is in 
U0x UX x U2. When dealing with shapes made up of points, the points can be 
distinguished by attaching nongeometric labels; in this case, a shape consisting of 
labeled points is in V0 where V0 is the closure under union and the Euclidean 
transformations of a set of labels each associated with a point. Thus, a labeled 
shape made up of labeled points, lines, and planes is in V0xU1xjJ2. 

In general, a shape s is a tuple of shapes (s1, s2,..., sk,...), where sk is a shape 
in algebra Uk, k > 0. With the exception of sets of points, each shape sk can be 
specified in indeterminately many ways as a collection of ^-dimensional spatial 
elements, where Uk is identical to Un. The algebras U1 and IP', i # y, may be 
identical. For instance, we may choose to describe the plan, elevation, and section 
of a building collectively as a shape in V0 x Ul x U2 x V0 x Ux x U2 x V0 x Ul x U2 . 

The spatial elements in shape sk in algebra Uk, k > 0, may be combined with 
other spatial elements in the same shape sk to form larger spatial elements. A 
spatial element in a shape that cannot be so combined is called a maximal spatial 
element. Thus, every shape sk in Uk, k > 0, can be uniquely and minimally 
represented by its set of maximal spatial elements; if the dimensionality of Uk 

equals n, sk is uniquely represented by its maximal set of w-planes. The partitioning 
of a shape into its distinct sets of maximal n-planes is termed the maximal 
representation of the shape. 

^ B y Euclidean transformation is meant the isometric transformations augmented with scale. 
W The set Ux is the least set closed under union and Euclidean transformation of a line; U2 

is the least set closed under union and Euclidean transformation of all triangles, in fact, the 
set of all right-angled triangles will suffice. Equally, U2 is the least set closed under union 
and affine transformation of any triangle. U3 is likewise given by the least set closed under 
union and Euclidean transformation of the smallest set of all tetrahedra that includes all 
possible angle measures; in general, Un is given by the least set closed under union and 
Euclidean transformation of all ^-dimensional simplices defined in « + l linearly independent 
points. 
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Any finite spatial element can be represented as a pair given by a descriptor and 
a boundary. For a spatial element, its descriptor is a measure of its orientation, 
and its boundary is a measure of its position and size. In principle, the descriptor 
of a spatial element is given by its equation; points are the exception because their 
descriptors are given by coordinate values. The boundary of a point is empty; the 
boundary of a line is given by its end-points; the boundary of a plane is given by 
its sets of closed connected maximal bounding lines (polygons), and so on. In general, 
the boundary of an n-plane, n > 0, is given by its sets of closed connected maximal 
(n- l )-planes where each in turn, for n > 1, is specified in terms of its sets of 
bounding connected maximal (n - 2 )-planes, and so on. That is, for any shape in 
Un, n > 0, its boundary is a shape in Un_1. Two maximal spatial elements are 
connected if they share a boundary element or if they are connected through a 
sequence of consecutively pair-wise connected elements. If the boundary of an 
n-plane is made up of more than one disjoint set of maximal (n- l)-planes, then 
the element contains a hole (see figure 1). 

Two spatial elements of the same type can combine only when they share the 
same descriptor which is denoted by the functional co. Thus, two points can 
combine when they are co-incident; two lines can combine when they are co-linear; 
two planes can combine when they are co-planar; and so on. Two spatial elements 
that share the same co-descriptor are referred to as co-equal, otherwise, they are 
co-unequal. Two co-equal spatial elements combine when one element is wholly 
contained in the other, when one element overlaps the other; or when the two 
elements share boundary elements. Thus, the combination of two spatial elements 
is determined by relationships between their boundaries. Repeated pair-wise 
combinations of the spatial elements in a shape and the elements formed thereof 
give the maximal representation of the shape. 

At this juncture, it is worthwhile to point out that the boundary of a spatial 
element exists only by implication. For example, the box defined by the six 
maximal planes shown in figure 2(a) is a shape in U2; whereas the box defined by 
the twelve maximal lines shown in figure 2(b) is a shape in Ux; and the box 
defined by six maximal planes and twelve maximal lines shown in figure 2(c) is a 
shape in U1xU2. Thus, for the shape made up of the line / and the plane p (see 
figure 3), the maximal elements are / and p, even though it appears that / is part 
of a longer line made up of / and one of the bounding lines of p. 

This distinction between defined and implied spatial elements is as real as the 
distinction between the physical creation of a model maker who works with sticks 
of balsa, as opposed to the physical creation of a model maker who works with 
sheets of cardboard, as opposed to the physical creation of a model maker who 
works with both. No other representation of spatial objects found in the literature 
makes coherent this distinction between a line by definition and a line by implication. 

Another point to note is that, if the maximal n-planes that make up a shape in 
Un, n > 0, are all co-hyperplanar and hence are all co-equal, the shape can be 

i 

Figure 1. A maximal plane with a hole, and its boundary. 
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given a 'hollow' interpretation by treating it as a shape in Un_ly n > 0, made up 
of maximal (n — 1 )-planes that correspond to the boundary elements of the maximal 
n-planes. It is for this very reason that, because every physical solid that we can 
see with the naked eye lies in the same three-dimensional hyperplane—namely, w = 0 
in an (%, y, z, w)-coordinate system—we can employ the boundary representation of 
solids modeling (see Mantyla, 1988) as descriptions of real three-dimensional 
geometric objects. Thus, for most practical purposes, we can restrict ourselves to 
shapes in U0, U1, and U2. Shapes in U3 are important only if we cannot get by 
with a 'hollow' interpretation and require a 'solid' interpretation because arithmetic 
in U3 produces different results from arithmetic in U2. Mathematically, shapes in 
any Un, n > 0, become more interesting when they are made up of co-unequal 
rc-planes. Another feature of the maximal representation of shapes is that precisely 
such shapes can be dealt with in a simple, consistent, and uniform manner. 

(b) 

fU 3 
Figure 2. A box defined by (a) six maximal planes, (b) twelve maximal lines, (c) six maximal 
planes and twelve maximal lines. 

Figure 3. A maximal line colinear with a bounding line of a maximal plane. 

The maximal representation of a shape 
An algorithm for reducing a shape specified by its set of constituent spatial 
elements to its maximal representation is now given. We assume that each shape s 
is arranged as shapes s°, s1,... ,-sk,...; k > 0. Further, we assume that each sk, 
k > 0, is partititoned into equivalence classes of spatial elements according to its 
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co-descriptor and arranged in lexicographical order. Within each equivalence 
class, the spatial elements are arranged in lexicographical order according to the 
(x, y9 z, ...)-coordinates of their maximal boundary elements. (If the specification of 
spatial elements by their boundary elements is not maximal, we can apply the 
algorithm given below to the sets of boundary elements before arranging the spatial 
elements in their lexicographical order.) This arrangement of the shape specification 
can be achieved by means of standard sorting techniques. 

Thus, for any shape sn in Un, n > 0, its elements {en>1? enA,..., enJ,..., en,m}, 
m > 0, satisfy either co(eni) < co(enj\ Vi < j , or co{eni) = co(enJ) and 
boundary{eni) < boundary(enj\ V/ < j , where boundary is a functional which is used 
to arrange the elements of an equivalence class of the shape in lexicographical order 
according to their boundary description. One possible candidate for the boundary 
functional is the list of the minimum (or maximum) (x, v, z, ...)-coordinates of the 
bounded sets(3) for each element, in that order. 

The algorithm is described in a series of mutually disjoint cases. Each case is 
expressed as a predicate with variables according to logic programming conventions(4). 
A predicate is either an assertion or a rule. The control mechanism for the algorithm 
is based on selecting the appropriate predicate that can be satisfied through 
variable assignment. The scope of any variable is restricted to the predicate in 
which it is defined. A predicate is satisfied only when all its conditions are met 
and all variables defined within it have valid assignments. If no predicate can be 
satisfied, the algorithm fails. The algorithm halts when all variables have a valid 
assignment. 

Algorithmic notation 
A shape is expressed as an ordered arrangement of nonidentical elements within a 
pair of braces {}. The expression {e} + s denotes that e is the first element in a shape 
and s is the shape, which may be empty, resulting from omitting e. Equivalently, 
{e} + s denotes the shape consisting of the element e and the elements in shape s. 
In a similar fashion, {e, f} + s denotes that e and / are the first two elements in a 
shape and s is the shape resulting from omitting e and/ . Equivalently, {e, f} + s 
denotes the shape consisting of elements e and /, and the elements in shape s. 
This notation extends in the obvious way. 0 denotes the empty shape. The 
punctuation symbols ' A' and ' V' are used as separators between conditions in a 
predicate, and denote logical conjunction and disjunction, respectively. If indicates 
the start of a comment. 

Maximal representation algorithm 
The algorithm is executed by invoking for each sn, n > 0 the recursively defined 
predicate maximal {sn, s'n) which is interpreted as follows: The predicate maximal is 
satisfied whenever s'n is the maximal representation of shape sn. 

maximal{0, 0 ) . (MR1) 

maximal({e], {e}). (MR2) 

(3) If we treat a spatial element as a point set, its bounded set is the least cuboid that contains 
the element. 
<4> This avoids dealing with data-structure issues which most properly belong to discussions 
on algorithm efficiency and implementation. One of the lessons from computer science is 
that good algorithms can be made better through well-chosen data structures but not vice 
versa. 
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The two predicates state that the specification of an empty shape or of a shape 
consisting of just one spatial element must be maximal. 

maximal ({e, f} + s,{e} + s') +-
IT co-descriptor of e is less than co-descriptor of / 
co(e) < co(f) A 
maximal{{f} + s\ s'). (MR3) 

The arrow symbol «- stands for 'if. The rule states that a shape with at least two 
spatial elements, e and /, has the maximal representation given by the element e 
and the elements in s', if e and / are co-unequal, and if s' is the maximal 
representation of the shape with element e omitted. As the elements are arranged 
lexicographically, co(e) < co(f). It should be noted that the condition "co(e) < co{ff 
is not a valid logic programming construct, but it does make for easier reading. 
The proper construct takes the form "co(e, ce) A co(f, cf) A ce < c", which for 
explanatory purposes is needlessly cumbersome. I will, on occasions, resort to such 
shorthand notational devices. 

Next, we consider the co-equal cases. Co-equality of two spatial elements 
implies that there is a larger element in which the two spatial elements can be 
embedded. The embedding relation between two spatial elements can be divided 
into three separate cases: (1) when one element wholly contains the other, (2) when 
the two elements overlap and neither contains the other; (3) when the two co-equal 
elements share boundary elements but nothing else. The three cases correspond to 
the reduction conditions stated in Stiny (1991). 

maximal({e, f} + s, s') *-
IT co-descriptor of e equals co-descriptor of / 
IT subcase: e contains / 
[co{e) = co(f) A contain(e,f)] A 
maximal{{e} + s, sf). (MR4) 

Contain is a predicate which determines whether the second element is embedded 
wholly within the first element. This can be determined by comparing the boundaries 
of the two elements. Contain obviously depends on the geometry of the spatial 
elements, and, consequently, on the algebra of the shapes under consideration. This 
predicate states that the shape with at least two spatial elements e and / has the 
maximal representation given by the elements in s', provided e and / are co-equal, 
the boundary of e contains the boundary of /, and s' is the maximal representation 
of the shape with / omitted. Element / can be ignored in further computation 
because the lexicographical ordering on the elements will forbid the situation where 
the boundary of / wholly contains e. In this instance, using the boundary functional 
specified above, one of the minimum coordinate values for / will have to be 
smaller than the minimum coordinate value for e, in which case / will occur before 
e in the sequence for the shape. Moreover, if / wholly contains, overlaps, or shares 
a boundary with some other element g in the shape s, then e must wholly contain, 
overlap, or share a boundary with g. 

maximal'({e, f} + s, sf) — 
If co-descriptor of e equals co-descriptor of / 
IF subcase: e overlaps with / 
[co(e) = co{f) A overlap(e, /)] A 
IF e and / combine to form a larger element g 
combine(e,f, g) A maximal({g} +s, s'). (MR5) 
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Overlap is a predicate which determines whether a nonempty part of each element 
is embedded in the other. As with contain, overlap compares the boundaries of the 
two elements, thus bringing into play the geometry of the spatial elements. Combine 
is a predicate which takes two combinable co-equal spatial elements and combines 
them into a single spatial element with the same co-descriptor. Combine and overlap 
are specific to the algebra of the shapes under consideration. This computational 
rule equates the original shape specification to a specification made up of the 
combination of the first two elements and the rest of the elements in the shape. 

maximal({e, /} + s, s') «-
IF co-descriptor of e equals co-descriptor of / 
H subcase: e shares boundary elements with / 
[co{e) = co(f) A share_boundary(e, /)] A 
U e and / combine to form a larger element g 
share_combine(e,f,g) A maximal {{g} + s, s'). (MR6) 

Share.boundary is a predicate which is satisfied when the two spatial elements do 
not overlap but do share boundary elements. Share_boundary also depends on the 
geometry of the spatial elements and thus on the algebra of the shape under 
consideration. There is a connection between the definition of sharejooundary in 
one algebra, and overlap and contain in the next lower dimensional algebra. 
Share.combine is a special case of combine that takes into account the fact that 
co-equal spatial elements share only boundary elements and not parts of the spatial 
elements. For two spatial elements to share a boundary there are at least two 
boundary elements, one from each spatial element, such that one boundary element 
either overlaps or contains the other. Sharing a boundary implies that the two 
spatial elements can be 'glued' together at boundary elements. Spatial elements 
cannot be so 'glued' if they only share a boundary of their boundary elements. 
Figure 4 illustrates this for maximal planes. Rule MR6 behaves in the same 
fashion as rule MR5. 

The last case to consider is when the first two elements are disjoint. 
Disjointedness of two spatial elements can be considered in two different ways. 
First, the spatial elements are co-unequal, which is treated by rule MR3. Second, 
the spatial elements are co-equal but have no elements in common. In this case, 
when n > 2, the boundary functional as defined above does not preclude the 
situation where one element which is disjoint with the next lexicographically 
determined element in the shape may combine with other elements in the shape, the 
resultant elements then combining into larger elements. Let disjoint be the predicate 
that determines whether the boundaries of two co-equal elements have anything in 
common. Disjoint is specific to the algebra of the shapes under consideration. If the 
boundary functional can be defined on any set of spatial elements so that 

Vi < j [boundary{en t) < boundary(en ;)], 
disjoint{en i9 enj) => Mk > j , disjoint{en t, enJc), 

(a) (b) 
Figure 4. Two examples of maximal planes with and without sharing boundaries: (a) two 
boundary lines overlap and the planes can be glued together; (b) planes share a point but not 
a boundary line and so cannot be glued together. 
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then we could add the following rule without modifying any of the other rules, 

maximal({e, f} + s, {e} + s')-*-
[co{e) = co{f) A disjoint(e,f)] A 
maximal({f} + s, s'}. 

However, the condition holds only if the set consists of lexicographically ordered 
maximal elements. As we are not sure whether e is maximal, we cannot ignore e 
in further computation. Thus, the algorithm could be improved by suitable choices 
for the boundary functional(5). 

Instead, we introduce an extra predicate reduce(e, s', s") which reduces the 
element e with respect to the maximal representation of shape s' to produce the 
maximal representation of s", the shape produced by combining e with the elements 
of s'. The first element of s', say g, is either /, or consists of elements that have 
combined with /. Notice that, because of the way the boundary functional is defined, 
the lexicographical positions of e and / (or g) will not have altered. Because e was 
disjoint with /, it follows that e cannot contain this new first element g of s'. Thus, 
only two possibilities can occur: (1) e remains disjoint with g, in which case it may 
still be combined with other elements in s' and any resulting combination still 
remains disjoint with g; (2) e may combine with g—when e overlaps with g, or 
when e shares a boundary with g—in which case the resulting combination may 
combine with other elements in s'. Because the number of elements to be considered 
at each level of the recursion is reduced, the procedure must eventually halt.(6) 

Thus, the final rule can be written as 

maximal({e, f} + s, s") «-
U co-descriptor of e equals co-descriptor of / 
IT subcase: e is disjoint from / 
[co{e) = co(f) A disjoint(e, /)] A 
H However, e may combine with other elements in s (see figure 5) 
maximal({f} + s, sf) A reduce(e, s', s"). (MR7) 

Reduce is defined by the following three rules: 

reduce(e, {g} + s', {h, g} + s") «-
disjoint{e, g) A 
maximal({e} + s', {h} + s"). (MR7.1) 

reduce(e, {g} + s', s") .«-
overlap(e, g) A 
combine(e, g, h) A maximal({h} + s', s"). (MR7.2) 

reduce(e, {g} + s', s") *-
share_boundary(e, g) A 
share_combine(e, g, h) A maximal{{h} +s\ s"). (MR7.3) 

Reduce works much the same way as maximal (compare rules MR5-MR7), with 
the exception that it combines (and hence reduces) a single element with respect to a 
shape given by its maximal representation and which is known to be lexicographically 
less than all other elements in the shape. Figure 5 illustrates the possible reduction 
situations. 

<5> A strict order on spatial elements for sn, n > 2, would require a boundary functional that 
is not expressed simply in terms of coordinate values. 
(6) It is easy to show that with the appropriate choice of data structures the algorithm can be 
implemented in a time linear in the number of elements in sn. 
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A further improvement to the efficiency of the algorithm can be made by 
observing that every maximal n-plane can be transformed by an isometric 
transformation (for example, see Martin, 1987) to an rc-plane with one of the 
Ai-coordinate values set to 0. In other words, the lexicographical ordering of the 
spatial elements will be either preserved or reversed, depending on whether the 
isometry is even (sense-preserving) or odd (sense-reversing). For instance, when 
n = 1, every line can be mapped by an isometric transformation onto the y = 0 
line; when n = 2, every plane in space can be mapped onto a plane with z = 0 
(or x = 0 or y = 0 for that matter). If the boundary functional returns two sets of 
descriptors, min, relating to the minimum coordinates, and max, relating to the 
maximum coordinates, then we need only compare elements whose maximum 
coordinates of one do not exceed the minimum coordinates of the other. In other 
words, 

Vi < j[max(enti) < min{enJ)], disjoint(eni, enJ) => Vfc > jdisjoint{eni, eKtk). 

This condition holds for any set of lexicographically ordered spatial elements. 
Thus, once we have found the first disjoint element that satisfies the above 
boundary condition, we can stop comparisons with all elements in the shape with 
larger lexicographical indices. I leave the specification of the algorithm using the 
min and max boundary functionals as an exercise to the reader. 

Finally, it should be noted that we do not necessarily have to fix on these seven 
rules. For certain values of n, because of the definitions for overlap, share.boundary, 
and disjoint, some rules may be combined into a single rule; this becomes a matter 
of taste and implementation. Furthermore, because co-unequal spatial elements in 
different equivalence classes can never be combined, we can effectively dispense 
with rule MR3 and apply the algorithm separately to each equivalence class, thus 
reducing the number of comparisons to be made. 

This completes the enumeration of the cases and the description of the algorithm. 

f\— 

•-0 

3̂ 

disjoint elements 

- g 
overlapping elements 

- * if 
share boundary 

-+ e 
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p'1 

h WW? 
8 W 

Figure 5. The possible spatial situations that can arise before and after reduce is invoked. 
The left-hand column indicates the elements of the shape whose first two elements in 
lexicographical order are e and /, respectively. Elements e and / are disjoint. The middle 
column describes the situation just before reduce is applied, indicating the element e and the 
maximal elements of the shape formed by the remaining elements whose first element is g. 
The right-hand column describes the situation just after reduce has been applied and indicates 
the maximal elements of the shape whose first element is h. The maximal elements of a 
shape are shaded the same. 
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Shape arithmetic 
The primary purposes for developing any representation scheme are twofold. First, 
to use the representation as a framework for comparing objects (shapes). Second, to 
produce a new object (shape) from a given collection of objects (shapes). In this 
section, I develop algorithms for performing such operations based on the maximal 
representation of shapes. 

Stiny (1991) has shown that for each n > 0, the algebra Un satisfied the axioms 
of a Boolean ring under intersection and symmetric difference. Moreover, any 
combination of these algebras under a Cartesian product satisfies the axioms of a 
Boolean ring under intersection and symmetric difference. In other words, we can 
define the standard Boolean operations on shapes to obtain the sum of two shapes 
(union), the difference of two shapes (relative complement), and the shape common 
to two shapes (intersection). We can also define the standard Boolean relations on 
shapes, namely, shape equality and the subshape relation. It should be noted that 
the algorithms given here are not necessarily the most efficient possible, for the 
reason that the algorithms specified here apply to shapes defined in any algebra 
Un, n > 0, and consequently take into account neither algebra-specific properties 
of shapes nor efficiencies that can be effected by selecting good data structures(7). 

As before, we assume that a shape is arranged as shapes s1, s2,..., sl,...; / > 0. 
Each sl corresponds to a sn9 for some n > 0, a shape represented by a set of 
maximal n-planes and which is partitioned into equivalence classes based on 
co-equality. 

That is, 

c c 

where e£ t is the representative element in the cth equivalence class. Because the 
maximal elements in an equivalence class are disjoint from each other, we have 

Vi < j < k, 

\boundary{ec
n {) < boundary (e*;-) => disjoint(e£ t, en

c
y)] => disjoint(e„t, e^k)-

More algorithmic notation 
We add the following notation to our algorithm description, [e] denotes an 
equivalence class of co-equal elements where e is a representative element of the 
class. It should be noted that e is not any specific element but has certain 
properties, in particular, the shape descriptor, shared by all elements in the class. 
[e] + s is the shape whose first element is the equivalence class with e as its 
representative element and s is the shape that results from omitting the elements in 
the equivalence [e](8). Equivalently, [e] + s is the shape made up of elements in the 
class [e] of co-equal elements, where e is a representative but not any specific 
element in the class, and the elements in shape s no element of which is co-equal 
to e. [e] + [f] + s is the shape whose first two elements are the equivalence classes 
with e and / as their representative elements and s is the shape that results from 
omitting the elements in [e] and [/]. Equivalently, [e] + [/] + s is the shape made 
up of co-equal elements in classes [e] and [/] and the elements in shape s no 
element of which is co-equal to the elements in either class [e] or class [/]. The 
notation extends in the usual way. 

(7) Tuning shape algorithms to take into account algebra-specific properties of shapes is an 
important aspect of implementing shape arithmetic. The reader is referred to Bentley (1986), 
Sedgewick (1988), and Manber (1989) for insights into the art of algorithm tuning. 
<8> In a programming language such as C, if the equivalence classes are represented as linked 
lists, list concatenation [e] + s can be done with 0(1) pointer assignments. 
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The definitions for the Boolean operations on shapes and for the Boolean 
relations on shapes follow Stiny (1986). There, Stiny employs the part relation 
which is a partial order on shapes. A part of a shape is equivalent to any spatial 
element or a fragment thereof of the shape, or made up of spatial elements or 
fragments thereof of the shape. The empty shape is a part of every shape. 

Shape union 
The union of two shapes is the shape that just has the parts in either shape or is 
made up of both shapes. The union of two shapes can be computed by comparing 
maximal elements, two at a time, one from each shape and testing whether they 
combine to form a larger spatial element. The combination of two elements clearly 
contains the two elements and all their subelements, and thus satisfies the union 
definition. Moreover, we need only compare co-equal elements; that is, elements 
from equivalence classes with the same descriptor. Note that the maximal 
representation algorithm given previously gives us the shape union of two shapes 
for free if we apply the maximal representation algorithm to the ordered merged 
set of lines from both shapes. However, we can give an alternative algorithm that 
uses the ordering on the elements of the shapes implicit in their maximal 
representations. The algorithm is considered to be a two-stage process. First, 
compare the descriptors of the equivalence classes. Second, compare co-equal 
elements from classes with the same descriptor. 

The first stage is described by the recursively defined predicate 

shape_union(se, sf, s) , 

which is interpreted as: the predicate shapejmion is satisfied whenever s is the 
maximal representation of the union of shapes se and sf. 

The algorithm is enumerated in a series of cases. 
First, the trivial cases, namely, if either shape is empty, their shape union is 

given by the other shape. That is, 

shape_union(0, s, s). (SU1) 

shapeMnion(s, 0 , s) +- s ^ 0 . (SU2) 

Notice that rule SU2 is expressed as a rule with the condition s ^ 0 because the 
case where both shapes are empty (and hence their union is empty) is captured by 
rule SU1. If neither shape is empty, then each shape must have at least one 
equivalence class, say [e] and [/] respectively, which must satisfy one of three 
mutually exclusive conditions: 

(1) co(e) < co(f), (2) co(e) > co(f), or (3) co(e) = co(f) . 

For each of these cases, the rules for shape union are expressed as: 

shape_union([e] + se9 [f] + sf, [e] + s) «-
IF co-descriptor of elements in class [e] < co-descriptor of elements in class [/] 
co(e) < co(f) A 
shape.union{se, [f] + sf, s). (SU3) 

shapeMnion([e] + se, [f] + sf, [f] +s) *~ 
IF co-descriptor of elements in class [e] > co-descriptor of elements in class [/] 
co{f) < co{e) A 
shapeMnion([e]+se9 sf, s). (SU4) 
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shape_union([e] + se, [f] + sf, [g] + s) <-
II co-descriptor of elements in class [e] = co-descriptor of elements in class [/] 
co(e) = co(f) A 
1T classes of elements can be combined to form a single class 
co_union([e], [/], [g]) A shape_union(se, sf, s). (SU5) 

In rule SU3, [e] can be ignored in further computation because its co-descriptor 
will be less than that of any of the remaining classes in se and sf. Rule SU4 is 
symmetric to rule SU3. In rule SU5, we invoke the predicate cojmion which is the 
second stage in the algorithm where the co-equal elements are compared for 
combination. Cojmion returns the shape union of co-equal classes of maximal 
elements. The definition for cojinion is 

co_union(0, s, s). (CUl) 

co_union(s, 0 , s) ^ s ¥> 0 . (CU2) 

These two rules cover the trivial cases. The remainder cover the nontrivial cases. 
Suppose e is the current element in the first shape and / is the current element 

in the second shape, then the following possibilities arise: (1) e and / are identical; 
(2) e wholly contains / or vice versa and they are not identical; (3) e and / overlap; 
(4) e and / share a boundary element; and (5) e and / are disjoint. The first two 
cases are captured by the following two rules: 

co_union({e} + se, {f} + sf, s) «-
U e contains / and e may be identical to / 
contain(e,f) A 
co_union({e} + se, sf, s). (CU3) 

co_union({e} + se, {f} + sf, s) *-
H/ contains e and e is not identical to / 
[not identical(e, f) A contain{f, e)] A 
co_union(se,{f} + sf, s). (CU4) 

It should be noted that rule CU3 subsumes the case when the spatial elements 
are identical, because identity between spatial elements satisfies the following rule: 

identity(e, / ) , if and only if contain(e,f) and contain(f, e). 

From a practical standpoint it might be convenient to separate rule CU3 into 
two subcases so as to reduce the number of comparisons that need to be 
performed. That is, rule CU3 is equivalent to the following two rules: 

co_union({e} + se,{f} + sf, {e} + s) -
identical(e,f) A 
co_union(se, sf, s). (CU3a) 

co_union({e} + se, {f} + sf, s) «-
[notJdentical{e,f) A contain(e,f)] A 
co_union{{e} + se,sf,s). (CU3b) 

Cases (3) and (4) are dealt with by the two rules: 

co_union({e} + se,{f} + sf, s) <-
U e overlaps with / 
overlap(e,f) A 
U e and / combine to form a larger element g 
combine{e,f, g) A 

co_union(se,sf,s
f) A co_union({g}, sr, s). (CU5) 
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and 

co_union{{e} + se, {/} + sf, s) «-
U e shares a boundary element with / 
share.boundary(e, f) A 
II e and / combine to form a larger element g 
share_combine{e,f,g) A 

co_union(se,sf, s') A co_wmorc({g}, 5', s). (CU6) 

Notice that in rules CU5 and CU6, e and / are dropped from further comparison 
because their union g is subsequently combined with the shape union of se and sf, 
s', to be the shape union s. This will take into account the possibility that g 
contains, overlaps, or shares a boundary with some elements in the shape union of 
se and sf. The combination of two maximal planes is illustrated in figure 6. 

Last, we consider the fifth case, when e and / are disjoint. Here, we first take 
the co.union of the shapes omitting e and reduce the resulting shape s' by combining 
its maximal elements with e. Even though e and / are disjoint, there is no reason, 
for n > 2, why e may not combine with other elements in sf, and therefore, with 
elements in s'. Hence, 

coMnion({e} + se,{f} + sf, s) «-
He is disjoint from / 
disjoint(e,f) A 
If However, e may combine with other elements in sf 

co_union(se,{f} + Sf, sf) A reduceMnion(e, s\ s). (CU7) 

The predicate reduce.union combines or reduces a single element with respect to 
the elements of a shape union. Reducejmion works much the same way as reduce 
described earlier. The reason for invoking reducejmion instead of directly taking 
the co.union of {e} with V is that the disjointedness condition of e and / does not 
take into account their lexicographical ordering. Reducejmion ensures that e is 
positioned correctly in the maximal representation of s. Equally, we could have 
reduced the shape union of {e} + se and tyby the element / to obtain the required 
shape union. Reduce.union considers the two possibilities that can arise. 
(1) Element e remains disjoint with the first element, say h, of s' in which case the 
boundary functional of e and h are compared to obtain the proper ordering on e 
and h. There are two points to note: first, h is disjoint with the remaining elements 
in s'; second, h will remain disjoint with elements in s' that combine with e. 
(2) Element e combines with h and we take the shape union of the combined element 
with the remaining elements in s'. This situation is divided into two subcases: 
(a) when e and h overlap; (b) when e and h share a boundary element. 

These observations are captured in the following algorithm for reducejmion. 

reduceiunion(e, {h} + sh, {g\ h'} + s) <-
disjoint(e, h) A 
coMnion({e}, sh, {g} + s) A arrange_gh{g, h, {gf, h'}). (CU7.1) 

Figure 6. Two maximal planes and the resulting shape union. 
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and 
reduce_union(e,{h} + sh, s) <-

overlap{e, h) A 
combine(e, h, g) A co_union({g}, sh, s). (CU7.2) 

reduce_union(e,{h} + sh, s) <-
share.boundary(e, h) A 
share_combine(e, h, g) A C0_wraorc({g}, sh9 s) .• (CU7.3) 

Certain basic efficiency measures can be introduced into rules CU7 and CU7.1 
by noting that, if the two current elements e and h are disjoint and if the maximum 
coordinate of e is less than the minimum coordinate of h, then e will be disjoint 
with the elements in sh. Redefining the two rules by using the minimum and 
maximum coordinates of the spatial elements is left as an exercise to the reader. 

The predicate arrange_gh in rule CU7.1 ensures that g and h are placed in the 
correct lexicographical order in the union. Note that either g equals e or g 
contains e. Elements g and h are disjoint with each other. 

arrange_gh{g,h,{g,h}) <-
boundary(g) < boundary(h). (CU7.1.1) 

arrange_gh(g,h,{h,g}) «-
boundary(g) > boundary(h). (CU7.1.2) 

This completes the description of the procedure for shape union. All possible 
spatial conditions that can arise have been considered. Furthermore, because the 
application of any rule for shape.union and co.union reduces the total number of 
elements to be compared by at least one element, the procedure will halt. In view 
of the double recursion in rules CU5 through CU7 the algorithm has a worst-case 
time-bound proportional to the product of the number of elements in the two shapes. 

Shape difference 
The difference of two shapes is the shape that has just the parts of the first shape 
that, when nonempty, do not have nonempty spatial elements that are also parts of 
the second shape. That is, shape difference is the relativised complement of the 
second shape with respect to the first shape. The algorithm for shape difference 
follows similar lines to that for the shape union algorithm and is given as a two-
stage process. 

Shape difference is obtained by invoking the recursively defined predicate 

shape_difference(se, sf, s), 

which states that: the predicate shape_difference is satisfied whenever s is the 
maximal representation of the relative complement of shape sf with respect to 
shape se. 

As before, the algorithm is enumerated in a series of cases. 

shape_difference( 0 , s, 0 ) . (SD1) 

shape_difference{s, 0 , s) — s ¥" 0 . (SD2) 

shape_difference([e] + se, [/] + sf, [e] + s) <-
IF co-descriptor of elements in class [e] < co-descriptor of elements in class [/] 
H elements of [e] are in the shape difference 
co{e) < co(f) A 
shape_dijference(se,[f] + sf, s). (SD3) 
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and 

shape_difference([e] + se,[f] + Sf,s) *-
IT co-descriptor of elements in class [e] > co-descriptor of elements of class [/] 
If elements of [/] are not in the shape difference 
co{f) < co{e) A 
shape.difference([e] + se,sf,s). (SD4) 

shape.difference([e] + se,[f] + Sf,s')«-
1F co-descriptor of elements in class [e] = co-descriptor of elements in class [/] 
U elements of [c]-[/] are in the shape difference 
co(e) = co(f) A 
^ [e]-[f] may be empty; hence, the APPEND. 
co.difference([e], [/],[#]) A shape_difference(se, sf, s) A 

APPEND{[g},s,s'). (SD5) 

Rules SD1 through SD4 are straightforward and follow immediately from the 
definition of shape difference. Rule SD5 does the real work by comparing classes 
of co-equal elements. CoAifference produces the shape difference [g] of co-equal 
shapes [e] and [/]. [g] may be empty. The concatenation predicate APPEND 
ensures that such empty shape differences are discarded. APPEND has the form,(9) 

APPEND(0,s,s). (Al) 

APPEND{s, 0 , s) «- s * 0 . (A2) 

APPEND{[g],s,[g] + s) - s ± 0 A [g] * 0 . (A3) 

The predicate co.dijference is defined as follows. Co.dijference is divided into 
several cases. 

First, the trivial cases when either shape is empty. 

co.dijference(0, s, 0). (CD3) 

co.dijference(s, 0 , s) *- s # 0 . (CD4) 

We next consider the possible spatial situations that arise when elements e and / 
in shapes se and sf, respectively, are compared. The first situation is when one 
element contains the other. There are three cases: (1) e and / are identical; (2) e 
contains / but is not identical to /; (3) / contains e but is not identical to e. 

When e is identical to /, then clearly e will not be in the shape difference. 
Because e is disjoint from every other element in shape se, f too will be disjoint 
from every other element in se, and therefore can be ignored in further comparisons. 
Hence, 

co_difference({e} + se, {f} + sf, s) <-
H e is identical to /; hence, e-f is empty. 
identical(e, / ) A 
co_difference{se, sf9 s). (CD5) 

Suppose e is not identical to / , but e contains / . Then, the shape difference will 
contain elements that are part of the relative complement of / with respect to e. In 
general, the relative complement of a spatial element with respect to another will 
yield one or more relatively maximal spatial elements as shown in figure 7. Because / 
is wholly contained within e, it will be disjoint with every other element in se, and 

<9> The version given here is a naive description. Efficient versions of APPEND are highly 
data-structure dependent. I adopt the convention that data-structure dependent predicates are 
given in upper case. 
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therefore can be ignored in further comparisons. However, e, and hence any 
relative complement [g] of / with respect to e, may overlap with other elements in 
sf, and therefore must be included for further comparisons. Furthermore, [g] may 
contain elements whose boundary descriptor may be lexicographically greater than 
that of the other elements in se (see figure 8), and consequently, the shape difference 
of [g] and the remaining elements of sf have to be merged with the shape difference 
between the remaining elements in se and sf to get the representation of the shape 
difference between se and sf in lexicographical order. That is, 

co_difference{{e} + se, {f} + sf, s) «-
IT e contains / and is not identical to it 
[not identical{e, f) A contain(e, /)] A 
IF element ordering may be changed as a result of shape difference (see figure 8) 
IF hence, the MERGE 
complement^, / , [g]) A 

co_difference([g], sf, s') A co_difference{se, sf, s") A 
MERGE(s', s", s). (CD6) 

On the other hand, if / wholly contains e, then we have a situation similar to 
rule CD5, except that / is included for further comparisons: 

co_difference({e} + se, {f} + sf9 s) «-
IF / contains e and is not identical to it 
[not identical(e, f) A contain(f, e)] A 
co_difference(se, {f} + sf, s). (CD7) 

Next, we consider the situation when e and / overlap or share a boundary. This 
case is similar to rule CD6, except that / may overlap or share a boundary with 
the other elements in se, and therefore has to be included for further comparisons. 
Notice that, when e and / share a boundary, their shape difference equals the 
element e. 

co_difference({e} + se, {f} + sf, s) <-
IF e and / overlap 
overlap(e, / ) A 
complement(e, / , [g]) A 

co_difference([g], sf9 s') A co_difference(se, {/} + sf, s") A 
MERGE{s\ s\s). (CD8) 

Figure 7. Two maximal planes and their resulting shape difference. 

\2\* 

1 % 3: 

Figure 8. A possible effect on element ordering after a shape difference. * is a reference 
point. 
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and 

co_difference({e} + se, {f} + sf, s) «-
If e shares only boundary elements with /, and hence, e —f is empty 
shareJ)oundary{e, f) A 
co_difference({e}, sf, s') A co_difference(se, {f} + sf, s") A 

MERGE{s', s", s). (CD9) 

The precidate complement in rules GD6 and CD8 takes the relative complement 
of one spatial element with respect to the other and its definition is algebra specific. 

The last situation that has to be considered is when d and / are disjoint. We 
can split this into two cases: (1) when e is definitely disjoint with all elements in sf; 
(2) when e may not be disjoint with the other elements in sf. Case (1) is indicated 
by the condition that the maximum point of e is less than the minimum point of/, 
and hence by our definition of the boundary functional will be disjoint with all 
elements of sf. Here e will be in the shape difference. Case (2) is similar to the 
situations expressed by rules CD6 and CD9. The two cases are captured by the 
following rules. 

co_difference({e} + se, {f} + sf, {e} + s) <-
H e is disjoint from / and its maximum boundary coordinate is less than that 
IF of /, and hence will be disjoint from all remaining elements in sf 

[disjoint {e, f) A max(e) < min(f)] A 
co_difference(se, {f} + sf, s). (CD10) 

co_difference({e} + se, {f} + sf, s) «-
IT e is disjoint from / and its maximum boundary coordinate is greater 
IF than that of/, and hence may not be disjoint from other elements in sf 

[disjoint(e,f)Amax(e)>min(f)\A 
co_difference({e}, Sp s') A co_difference(se, {f} + sf, s") A 

MERGE(s\ s", s). (CD11) 

The routine MERGE employed in the description of the algorithm takes two 
ordered sets of spatial elements and merges them into a single ordered set. An 
efficient MERGE is data-structure dependent. The naive definition has the form: 

MERGE(0, s,s). (Ml) 

MERGE(s, 0 , s) - s * 0 . (M2) 

MERGE([e], {f} + sf, [e] + {f} + sf) - max([e]) < min(f). (M3) 

MERGE({e} + se, {f} + sf, {e} + s) -
[max({e} + se) > min(f) A boundary{e) < boundary(f)] A 
MERGE{se,{f} + Sf, s). (M4) 

MERGE{{e} + se, {f} + sf, {f} + s) -
boundary(f) < boundary(e) A 
MERGE{{e} + se, sf, s). (M5) 

This completes the enumeration of the different spatial conditions for shape 
difference. The algorithm has a worst-case time-bound proportional to the product 
of the number of elements in the two shapes. 

Shape intersection 
The intersection of two shapes is the shape that is made up of the parts common to 
both shapes. The algorithm for shape intersection is similar to those for shape 
union and shape difference. 
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The shape intersection of two shapes is produced by invoking the recursively 
defined predicate 

shapeJntersection{se, sf, s), 

which states that: the predicate shapejntersection is satisfied whenever s is the 
maximal representation of the shape common to shapes se and sf. 

That is, 

shape_intersection(0, s, 0 ) . (SIl) 

shapeJntersection{s, 0 , 0 ) — s ¥> 0 . (SI2) 

shape_intersection([e] + se, [f] + sf, s) «-
H co-descriptor of class [e] < the co-descriptor class [/], 
IT and hence [e] is not in the shape intersection 
co(e) < co(f) A 
shape_intersection{se, [f] + sf, s). (SI3) 

shape_intersection([e] + se, [f] +sf, s) «-
U co-descriptor of class [e] > the co-descriptor class [/], 
If and hence, [/] is not in the shape intersection 
co{f) < co{e) A 
shape_intersection([e] + se, sf, s). (SI4) 

shape_intersecdon([e] + se, [f] + sf, s') <f-
H co-descriptor of class [e] = the co-descriptor class [/], 
U and hence, [e] and [/] may have a common shape 
co(e) = co(f) A 
H the shape intersection of [e] and [/] may be empty, and hence the APPEND 
co_intersection([e], [/], [g]) A shape_intersection(se, sf, s) A 

APPEND([gl s, s'). (SI5) 

Rules SI1 through SI4 are again straightforward and follow immediately from the 
definition of shape intersection. Rule SI5 compares co-equal elements for common 
elements. Cojntersection produces the shape, which may be empty, common to 
co-equal shapes [e] and [/]. APPEND has been previously defined (see rules Al , 
A2, and A3). 

Cojntersection is defined as follows. As before, the algorithm is divided into 
rules that cater for the various cases that can arise. 

The trivial case when either shape is empty is handled by the following two rules. 

co_intersection{ 0 , 5 , 0 ) . (CI1) 

co_intersection(s, 0 , 0 ) «- s # 0 . (CI2) 

Next we consider the case when the current elements from the respective 
equivalence classes contain the other. They are expressed by the following two 
rules. The condition "not identical{e, / ) " in rule CI4 is necessary to ensure that 
only rule CI3 applies in situation when the elements are also identical. 

co_intersection{{e} + se, {f} + sf, {f} + s) *-
IT e contains /, e may be identical to /, and hence / is the common shape 
contain(e, / ) A 
co_intersection({e} + se, sf, s). (CI3) 
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and 
co_intersection({e} + se, {f} + Sf,{e} + s)+-

1F / contains e, e is not identical to /, and hence e is the common shape 
[notJdentical{e, f) A contain{f, e)] A 
co_intersection(se, {/} + sf,• s). (CI4) 

The third spatial situation occurs when the two elements e and / either overlap 
or share a boundary element. The rules can be stated analogously to rule CD8 
and CD9. The satisfaction of rule CI5 given below relies on satisfying the algebra-
specific predicate common which returns the common (sub)elements of the two 
spatial elements. When the two elements overlap, there will be at least one common 
subelement, denoted by the shape [g], and there may be more as illustrated in 
figure 9. Moreover, it is possible that the element e may overlap with other elements 
in the other shape. However, we need two merge operations (see rules Ml through 
M5) because the shapes common to e and the shape without the element / may 
produce an element ordering that is not consistent with the element ordering in [g]. 
The second merge operation is required for the same reasons as in rule CD8. 

co_intersection({e} + se, {f} + sf, s) *-
H e overlaps / 
overlap(e, f) A 
IF element ordering may be changed as a result of shape intersection, 
H and hence the MERGE operation 
common(e, /, [g]) A 

co_intersection({e}, sf, se') A co_intersection(se, {f} + sf, s") A 
MERGE{[gl s'e, s') A MERGE{s', s", s). (CI5) 

coJntersection({e} + se9 {/} + ty, s) «-
H e only shares boundary elements with /, and hence e and / have no 

common shape 
share_boundary(e, / ) A 
coJntersection{{e}, sf, s') A co_intersection(se, {f} + sf, s") A 

MERGE{s\ s\ s). (CI6) 

Finally, the disjoint element case. This is handled in exactly the same fashion as 
in shape difference (see rules CD 10 and CD 11). 

coJntersection({e} + se, {f} + sf9 s) «-
H e is disjoint from / and its maximum boundary coordinate is less than that 
IF of /, and hence will be disjoint from all remaining elements in sf 

[disjoint(e, f) A max{e) < min(f)] A 
coJntersection{se, {f} + sf, s). (CI7) 

co_intersection{{e} + se, {/} + fy, s) «-
1T e is disjoint from / and its maximum boundary coordinate is greater than 
II that of/, and hence may not be disjoint from other elements in sf 

[disjoint(e, f) A max{e) > min(f)] A 
co_intersection({e}, sf, s') A co_intersection(se, {f} + sf, s") A 

MERGE(s\ s", s). (CI8) 

"171 m. 

Figure 9. Shape intersection of two maximal planes to produce three maximal planes. 
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This completes the enumeration of all possible spatial situations and the description 
of the shape intersection algorithm. The worst-case performance of the algorithm 
is similar to that for shape union and shape difference, namely, proportional to the 
product of the number of elements in both shapes. 

Shape equality 
Two shapes are equal if their parts are identical. Alternatively, two shapes are 
equal if they are subshapes of each other. That is, 

shape_equality(se, sf) «- subshape{se, sf) A subshape(sf, se). (EQ1) 

Shape_equality succeeds only when the two shapes are equal. The predicate 
subshape is defined in the next section. 

Subshape relation 
A shape is a subshape of another shape if every part of the first shape is a part of 
the second shape. We define a predicate subshape (se, sf) which is satisfied only 
when se is a subshape sf. Unlike the shape operations, we need only consider the 
spatial situations when the subshape relation is likely to succeed. 

subshape(0, s). (SSl) 

subshape([e] + se, \f] + sf) «-
co(f) < co{e) A 
subshape{[e] + se, sf). (SS2) 

subshape([e] + se, [f] + sf) <-
co{e) = co(f) A 
subelement([e], [f]) A subshape(se, sf). (SS3) 

There are only three situations to consider for the subshape relation. If the shape is 
empty the relationship always holds, because the empty shape is a subshape of all 
shapes (rule SSI). If the current class of co-equal elements [e] has a higher descriptor 
value than [/], then there remains the possibility that sf contains a shape of which 
[e] is a subshape. Hence, the truth or falsity of the subshape relationship depends 
on whether or not [e] + se is a subshape of sf (rule SS2). If the current classes are 
co-equal, then every element in [e] must be a subelement of [/] for the relationship 
to hold (rule SS3). In all other cases, the subshape relationship fails and this is 
indicated by the fact that no other rules are specified. In other words, the failure 
to satisfy a rule implies the negation of the predicate. 

Subelement is similarly defined. 

subelement(0, s). (SE1) 

subelement({e} + se, {f} + sf) *-
identical(e, f) A 
subelement{se, sf). (SE2) 

subelement({e} + se, {f} + sf) «-
contain(f, e) A 
subelement{se, {f} + sf). (SE3) 

subelement{{e} + se, {/, g} + sf) *-
[disjoint(e, / ) A max(e) > min{g)] A 
subelement{{e}, {g} + sf) A subelement(se, {/, g} + sf). (SE4) 

Rules SE1 through SE3 are obvious. Rule SE4 needs a little explanation. When 
element e is disjoint from/, then unless there is another element such that e is a 



286 

subelement of it, the subshape relation cannot possibly hold. Moreover, if the 
element g next to /, in lexicographical order, has its minimum boundary point greater 
than the maximum boundary point of e, then e will be disjoint with g and with all 
other elements in the second shape, and again the subshape relation will fail. 
Here too, I have omitted the cases where the subshape relation will definitely not 
hold. That is, negation is implied by failure to satisfy any of the rules. 

Algebra-specific predicates of shapes 
To complete the description of the shape algorithms for shapes in any algebra, we 
need to define, for each algebra, the seven algebra-specific predicates that they rely 
on, namely, contain, overlap, sharejboundary, combine, share_combine, complement, 
and common. In the remainder of this paper I develop definitions for these 
predicates for the shapes in U0 and Ux. The definitions of the basic relations and 
operations on shapes in U2 are given in Krishnamurti (1991). 

Shapes in U0 and V0 

Shapes in U0 consist of points, and in the case of V0, points are associated with 
labels. The algebra-specific predicates such as overlap, share.boundary, and contain 
are equivalent to the identity relation. That is 

overlap{e, f) +- e = f. 

The other predicates such as combine, share_combine, complement, and comment 
have trivial definitions, namely, 

combine(e, e, e). 

share_combine{e, e, e). 

common(e, e, {e}). 

complement(e, e, 0 ) . 

By replacing the algebra-specific predicates in the algorithms for the shape 
operations by the above definitions and by eliminating duplicate rules, it is easy to 
show that shape operations on points reduce to their analogous set operations. 

Shapes in U1 

The shape arithmetic for shapes in Ul consisting of lines has been fully treated in 
Krishnamurti (1980) and Chase (1989). For the sake of completeness, I briefly 
define the algebra-specific predicates. Let a line / be represented by its endpoints 
{t(l), h{l)}, respectively the tail and head of line / where t{l) < h{l). Then, 

share_boundary{e, f) *- t(e) = h(f) V t(f) = h{e). 

contain(e,f) <- t(e)< t(h) A h(f) < h{e). 

overlap{e,f) - t{e) < h(f) A t(f) < h{e). 

The overlap predicate as defined subsumes the containment case, but this does 
not cause any problems because the ordering on maximal lines is strict. That is, if 
e and / are two maximal lines from different shapes se and sf, respectively, that 
combine, their combination is always disjoint from at least one of the next elements 
in order from se or sf

m. In fact, we can define a single predicate combinable to 
replace the three separate predicates above: 

combinable{e, f) - t(e) < h(f) A t{f) < h(e). 
(10) This property has been used to specify linear time shape algorithms in Ux (see Krishnamurti, 
1980). 



The maximal representation of a shape 287 

Suppose e and /combine to form a longer line g. Then, 

combine(e, f, g) «- min(t(e), t(f), t(g)) A mdx(h(e),h(f), h(g));. 

where mm and max return the minimum and maximum coordinates of two points 
respectively. Share_combine has an identical definition. 

If e and / overlap, their common line is given by 

common(e, f, {g}) - max{t(e), t(f), t{g)) A min{h{e), h{f), h(g)). 

and their shape difference is the set of zero, one, or two lines: 

complement{e, f, [g]) «-
/ M ' W , ' ( A M) Mine{h{e\ h(f), [h]) A APPEND([t], [h], [g]), 

where line checks whether the given points observe the ordering on endpoints of a 
line in which case it returns a shape containing the line given by the points; 
otherwise, it returns an empty shape. That is, 

line(pt, ph, {{pt, ph)}) <- pt < ph. Une{pt, ph, 0 ) - pt > ph. 

Conclusion 
The maximal representation of shapes has been presented and shape arithmetic on 
the algebras of points, lines, and planes, the details of which are given in Krishnamurti 
(1991), has been developed. Several features of the maximal representation of 
shapes stand out. 

First, the shape algorithms are general and consistent across the different algebras. 
Second, there is a natural hierarchy on the algebras, wherein operations on 

planes can be expressed in terms of lines, which in turn can be expressed in terms 
of points (see Krishnamurti, 1991). Although I have not yet explicitly demonstrated 
this for algebras higher than that of planes, I conjecture that this hierarchy holds 
for any n > 0, namely, that operations on shapes in Un can be expressed in terms 
of shape operations in Un_1. This hierarchy of shapes lends itself naturally to 
parallel computation on shapes. 

Third, the maximal representation distinguishes between defined geometric 
elements and implied geometric elements. The representation makes clear the 
distinction between maximal elements and their boundary elements. A boundary is 
not a basic geometric property of a shape but that of one of its geometric elements. 
Alter the element and one alters the shape. There is no need to describe additional 
shape rules for altering the boundary. These rules are incorporated in the 
definition of an element. Thus, the maximal representation dismisses the classical 
question of when a 'wire frame' model or a 'plane frame' model or a 'solid frame' 
model is or is not a true representation of a physically realizable object. There is 
no inherent notion of a dangling edge. There is no inherent notion of an infinite 
point set that has to be abstracted as a finite description. The representation 
permits individuals to define their own sense of real objects independent of any 
externally imposed criteria of realizability or reality. 

Fourth, the geometry of spatial objects is captured in a unified manner by just 
four algebra-specific relations, namely, disjoint, overlap, share_boundary, and contain; 
and by three algebra-specific operations, namely, combine, complement, and common. 

The representation is essentially visual in that what one defines is what one sees 
and vice versa. Further, the maximal representation provides a clear and clean 
definition of a shape as a definite geometrical object with indefinitely many geometrical 
parts, a prerequisite for any decent generative formalism for shapes. 

Last, and more importantly, the maximal representation is so simple to use. • 
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