
Environment and Planning B: Planning and Design, 1986, pages 391-404

Towards a shape editor: the implementation of a shape
generation system

R Krishnamurti
EdCAAD, University of Edinburgh, 20 Chambers Street, Edinburgh EH1 1JZ

C Giraud
Institut International de Robotique, et d'lntelligence Artificielle de Marseille, 2 rue Henri-Barbusse-CMCI,
13241 Marseille
Received 4 July 1985; in revised form 22 March 1986

Abstract. A fundamental problem in editing shapes is the recognition of partial shapes in a
drawing to which changes are to be made. In this paper the possibility of using shape rules
as a mechanism for effecting such changes is explored. Shape rules represent spatial
relationships between two shapes a and /? with the interpretation that any instance of a in a
shape can be replaced by a 'similar' instance of /?. A shape generation system implemented
in PROLOG is described.

Introduction
As the title suggests, this paper is concerned with the implementation of a shape
generation system. However, the implementation details in themselves are of
relatively little importance. The motivation for this paper stems from an interest in
the problematic issues associated with 'shape editing', and how they may be
approached within a shape generation system.

Shape editing is difficult to define precisely and no definition will be proffered
in this paper. This is partly because of our present limited understanding of
shapes. However, it is worthwhile briefly to examine editors in general. There are
two main aspects to an editor. First, the subject of a typical editor in any
domain—namely, some sort of 'document', be it a manuscript, a programme, a
table, a memo, or a drawing etc—may be regarded as satisfying certain rules of
form and meaning that we can loosely classify as the particular 'document rules'.
In other words, we may state as a belief that document construction—spatial or
otherwise—can be set within an environment that is based on some rules.

Second, the tasks associated with an editor include the creation, deletion,
change, arrangement, and copy of documents (Meyrowitz and van Dam, 1982).
These tasks involve some process of recognition and some process of alteration.
Consider interactive text editors as implemented in computers. Alteration to text is
basically some form of text replacement. Text recognition, in its simplest form,
corresponds to some form of pattern matching. However, in principle, recognition
of text can be driven by other considerations that rely on knowledge about either
the form or the content of the document. In other words, recognition may be
carried out either syntactically or semantically. Of the two, semantic recognition is
much harder. As an extreme example, imagine trying to scan for a piece of text
that has the same 'meaning' as the given text!

By analogy, a shape editor is feasible only when the problems of shape
recognition and shape replacement are resolved—albeit partially. A shape editor
deals with drawings. Drawings are a medium through which people communicate.
Drawings reflect, in part, a person's perception of a spatial problem and, in part,
his or her conception of a spatial solution. Drawings represent pictorial descriptions
of abstract (and perhaps nonspatial) relationships. The relationships between the

392 R Krishnamurti, C Giraud

shapes in a drawing and the nonspatial descriptions to which they refer constitute
the semantics of the drawing. Drawings often materialise through a trial and error
sequence with each successive drawing arising out of changes made to the
preceding drawing. These changes generally correspond to spatial alterations—for
example, the introduction of a wall into a plan, or a rearrangement of room spaces
within a plan. These changes involve some sort of shape replacements.

Let us clarify this. Imagine a person sitting in front of a drawing board or a
graphics terminal. Let us suppose that the person initially produces an outline
drawing. Then, finer details are gradually introduced into the drawing. The details
may be replicated in various parts of the drawing. The details may be subjected to
further spatial editing either globally or locally. The details may of course be
associated with partial semantic information, often illustrated through text in the
drawing.

Although conventional graphics systems perform these and other tasks reasonably,
they do have their drawbacks. Such systems typically employ representations for
objects that distinguish between a segment(1), an object made up of segments,
assemblies made up of sets of objects, and so on. Composite objects are named.
Composite objects are essential if they are replicated in the various parts of the
drawing. Two principal problems, when one attempts to edit drawings, can be
identified. First, changes made to composite objects tend to have a global effect.
That is, the changes are manifested in every occurrence of the object in the
drawing. Second, it is difficult to recognise and modify just parts of objects. The
problem is important in situations where semantic links are attached to those parts
of the shape. For instance, 'the corner of a room' may have to be identified in
order to carry out a spatial consistency check.

The concept of spatial relations (Stiny, 1980b; Earl and Krishnamurti, 1984)
promises a mechanism whereby such shape editing tasks may be carried out. In its
simplest form a spatial relationship can be expressed as a shape rule relating two
shapes, a and /3. Figure 1 shows examples of edit rules for tiling the plane.

A shape rule is interpreted as follows. Any occurrence of a in a specified
shape under some transformation can be replaced by an occurrence of (5 under the
same transformation. Shape rules work' in much the same way as string replacement
rules in text processing, except that they have also to take into account the
possible geometric transformations associated with a and /?. Figure 2 illustrates
shape rule application.

(b)

Figure 1. Examples of edit rules for tiling the plane.

(1> A segment is either a line or a curve between two finite points.

Towards a shape editor 393

In this paper we illustrate the application of shape rules using the above
interpretation in the editing of shapes. For ease of explanation we cast shape rules
in a shape grammar formalism and describe an experimental implementation of a
shape generation system.

a fragment of a marked
tiling of the plane

shape rule [figure 1(b)] applied
to specified tiles

shape rules applied globally to all tiles

Figure 2. Application of tiling rules.

Shape and shape representation
Following Stiny (1980a) a shape is made up of a set of line segments and a set of
labelled points, the elements of which each correspond to a point associated with
labels chosen from a specified vocabulary. The labels have no geometric import.
A shape is defined with respect to a cartesian coordinate system, which allows us to
'fix' the shape in some Euclidean space. The empty shape contains no line segments
or labelled points. There are no spatial constraints imposed on the line segments or
labelled points in a shape. The line segments do not have to enclose a region.
Nor do they have to be connected in any manner. This definition of a shape does
not preclude the existence of a vocabulary of shapes, since any composition from
the vocabulary of shapes can be represented by a set of line segments. We do not,
however, consider parametric shapes, since these pose some technical problems a
discussion of which is beyond the scope of this paper.

A line segment /, /•= (/(/), /*(/)}, is given by its end points t(l) = [*(*), y(t),...],
h(l) = [x(h), y(h),...], that are respectively referred to as the tail and head of /.
The end points of a line segment can be rearranged so that t(l) < h(l),
where < denotes the order relation defined as follows. Let a, a = (al9 a2,..., an\
and b, b = (bl9 b2,..., bn), be two ^-tuples of numbers. Then, a < b whenever
there is a A: such that ak < bk, and 3 ; = b; for all j < k. A line segment / contains
a line segment m whenever the end points of m coincide with points on /. A line
segment in a shape is maximal whenever no other line segment in the shape
contains it. Without loss in generality we may assume that a shape is described by
its maximal line segments. It is straightforward to convert any set of line segments
into its unique set of maximal line segments.

394 R Krishnamurti, C Giraud

A line segment can be associated with a descriptor that describes the (infinite) line
on which it is defined. The line descriptor partitions the set of line segments in a
shape into equivalence classes each of whose elements are made up of collinear
line segments, as illustrated in figure 3. The choice of the descriptor is immaterial
provided that two noncollinear lines have distinct descriptors. Typically, a line

L5

£ LnLnLl3Ll4 Ll5Ll6Ll7Ll8Ll9L20L2lL22 L23 2̂4 2̂5 L2t

Figure 3. Decomposition of a shape into disjoint sets of collinear maximal lines (L, are
equivalence classes of line segments).

Towards a shape editor 395

descriptor is made up of two parts, one that gives the direction of the line and the
other the moment of the line.

A labelled point (p,A) is made up of a point p and a set of labels A. No two
labelled points share the same point; otherwise, the labelled points {p,A) and
(p,B) can be combined into a single labelled point {p,A+B\ where + denotes set
union.

In addition to the lines and labelled points, a shape may be tied to a state that
associates the shape with certain aspects or properties. A state may be a collection
of statements about the shape that hold. The statement may be a label, a
predicate, or, in general, a description. Labels as state designators were introduced
by Knight (1983).

Thus, a shape 0,0 = (S,P), can be represented as the pair of sets S,P;

S ={(d1,L1),...(dm,Lj},

where d denotes a line descriptor and L a set of collinear line segments;

P={(p1,A1),...(Pn,An)},

where p denotes a point and A a set of labels. A state Q consisting of a set of
statements can be associated with a shape a. When Q is nonempty, a is said to be
in state Q, denoted Q(o).

The representation of a shape given above can be further organised so that the
descriptors satisfy dl < d2 < ..., and px < p2 < Each set of collinear line
segments {ll,l2,...} can be arranged to satisfy hx < t2,h2 < t3,....

Rearranging a shape in this fashion does not affect the presentation of the
shape. On the other hand, it provides a simple 'pattern matching' criterion by
which equality of shapes can be easily determined. Indeed, two shapes are
(pictorially) equal whenever their representations are identical. Moreover, this
method for representing shapes provides for efficient shape algorithms that have
time bounds linear in the number of maximal line segments in the shape.

Rational shapes
We now introduce a restriction on the class of shapes that are dealt with in this
paper. This restriction—albeit a practical one—is necessitated by the fact that
algorithms are defined with respect to a computing machine. In a random access
machine a real number is represented by a finite approximation determined by the
word size of memory. This makes for inexact arithmetic. Consequently, exact
transformations for general shapes cannot be determined. Since correct algorithms
require exact arithmetic it is necessary to consider just those shapes that can be so
described. Therefore, our attention is directed to shapes that are, in the mathematical
sense, rational.

There is a theoretical justification for restricting the class of shapes that are
considered. Stiny (1975) has demonstrated the equivalence of rule-based shape
generation systems to general computation (Turing) machines. Consequently, for
any shape procedure guaranteed to 'halt', the corresponding computation program
must be shown to halt. Since the halting problem for comparing any pair of real
numbers is undecidable it follows that determining equality of general shapes is
undecidable.

Moreover, most graphics devices use a limited number of pixels each of which is
addressed by a pair of integral coordinates. Inevitably, all shapes displayed by
these devices are rational. More recently, Earl (1985) has provided additional
arguments about the value of rational shapes in a design context.

The following definition makes the notion of a 'rational shape' precise.

396 R Krishnamurti, C Giraud

A point p is rational whenever each of its coordinates x(p), y{p), ... can be
expressed as a ratio of two integers. A labelled point (p,A) is rational whenever p
is rational. A line segment is rational whenever both its end points are rational. A
shape is rational whenever its maximal line segments and labelled points are rational.

Any ratio n/m of two integers, expressed as the ordered pair (n,m), may be
uniquely described by its primitive form. A pair of integers (n,m) is primitive
whenever the following conditions are satisfied:
(a) n and m are integers,
(b) m > 0,
(c) n and m are relatively prime—that is, there is no integer a greater than 1 such
that a divides both n and m.
When n < 0, the primitive is said to be negative.

Thus an integer n is described by its primitive (n,l); infinity by the primitive
(1,0); and zero by the primitive (0,1). Any other rational number, n/m can
always be reduced to its primitive form by applying Euclid's greatest common
denominator (gcd) algorithm. The following procedure outlines the steps involved
in determining the primitive form for the ratio n/m of any two integers. Let
a = |gcd(n,m)|, where \q\ denotes the absolute value of the number q. Let
s = \m\/m. Then, the primitive form of the ratio of the two integers, r = (n,m), is
given by prim(r) = (sn/a,\m\/a).

Primitives allow us to compare two numbers for equality. Two rational numbers
rx and r2 are equivalent whenever their primitives p r i m ^) and prim(r2) are
identical. Thus, equality of numbers is reduced to 'pattern matching'.

The above formulation for primitive can be extended to A:-tuples, k > 1, of
ratios of integers. It is easy to demonstrate that a fc-tuple of rationals can always
be uniquely represented by a (A: + l)-tuple of integers.

Boolean operations on shapes
The union of two shapes is the shape consisting of the union of the sets of line
segments in both shapes and the union of the sets of labelled points in the two
shapes. The intersection of. two shapes is the shape consisting of line segments in
common with both shapes and the labels that share the same points in both
shapes. The difference between two shapes is the shape consisting of just those line
segments in the first shape not occurring in the second shape, and the labelled
points in the first shape not in the second shape, together with the set difference
of them. The subshape relationship between two shapes holds whenever each line
segment in the first shape is contained in a line segment in the second shape and
for each label in the first shape there is a corresponding label in the second shape
and both labels share the same coordinates. Implicit in the above definitions is the
fact that every segment contained in a maximal line segment of the shape is a line
segment in the shape.

It is possible to extend the definitions of the Boolean operations to representations
of shapes to yield the representation of the resulting shape. To do this we must
define Boolean operations on line segments. The first step is to notice that to
perform any of the operations we need consider only collinear line segments, that
is, line segments that share the same descriptor. So, whenever we compare two
collinear maximal line segments lx = (*i,fti) and l2 = (t2,h2) from the two shapes
respectively, we have one of three situations to consider:
(a) h2 < tl9

(b) hx. < t2,
(c) hx > t2 and h2 > tx.
The three cases are illustrated in figure 4.

Towards a shape editor 397

Cases (a) and (b) correspond to the situation when the line segments are
disjoint. The last and more interesting case (c) corresponds to the situation when
the two line segments share either a common point (when hx = t2 or h2 = tx) or a.
common line segment (when hx > t2 and h2 > tx). It is case (c) we must consider
when performing the Boolean operations on line segments. Suppose this is the case.

The union of two line segments is the line segment / = (t9 ti), where
t = min(^,/2) and h = max(/z2 ,h2). min and max respectively refer to the
minimum and maximum value of two given values.

The intersection of two line segments exists only when the two line segments
overlap. That is, when hx > t2 and h2 > tx. Then, the common line segment is
given by / = (t,h), where t = max(/1,/2) and h = min(hl,h2).

The difference of two line segments is a bit more tricky since difference may yield
zero, one, or two line segments. Again, difference of line segments need be
performed only when the segments overlap. For ease of explanation we introduce
the notion of an 'empty' line / = (p,p), for any point /?, and the function 'nonempty'
that produces the nonempty elements in a list. Then, the difference of two line
segments is the list given by nonempty{(tl,t), (h,^)), where t = max(fx,f2) and
h = mm(h1,h2).

The above operations can be incorporated into procedures to perform the
appropriate Boolean operation on two ordered lists Lx and L2 of collinear line
segments. Consider the problem of showing Lx is a subshape of L2 . It goes
without saying that lists Lx and L2 share the same line descriptor. Let us select
the first segment in Lx, say lx, and successively compare it with segments in L2.
Consider one in particular, /2. When we compare two line segments lx and /2, we
have as before the three cases given above.

If case (a) holds, the line segments are disjoint and we select the next line
segment l2 from L2 if it exists; otherwise the subshape relationship does not hold.

Figure 4. End-point conditions for a pair of collinear line segments lx = (tx, hx) and
h = (t2>h2) with (a) h2 < tl9 (b) hx < t2, (c) hx > t2 and h2 > tt. The cases within the box
correspond to those for the subshape relation to hold.

398 R Krishnamurti, C Giraud

If case (b) holds then the subshape relationship does not hold. This is because
there is no line segment in the list L2 preceding l2 that shares a common line
segment with lA. If that had been the case we would have had either case (a)
above or case (c) below. Notice that for every line segment (t(l),h(l)) succeeding l2

in list L2, hx < t(l).
If case (c) holds, the line segments overlap, in which case the subshape

relationship can hold only if t2 < tx and hx < h2. In this case, we select a new lx

and compare it with l2 and the line segments succeeding l2 in list L2.
The Boolean operations for the labelled points correspond to the conventional

set operations.

Shape rules
Shape rules as considered in this paper were originally defined by Stiny and Gips
(1972) in their seminal paper on shape grammars. A shape grammar is an
algorithm described in terms of shapes with labels. In it standard form it consists
of shape rules and an initial shape. A shape rule, (a,Q(a)) -* (/J,Q(/?)), consists of
two shapes, a in state Q(a) and /3 in state <2(/?). The shape rules are used to
change a given shape, namely the current shape y in state Q(y), into a new shape
whenever Q(a) is a subset of Q(y) and there is a transformation x that makes a a
subshape of y; that is, whenever Q(a) Q Q{y) and x(a) Q y, where Q denotes a
containment relationship—namely, subset or subshape relationship. In this case, the
subshape may be replaced by the same transformation of ft. That is, the new
shape, y* is given by the shape expression

y* - y - t (a) + T (j 8) .

The state of y* is given by

Q(f) -Q(y)-eMa)]+QM/*)].
The operators + and - denote union and difference, be it shape, set, or state,
and clearly depend on the context in which each operator is used. For instance, if
the state is given by a set of labels, the state operations correspond to set
operations. However, if the state is given by, say a predicate that corresponds to
the sentence 'this rule may only apply under translation and scale and if the
current shape has a specific state label', the operations of + , - , and Q become
harder to define precisely though they may not prove difficult to interpret. For our
purpose, we may assume that states are defined by sets of labels or symbols.

Shape rules are applied to the initial shape and to shapes produced from it. In
this way, a language of shapes may be specified by generating its individual members.

It is customary to assume that terminal shapes—that is, shapes in the language-
are unlabelled. In other words, labels are nonterminal symbols used to direct the
generation process. It is possible to define shape grammars in which the rule shapes
have no labels. A good exposition on the role of labels in shape rules is provided
by Knight (1983). Briefly, labels in a shape rule supply additional information as to
how, where, or when a shape rule may be applied to the current shape. An
example of the use of labels to guide shape rule application is shown in figure 5.

Labels may specify the Euclidean transformations under which a rule can be
applied to a subshape of y similar to a. That is, labels can be used to alter the
symmetry of the shape in a and thus alter the subshapes of y similar to a.

Labels may specify to which subshape or subshapes of y similar to a a rule may
be applied. In this case, labels do not alter the symmetries of the shapes in a and
of the subshapes of y similar to a. Thus, they do not in general restrict the
Euclidean transformations under which the rule may be applied.

Towards a shape editor 399

Last, the labels may be used to indicate the state in the generation process.
Such state labels typically occur in large grammars when the set of rules may be
partitioned into subsets of shape rules and each subset of the rules permits the
generation of shapes that serve as initial shapes for another partition of the rules.
In other words, they mark the successive stages in the generation procedure. State
labels are not necessarily associated with a coordinated point. Sometimes, labels
may carry semantic import in that they may name spaces in the drawing created by
line segments to which certain shape rules apply and others do not. A good
example of the use of such labels can be found in Downing and Flemming's (1981)
description of a group of early 1900 bungalow types built in Buffalo. The labels
are chosen so that, for example, details that apply to kitchens will never be applied
to bedrooms, and vice versa. The details are represented as shapes in shape rules.

shape a, shape a2 shape y

possible subshapes of y similar to ax

• label

possible subshapes of y similar to a2

Figure 5. The use of labels to guide shape rule application.

Subshape recognition
The crucial step in the application of a shape rule is the recognition problem—that
is, determining whether the shape rule applies to the given shape. In general, there
may be several subshapes in a given labelled shape to which a given shape rule
may be applied. Thus, y may contain subshapes y{, y2,..., each of which is similar
to a. In other words there may be a list of transformations xx, t2 , . . . such that
%j(a) = yj c y.

We consider the problem of determining one such transformation. The easiest
way to look at this problem is to consider the inverse problem. Suppose we
assume a is similar to a subshape of y under a given transformation x. That is,
we are given the correspondence between points and line segments of a and points
and segments of y. We want to find a computation for x. In other words we want
a procedure to determine the coefficients of r. We now present a simpler adaptation
of the procedure given elsewhere (Krishnamurti, 1981) using homogeneous
coordinates.

Homogeneous coordinates provide a unified approach to the transformations of
translations, rotation, scale, reflection, and finite compositions of these. Homogeneous
coordinates have the added advantage that they reduce the arithmetic of rationals
to the arithmetic of integers as shown below. For the remainder of this paper, we
restrict our attention to two-dimensional shapes and to similarity transformations.

400 R Krishnamurti, C Giraud

Any point-(x,y) can be represented by the homogeneous coordinates (x',y',w),
where wis usually 1, x = x', and y. = y\ Thus, any rational point (xn/xd,yn/yd)
can be described by the homogeneous coordinates (X,Y,W), where X = xnyd,
Y = yn xd, and W = xd yd. This homogeneous point can be reduced to its
primitive point by dividing each coordinate by gcd(xd,j>d).

The general Euclidean transformation, combined with a scale transformation, is
described by the 3 x 3 matrix

ax bx ex

ay by cy

0 0 1

Since we are dealing with correspondences between rational quantities, we need
consider only transformations with rational coefficients. These coefficients can be
replaced by their primitive equivalents.

(b) (d)

Figure 6. Steps in determining the transformation that takes a triangle to a corresponding
similar triangle, (a) The points Pu P2, P3 and QVi Q2, Q3, (b) Translate Px to Qx,
(c) Translate Qx to origin, (d) Rotate and scale P2, P3 onto Q2, Q3, (e) Translate back to Qx.

Towards a shape editor 401

The matrix can be rewritten as a scalar multipler of a matrix with integral
coefficients:

AX BX CX "I
AY BY CY

0 0 D J

where D is the common divisor of the coefficients of the original matrix. As with
the other rational quantities, the matrix can be reduced to its primitive form by
dividing throughout by the gcd of all the numbers. We may disregard the resulting
scalar multiplier of the matrix since any application of the transformation yields a
point which when reduced to its primitive form will cancel out the scalar multiplier.
That is, for any transformation matrix T, the transformation AT for any scalar k
has the same effect. To determine the coefficients of the transformation matrix T
we require the correspondence between three points in a and three points in y.

These points must satisfy the requirement that the two triangles formed by the
two sets of points are similar. Suppose that is the case.

Let the points be P l 5 P2, P3 and Q,, Q2, Q3, respectively. That is, the matrix T
maps Pl to Ql9 P2 to Q2, and P3 to Q3. We can either solve the resulting sets of
three equations in three unknowns directly or use a simplification in which T is
split into a composition of three translations, possibly a reflection, and a single
combined rotation and scale. The steps are illustrated in figure 6.

Once a transformation has been determined all that is required is to test if the
subshape relationship holds under this transformation. The set of valid
transformations can be obtained by examining all possible correspondences between
three 'distinguishable' points in a and mapping them to corresponding points in y.

It is easy to see that labelled points form good candidates for determining valid
transformations. Other candidates include points of intersection of lines. The
possible candidates for determining valid transformations for two-dimensional
shapes are enumerated elsewhere (Krishnamurti, 1981).

It suffices to consider just two distinguishable points in a and map them to
corresponding points in y. Given two points it is simple to determine a third point
such that the two sets of three points form similar triangles from which the
transformations can be computed. In this case the mapping between a pair of
points in a and the corresponding points in y yields two possible transformations,
one being the mirror image of the other.

The arguments presented above can be extended to higher dimensions and to
other types of transformations. Three-dimensional subshape detection is considered
elsewhere (Krishnamurti and Earl, 1986).

A simple shape generation system
We have implemented a simple rule-based shape generation system in PROLOG
(Clocksin and Mellish, 1981). PROLOG provides a declarative programming
environment in which the statement of a problem and, hence, the description of its
solution can be given as a collection of Horn clauses. This has the advantage of
avoiding much of the attention paid to the nitty-gritty details demanded by
conventional programming languages(2).

The implementation is, in the most part, a literal transcription into PROLOG of
the description of the shape generation process given earlier. The result is a

(2) We write from experience of having implemented a shape grammar interpreter in a
conventional language (Krishnamurti, 1982).

402 R Krishnamurtj, C Giraud

noticeable saving in the time and effort required for implementation, and has
produced quite readable code. As an example, consider table 1 in which we give
PROLOG clauses for the shape union of the line segments of two shapes. This
procedure can also be utilised to convert a shape given as a set of line segments
into its representational form. The clauses are given in the Edinburgh syntax,
where variables are given in upper case and atomic constants in lower case.

An unlabelled shape S is represented as a list, the elements of which are
structures of the form co(D,L), where D is a triple of integers and represents the
descriptor of a list L of collinear line segments. Each line segment is a structure
of the form line(T, H), where T and H are triples of integers that correspond to the
homogeneous coordinates of the tail and head of the line segment, respectively.

The predicates in table 1 are interpreted as follows. The predicate shape.union
has three arguments, Sl9 S2, and the resulting shape union S. Statements labelled
1 and 2 are that the shape union of a shape with an empty shape, denoted by the
empty list [], is the shape itself. Statements 3, 4, and 5 correspond to the cases
when the line descriptors Dx and D2 satisfy Dx = D2, D{ < D2, and Dx > D2,
respectively. The expressions in the form [First\Rest] correspond to lists whose
first element instantiates to the term First, and the rest of the list instantiates to
the term Rest. Notice that the ordering of the sets of collinear line segments is
preserved in the resulting shape union. Statement 3 corresponds to the case when
the descriptor of the set of collinear line segments is the same for both shapes.
Here, the union of the two sets of collinear line segments is performed by invoking
the predicate line.union.

The predicate line.union has three arguments Lx, L2, and the resulting line union L.
Here, Lx and L2 represent sets of collinear lines organised as lists according to the
ordering on the lines. The first two statements are termination statements for the

Table 1. PROLOG clauses for the shape union of two unlabelled shapes.

Union of two shapes
1 shape.union ([], 5, S).
2 shape, union (S,[],S).
3 shape_union([co{D,L\)\Sl],[co{D,L2)\S2l[co(D,L)\S}):-

line_union(Lx,L2,L),
shape.union {SX,S2,S).

4 shape.union ([co{Dx,Lx)\S x],[co(D2,L2)\ S2},[co{Dx,Lx)\ S]):-
Dx < D2,
shape.union (Sx ,[co(D2,L2)\S2],S).

5 shape.union ([co(Dx,Lx)\Sxl[co(D2,L2)\S2],[co(D2,L2)\S]):-
shape.union (SX,S2,S).

Union of two sets of collinear line segments
1 line, union (L, [], L).
2 line.union([],L,L).
3 line_union([line(Tx ,HX)\LX\ [line(T2,H2)\L2], [line{Tx 9HX)\L])\-

Hx < T2,
line.union {Lx,[line{ T2,H2)\L2\L).

4 line.union([line(Tx ,Hx)\Lxl [line(T2,H2)\L2], [line(T2,H2)\L]):-
H2 <TX,
line.union ([line(Tl9Hx)\Lx],L2,L).

5 line.union ([line(Tl,Hl)\Ll],[line(T2,H2)\L2],L):-
Hx < H2,
min(TuT2,T),
line.union (Lx, [line(T, H2) \ L2\L).

6 UneMnion([line(Tx ,HX)\ Lx•], [line(T2,H2)\ L2],L):-
min {TX,T2,T\
line, union ([line(T,H1)\L1],L2,L).

Towards a shape editor 403

recursion. The next four correspond to the conditions on the tails and heads of
the two line segments under comparison. The last two of these statements
correspond to the situation when the line segments overlap. The predicate min
holds if the minimum of its first two arguments equals that of its third argument.

The shape union of two shapes Sl and S2 that results in a shape S is invoked by
the following headless Horn clause.

Invoking a shape union
:- shape.union{ S{,S2,S).

Similar predicates can be defined for the other Boolean operations, and relations
and the Euclidean transformations of shapes.

The system is implemented as a menu-driven interactive program using a PROLOG
graphics software, SeeLog, developed at EdCAAD (Pereira, 1982). Shapes are
created using conventional graphics commands. Shapes can be saved for recall at a
later time. The system is designed to serve the dual role of an interpreter for two-
dimensional shape grammers as well as an experimental shape editing system.

Conclusion
The implementation reported in this paper started out for one of us (RK) as an
exercise in learning PROLOG. Since then the work has assumed—at least to us—
some relevance particularly from the standpoint of developing good graphics
editors with the power equivalent to that found in good text editors. In addition
to the usual graphics operations for creating, manipulating, and altering drawings,
such systems would need to have recognition capabilities in varying degrees that
are necessary for a wide range of applications. An example of such an application
is a combined natural language text and graphics dialogue system that EdCAAD is
currently involved in as a member of a European collaborative research effort,
where semantic links between the drawing and the knowledge base play an
important role in shape editing.

A shape editing system that utilises shape rules would of course need to provide
greater control over the specification and application of shape rules. For instance, it is
important that the part of a drawing to which a shape rule is applied is given more
directly, say by 'pointing' at the particular part of the drawing rather than relying
on the system to determine the possible shape replacements. Pointing at a drawing
may be specified in several ways—for example, by outlining the part of drawing to
which a shape edit is applied; using deixis by specifying the semantic links such as
the 'rotor arm', 'living room', etc. It is also natural to expect that shape
replacements can be carried out globally—that is, the shape rules are applied in
parallel to all possible subshape instances, such as 'replace all circular columns in
the portico by square columns'. Moreover, it is important to consider shape rule
applications under nonisometric transformations, such as independent x- and y-
scaling. Parametric spatial relations will certainly enhance the flexibility of a shape
editing system.

A shape editor that is based on a 'wireframe' model for shapes may not be
suitable for many applications. It is therefore important to develop analogous
shape editing facilities for other representational forms for shapes; or, at least, to
express the result of a shape edit in these representations.

There are many problems that we have not touched upon in this paper that still
must be addressed before we contemplate building a shape editor. Nonetheless, we
believe that spatial relations expressed as shape rules or in some other form
provide a first step towards such a goal.

404 R Krishnamurti, C Giraud

Acknowledgement. We would like to thank Aart Bijl for his encouragement and support
during the course of this research. We would like to thank the referees for suggestions on
improvements to this paper.

References
Clocksin W F, Mellish C S, 1981 Programming in Prolog (Springer, Heidelberg)
Downing F, Flemming U, 1981, "The bungalows of Buffalo" Environment and Planning B:

Planning and Design 8 2 6 9 - 2 9 3
Earl C F, 1986, "Creating design worlds" Environment and Planning B: Planning and Design 13

177-188
Earl C F, Krishnamurti R, 1984, "Spatial relations, kinematics and assembly" in Proceedings of

the International Symposium on Design and Synthesis Japan Society of Precision Engineers,
Tokyo; pp 589-593

Knight T W, 1983, "Transformations of languages of designs: part 2" Environment and
Planning B: Planning and Design 10 129-154

Krishnamurti R, 1981, "The construction of shapes" Environment and Planning B: Planning
and Design 8 5 - 40

Krishnamurti R, 1982, "SGI: a shape grammar interpreter" technical report, Design Discipline,
The Open University, Walton Hall, Milton Keynes MK7 6AA

Krishnamurti R, Earl C F, 1986, "Shape description and recognition in three dimensions" in
preparation; details available from the first author

Meyrowitz N, van Dam A, 1982, "Interactive editing systems: parts I and II" ACM Computing
Surveys 14 321-416

Pereira F C N, 1982, "SeeLog—a Prolog graphics interface" EdCAAD working paper,
University of Edinburgh

Stiny G, 1975 Pictorial and Formal Aspects of Shape and Shape Grammars (Birkhauser, Basel)
Stiny G, 1980a, "Introduction to shape and shape grammars" Environment and Planning B:

Planning and Design 7 343 -351
Stiny G, 1980b, "Kindergarten grammars: designing with Froebel's building gifts" Environment

and Planning B: Planning and Design 1 409-462
Stiny G, Gips J, 1972, "Shape grammars and the generative specification of painting and

sculpture" in The Best Computer Papers of 1971 Ed. O R Petrocelli (Auerbach, New York)
pp 125-135

p © 1986 a Pion publication printed in Great Britain

