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Abstract. An algorithm for shape rule application is presented. 

A shape rule a -> |3 applies to a labelled shape 7 whenever there is a transformation r 
that makes ot a subshape of 7. In this case, a new labelled shape can be obtained by 
replacing the occurrence of 7(a) in 7 with r(|3). The algorithm required for this 
process is developed in this paper. This algorithm determines all possible distinct 
transformations under which a given shape rule applies to a given labelled shape and 
the corresponding labelled shapes resulting from such applications. The definitions 
and notations given for labelled shapes and shape grammars by Stiny (1980) are used. 

Euclidean transformations 
The transformations of translation, rotation, reflection, scale, and finite compositions 
of these are referred to as the euclidean transformations, which are hereinafter referred 
to simply as transformations, denoted by r. A transformation 7 can be expressed, in two 
dimensions, as a mapping r: R2 -> R2, where R is the set of reals. Furthermore, 7 
can be composed as the ordered pair of mappings, r = (TX, ry), where rx and Ty each 
take the form r z : R 2 - > R , z <E {x, y}. That is, r is described by the mapping 
T: (X, y) -» (TX(X, y), ry(x, y)), where (x, y) represent the coordinates of a point. The 
expression (rx{x, y), ry(x, y)) represents the coordinates of the transformed point. 
The transformation r is linear if and only if both rx and ry can be expressed as 
polynomials over the reals, having the form: ax+by + c. The coefficients a, b, and c 
are constants dependent on r. 

The general expressions for the plane transformations are listed below: 
(1) Translation [through tx units in the X-direction and ty units in the 7-direction]: 

<x,y)-+fr + tx,y + ty). 
(2) Rotation [about the origin through a counterclockwise angle of 0] : 

(x, y) -> {ax -by, ay + bx), where a = cos0 and b = sin0. 
(3) Reflection [about (a) the X-axis, and (b) the F-axis]: 

(a) (x, y) -• (x, -y\ 
(b) (x, y) -* (-x, y). 

(4) Scale [or change of size through a scale factor, c > 0] : 
(x, y) -t (ex, cy). 

A transformation consisting of a finite sequence of transformations is a composition. 
The sequence (r l 9 ..., 7/, ..., r„), where each 77, 1 < / < n, is one of the above listed 
transformations, denotes the composed transformation r1(r2(...(7/(...(rw( ))...))...)). 
Therefore, in general, a transformation r can be expressed as a mapping of the form 
T: (X, y) -• (axx-\-bxy-\-cx, ayx + byy + cy), which is clearly linear. 

The transformation r of a labelled shape 0,0= (s, P), is the labelled shape 
denoted by 7(a), 7(a) = (T(S), T(P)), which is obtained by changing the spatial 
disposition and/or size of a. More precisely, 7(a) is defined as follows. Let p, 
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p = (x, y), denote a point. Then: 

r(p) = (TX(X, y), Ty(x, y)) , 

T(S) = {{TOO, r(p2)} is a maximal line in r(s)\{pl9 p2} is a maximal line in s} , 

T(P) = {r(p):A is a labelled point in r(P)|p:^4 is a labelled point in P). 

In other words, r takes each point, maximal line, and labelled point in a to a 
corresponding point, maximal line, and labelled point in T(CF); T is bijective in the 
sense that there is a transformation r _ 1 which satisfies o = rlr^ia)] = T_1|>(a)]. 
It should be noted that r does not alter the labels associated with the labelled points. 
Figure 1 presents a labelled shape a and examples of possible transformations T(G). 

Recall that the line descriptor (Krishnamurti, 1980) of a line is given by the pair 
<M, P), where fx is the slope of line / and v is the ^-intercept for / in the case that / is 
not vertical and the x-intercept for / otherwise. The transformation r(/) of / has the 
line descriptor <r(/x), T(*0>, which is obtained in the following way. Let r be the 
mapping (axx + bxy + cx, ayx + byy + cy)9 then: 
Case 1: fi =£ ©o (the lines are nonvertical) 

r(M) = 

T O O = { 

by-fxkx > 

\xcx -Cy + v 
iby-iibx) '• 

Wx •cv + v 
I (ay-imx) 

for by - fxbx i= 0 

otherwise. 

(1) 

Case 2: fx = ©o f/7ze //#£$ ^ e vertical) 

ax 

T(^) 
bx 

v~cx 

for Z?x =£ 0 , > 

otherwise. 

(2) 

Finally, transformation T preserves either the order or the antiorder of the lines in 
a list of multiple colinear lines. As shown in Krishnamurti (1980), any shape s can be 
represented by a shape union: s = st 4-... +sm, where each shape sk, 1 < k < m, 
consists of multiple colinear maximal lines. Moreover, each such sk can be represented 
as an ordered list of lines: Lk = </l9 ..., //, ..., /„>, where lx < ... < If < ... < /„. The 
relation < on maximal lines is defined as follows. Let p = (x, y) denote a general point. 
Then, for distinct points px andp2> Pi < Pi if and only if either xx < x2 or xx = x2 

and yx < y2. Each line / is represented by an ordered pair of distinct end points 
denoted by / = <tail, head) where tail of / < head of /. Then, for any two consecutive 
members //, / / + 1 , 1 < / < n, in Lk, for each ski head of /;- < tail of / / + 1 . (This is 
always the case since colinear maximal lines in same shape do not overlap.) Therefore, 
the corresponding list of multiple colinear lines T(Lk) = (TQX), ..., T(/7), ..., T(/„)>, 

1 < j < n, must satisfy either 

tail of T(/7) = T(tail of /,) , head of T(/7) = T(head of /;) , 

in which case T(/X) < ... < T(/ ;) < ... < r(ln); or 

tail of T(/7) = T(head of /7) , head of T(/7) = T(tail of /;) , 

(3) 

(4) 
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u <x,y) 

(a) A labelled shape 

{x + tx,y + ty) 

u 
translation 

(ax — by, ay + bx) 

u 

<-x, y) 

reflection about the 7-axis 
u 

{ex, cy) 

U 
scale (c > 0) rotation about origin through an angle 

6 [a = cos0, b = sine] 
(b) Examples of euclidean transformations on the labelled shape 

(axx + bxy + cx, ayx + byy + cy) 
(c) A composition of euclidean transformations 

Figure 1. 

u 
Of. -y) 

reflection about the AT-axis 
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in which case r(/„) < ... < r(//) < ... < TQX). Thus, the algorithms described in 
Krishnamurti (1980) for subshape (<), shape identity (=), shape union (+), 
difference (—), and intersection (•) can be applied to transformations of labelled 
shapes without additional computational effort. These algorithms are used in the 
shape rule application algorithm presented below. 

Shape rules 
Shape rules provide the basis for the recursive construction of shapes. A shape rule 
takes the form a -> 0, where a and 0 are labelled shapes. A shape rule is initially 
represented by the ordered pair R, R = (a, ]3>. R applies to a labelled shape 7 
whenever there is a transformation r such that r(a) < 7. In other words, a is similar 
to some part of 7. A new labelled shape 7* is obtained from 7 by applying R under 7, 
when 7* satisfies the expression 7* «- [7 - r(o:)] + T($). 

For computational completeness (and consistency) a shape rule is allowed to apply 
to any labelled shape 7. In this case, the previous expression for 7* becomes 

{ [7 - r(a)] + r(j3) , if R applies to 7 under r, 

7 , otherwise. 

The application of a shape rule R, R = (a, ]3>, to a labelled shape is outlined by the 
following general procedure. 

Procedure 
Step 1: Determine if R applies to 7 for some transformation r. 
Step 2.1: If so, perform the shape operations: (a) take the shape difference of 7 
and r(o0; (b) take the shape union of the labelled shape produced from (a) and r(/3); 
then 7* is the labelled shape resulting from (b). 
Step 2.2: Otherwise, the shape rule does not apply, and 7* equals 7. 

In practice, step 2.1 is computationally wasteful. The reason for this is that the 
shape intersection a • /3 is generally nonempty. The maximal lines and labelled points 
in T(OC ' j3) are examined twice, once each for the shape difference and the shape 
union. In step 2.1(a) r(a • &) is part of the shape removed from 7, and in step 2.1(b), 
T(a • 0) is part of the shape added to produce 7*. This follows from the fact that 
since a • /3 is a subshape both of a and of j3, r(a • /3) is a subshape both of T{OL) and of 
T(0). In other words, T(OL • p) is a subshape both of 7 and of 7*. This duplication of 
computational effort can easily be eliminated as follows. Any labelled shape 7 can be 
described by the shape union 

7 = [ 7 - S ] + 7 ' S = 7*5 + [ 7 - 5 ] 

where 5 is any other labelled shape. Therefore, the expression [7 - r(a)] 4- r(]0) can be 
rewritten as [7 - T(OL - 0) - T(OL • 0)] + r(a • 0) 4- r(]3 - a), or as [7 - T(OL - 0)] + r(]3 - a). 
Thus, the expression for shape rule application reduces to 

[7 ~ r(a - 0)] + T($ - a) , if R applies to 7 under r, 

7 , otherwise. 

Since the shape differences ot - j3 and j3 - q have an empty shape intersection, this 
expression is optimal. Consequently, a shape rule R may be represented by the 
ordered triple (a, a - j3, j3 - a>. Figure 2 presents examples of typical shape rules 
taken from Stiny and Mitchell (1980) and the extent of the computational saving 
that results by using the above expression. 

The backtracking identity is now introduced. Suppose the shape rule R, 
R = <a, a - 0, |3 - a>, applies to the current labelled shape 7. Let the shape 
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intersection /3* be given by the expression /3* «- 7 • r{pt - 0). Then, one has 
7 = [7* ~ T(]8 - a)] 4- r(o: - /3) +13*. This identity is particularly useful for computer 
implementations of the shape grammar formalism. It often happens that designers 
discover that a particular sequence of shape rule applications yields an undesirable 
shape, in which case by 'backtracking' through this sequence they can find a shape 
from which to restart a fresh sequence of shape applications. Clearly, in order to 
incorporate the backtracking facility it is necessary to keep a history of the |3*s for 
each rule application. Fortunately, in practice, 0* is often the empty shape (s^, 0), 
and thus, implementing the backtracking facility requires little additional storage. 

The subshape detection problem 
The hardest and certainly the most crucial step in the application of a shape ruie 
to a labelled shape is in actually determining whether or not the shape rule applies to the 
labelled shape. In general, there may be several subshapes in a given labelled shape 7 to 
which a given shape rule may be applied. That is, 7 may contain subshapes 7i , 72 , ••, 
each of which is similar to a. Thus, there may be a list of distinct transformations, 
r1? r 2 , ..., such that r7-(a) = 7/ <> 7. The set of all such transformations under which 
the shape rule R applies to the labelled shape 7 is denoted by TR>y. When R does 
not apply to 7, TR> y = 0 . 

In order to define TR} y for any given shape rule R, R = (a, a - /3, /3 - a), and any 
given labelled shape 7, the following two problems are considered: 
1. Suppose we are given a transformation r under which the labelled shape a is 
similar to a subshape of the labelled shape 7. Can we find a computation for r? 
That is, we are given the correspondence between the points and lines in a and an 
equal number of points and lines in 7. We are required to obtain the coefficients of 
the transformation that represents the given correspondence. 
2. Given that we have a method for computing r, can we generate all valid 
transformations r that satisfy r{a) <, 7? We may restate this problem as follows. 
Suppose the method for determining the coefficients of r relies on some relationship. 
Can we combinatorially derive all valid instances of this relationship? 

Problem 1: the determination of r 
Consider a transformation T, T = (TX , ry), which satisfies T(O) < 7. Since r is linear, 
we may let rx = axx + bxy + cx, and ry — ayx + byy + cy, where the as, bs, and cs 
are as yet undetermined. Suppose p, p = (x, y), denotes a general point associated 
with a. For example, for some label A, p:A is a labelled point in a. Or, then again, 
p may be an end point of a maximal line in a, or p may be some distinguishable 
point coincident with a maximal line in a. Then, r maps each such point p associated 
with a to a corresponding point r(p), where r(p) = pf = (x\ y'), associated with 7. 
Then, 

axx + bxy + cx = x', (5) 

ayx + byy + Cy. = y'. (6) 

Equations (5) and (6) are each in three unknowns, and so the coefficients can be 
uniquely and completely solved provided we have three distinct points px, p2,P3 
associated with a which correspond to three distinct pointsp\, p'2, p'3 associated with 7. 

The solutions of the matrix equations: 

x2 y2 1 

* 3 y3 1 

ax 

bx = x'2 

x'3 
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and 

*i y\ i 

*2 y* i 

*s ys i 

ay 

by 

-*-

= 
[y'll 
vk w 

(8) 

determine r uniquely provided the 3 x 3 matrix is nonsingular; that is, the points px, 
p2, and p3 must not all lie in a straight line. Thus no two lines in the set of lines 
{(Pij Pi), {Pi, Ps), {Ps> Pi)} are colinear, and the lines in this set form a triangle. 
The set of lines {{/?i, p 2 } , {p'2, Ps}, {p's, Pi)} m u s t a l s o f ° r m a triangle. Moreover, 
these triangles must be similar. 

Now the algorithms already developed in Krishnamurti (1980) as well as the ones 
presented later in this paper are given for rational shapes only. Thus, the coefficients 
derived for a transformation r such that r(a) < y will also be rational. For 
convenience, these coefficients are maintained in their primitive form. That is, for a 
rational r given by <rn, rd>, the integers rn and rd are relatively prime. The expressions 
(5) and (6) thus take form 

(an, fldXxjh, */d> + <^n, bd)(yjn, yjd) + (cn, cd> = (z}n, z)d) , (9) 

where a, b, c, z, respectively, denote either ax, bx, cx, and x, or ay, by, cy, and y. 
Expression (9) can be expanded and rewritten as 

(an, ad)xinyjdz)d 4- (bn, bd)xfdyjnzjd + <cn, cd)xfdyjdz-d = z}nxfdyfd . (10) 

A, B, C} D, 

For / = 2, 3, define the quantities 

n,(5, A) = BlAj-BiAx , H,(C, 4 ) = C ^ , - C , ^ , */(£>, A) = DtA, -D,AX . 

(11) 
Then, 

<cn, cd) *-p (*2(P, A)*3(B, A) - *3(Z), A)*2(B, A), n3(£, ,4)*2(C, 4) - *2(£, ,4)n3(C, ^ 

0n, bd) ^p <n2(A ^)n3(C, 4 ) - n3(D, A) n2(C, >4), 

-[Ki&AWQA)- n2(B,A)*3(C,A)]) 

<^n3̂ d> *> (Dibncd - Cibdcn-Bxbncd, Axbdcd), 

(12) 

where «-p indicates that for each of expressions (12) the left-hand side is assigned the 
primitive form of the right-hand side of the expression. [The reader is referred to the 
section on rational shapes, in Krishnamurti (1980)(1).] 

The above procedure involves purely integer computation: hence, the values for 
the coefficients of TX and ry are exact in the sense that they do not have to be stored 
internally in a computer as finite approximations of real numbers. 

A correspondence between three distinct points of a and three distinct points of 7 
yields a unique transformation r for which the relation r(a) < 7 may hold. Two 
such transformations are possible whenever a correspondence between pairs of 
specified distinct points associated with a and 7 is used. 

Suppose r is a transformation such that r(o:) < 7. Since r maps the labelled shape a 
to a similar labelled shape T(O), it must also map any point relative to a to a 
corresponding point which bears the same relationship to r(a). In other words, r maps 
W In that paper, the procedure for determining the primitive form of the rational <rn, rd> is given 
for rd > 0. In fact, it should read rd ¥= 0. 
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any point relative to the line (pl9 p2) to a corresponding point which bears the same 
relationship to (p[, p2), where p\ = T(PI) and p2 = r{p2). Therefore, all one has to 
do is to select two similar triangles, one relative to (px, p2) and the other which bears 
the same relationship to <pi, p2). Any pair of similar triangles will suffice; however, the 
following two triangles are easy to construct. 

Choose a point qx on the line {pl9 p2} and a point q\ on the line {p[, p2} which 
satisfy the same distance ratio with respect to px and p\, respectively. That is, 

length of {pJ, qj} length of {p\, q\} 
length of {pup2} length of {p'u p'2} = cr (13) 

(14) 

For convenience, set cT = \. That is, qx and q\ are respectively the midpoints of the 
lines {pu p2} and {p\, p2). The coordinates for qx and q\ are given by 

tf'i = <iWpi) + ^(pi)],H^(Pi)+^i)]>, 
where x(p) and y(p) denote the x-coordinates and y-coordinates of the point p. 

Define the following coordinate differences: 

Ax = xiqO-xipJ , Ax' = x(<zi) - x ( p i ) , 

Ay = y(qi)-y(Pi), Ay' = yGzi) -y(pi ) 
(15) 

4 3 = <*(Pi) - Ay, y(pO + Ax) , 

?3 = <x(p;) -Ay' ,y(p; ) + Axf>, 
(16) 

From which one obtains the points 

<72 = <x(px) + Ay, y(px)- Ax) , 

<?i = <x(pi) + Ay ' ,y (p ; ) -Ax '> , 

It is easy to show that the triangles formed by the points q1} q2, q3 and q[, q'2, qf
3 

are similar right-angled isosceles triangles. Moreover, the pair of lines {pl9 p2} and 
{(?2, #3} are mutually perpendicular and meet at p1. Likewise, {p\, p2} and {q'2, q3} 
are mutually perpendicular and intersect at p\. The lengths of the lines {ql9 q2} and 
{ î5 ^3} are equal. So are the lengths of the lines {q\, q2} and {q'2, q'3}. This 
construction is shown in figure 3. 

The transformation r must satisfy 

1i = riqt) , 

and either 

q2 = T(q2) and q3 = r{q3) 

or 

4'2 = r(q3) and q3 = r(q2) 

(17) 

L 

Qi = (iMp1) + x(p2)], i[y(Pl)+y(p2)]) 
q2 = (xipO + Ay^tp^-Ax) 
<73 = <*Oi)- Ay, y(Pi) + Ax) 

Figure 3. The construction of the triangle formed by the points q\,q2, and q3 with respect to the 
Kne{p1,p2}. 
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Therefore the mapping defined by the correspondence between a pair of distinct 
points (px, p2) associated with a and a pair of distinct points (p\, p2) associated with 
7 yields two possible transformations T\ and T2 , for which r\{oi) <* 7 or T\\ti) ^ 7 
may hold. T\ and T2 are mirror reflections about the line {px, p2}. 

Finally, it is obvious that a correspondence between a single specified point px 

associated with a and another such one p\ associated with 7 does not determine a 
finite number of transformations r for which r(a) < 7 may hold. As before one can 
construct similar triangles relative to px and p\, respectively. For convenience, let the 
triangle with respect to px be an equilateral triangle centred at px. This triangle can 
be paired with an infinite number of equilateral triangles centred at p\ yielding an 
infinite number of transformations. 

Problem 2: the generation of T^ y 

The approach adopted is essentially to compute every possible transformation r for 
membership in 7Ĵ  7 . Each r in Tj^ 7 represents a mapping between distinct points 
associated with a and an equal number of corresponding points associated with 7. 
By this is meant that r takes each 'distinguishable' point of a to a corresponding 
'distinguishable' point of 7. (The notion of a 'distinguishable' point of a shape will 
be made clear in the course of this section.) And, in particular, a pairing of just 
three of these 'distinguishable' points of a with three corresponding points of 7 is 
sufficient to specify r completely. This may be turned around, and each correspondence 
between triples of 'distinguishable' points of a and 7 which form similar triangles may 
be claimed to define a possible transformation r. Given this pairing, the method 
described earlier can be employed to determine the coefficients of a possible r, which 
is then examined for membership in Tp^ y. That is, this computed r is checked for 
the subshape relationship r(a) < 7, in the following manner. 
(a) For each labelled point p:A of a, r{p):A must be a labelled point of 7. 
(b) For each maximal line {pl9 p2} in a, {r(pi), r(p2)} must be contained in some 
maximal line in 7. 
If r satisfies this relationship, r is in 7^ 7 ; otherwise, r is rejected. An efficient 
algorithm for subshape determination is presented in Krishnamurti (1980). 

Suppose r is a transformation such that r{a) <; 7. Then, it is known that if p:A 
is a labelled point of a, r(p):A is a labelled point of 7. Moreover, if p is a point of 
intersection of two maximal lines in a, r(p) is a point of intersection of two maximal 
lines in 7. A point of intersection is the point at which two noncolinear maximal lines 
or their extensions meet. Clearly, two colinear maximal lines or their extension share 
an infinite number of common points, and two parallel maximal lines or their extensions 
never meet. Figure 4 presents examples of points of intersection. 

At this stage, it is appropriate to remark that a point of intersection is really a 
disguised labelled point, since it reflects an aspect of the shape. Suppose the use of a 
special intersection label, denoted by, say, the symbol #, is permitted. Then, every 

point of -~*-A 

intersection / \ 

point of ^ / \ ^ 
intersection/ X ^ \ 

/ 7 
point of 
intersection 

/ 
point of 
intersection 

point of 
intersection 

Figure 4. Examples of points of intersection. 



14 R Krishnamurti 

point of intersection, p is essentially the labelled point, p:#. Hence, for any labelled 
shape given by o = (s, P), if P# denotes the set of the points of intersection in o, 
then a can be represented by the ordered pair (s, P+P#). Therefore, it is not 
necessary to differentiate between a labelled point and a point of intersection. 
Henceforth, for convenience, they will be referred to simply as labelled points. 

Consequently, a point p is a distinguishable point of a shape whenever for any 
transformation r for which r(o:) <i 7 holds, p and r{p) are the same kind of points. 
For instance, if p is a point associated with the label A, r(p) is a point associated 
with the same label A. Two distinguishable points, p1 and p2, are distinct if and 
only if they do not share the same coordinates. Hence, the initial choices for the 
distinguishable points of a and 7 are from the sets of labelled points of a and y. 

In figure 5 there are two labelled shapes, viz a. and 7; a consists of four maximal 
lines that form a square and a single labelled point of the form p:A situated at the 
centre of the square, and y consists of six maximal lines that form a square divided 
into four squares. Each square, five in all, has at its centre, a labelled point of the 
form p':A. The labelled shape 7 has five subshapes each of which is similar to a, and 
each of these subshapes can be obtained from a transformation that takes a triple of 
distinguishable points of a to a corresponding triple of distinguishable points of 7, 
the two triples of points forming similar triangles. 

It may be noted, that each mapping between corresponding triples of distinct 
labelled points of a and 7 which yields a transformation r for which r(a) < 7 holds, 

P4'.# P3:# Pi'.# P'6:# #>:# 

7: Pz--# 

p\\A 

p\:A 

P'i'-A 

p'9:# 

P's'-A 

P\'.# 

Pl'# P2'# P\:'# p'2:# P3-# 

(a) 

P'l = T^p) I 

?v 

Pi = r2(p) P3 = rz{p) 

PA = U(p) 

rs : 

P$ = T$(P) 

(b) 
Figure 5. (a) Labelled shapes a and 7. (b) Transformations 7*1 - r 5 . 
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also determines the mapping between the remaining distinguishable points of a and an 
equal number of corresponding points associated with 7. Consequently, a triple of 
distinct labelled points of a can be fixed, and just the set of all possible mappings 
between this fixed triple of points associated with a and the corresponding points 
associated with 7 such that each pairing of the triples of points form similar triangles 
be determined. Each mapping in this set describes a possible transformation which is, 
in turn, examined for membership in TRy y. Notice that in this case—that is, when a 
has at least three distinct labelled points which form a triangle—only a finite number 
of transformations are added to TRt y. 

Now suppose a does not contain three labelled points which form a triangle. 
Then, it is still possible to determine candidate transformations that can be examined 
for membership in TR, y, provided one can find correspondence between pairs of 
distinguishable points of a and y. In this case each correspondence yields, via the 
construction given by equations (14) through (17), two different pairings between 
three points associated with a and three points associated with y, each of which 
defines a possible transformation. 

Thus, the case when a contains at least two distinct labelled points all of which lie 
on a line poses no difficulty. These points are simply treated as the distinguishable 
points of a which pairwise can be mapped onto corresponding labelled points of y to 
generate possible transformations to test for membership in TR> 7 . Moreover, using 
similar arguments as before, it is sufficient to consider just the mappings between a 
fixed pair of distinct labelled points of OL and the corresponding labelled points of 7. 
Here, again, only a finite number of transformations are added to TRi y. Examples of 
a for which this case holds are shown in figure 6. 

Suppose, instead, a contains fewer than two distinct labelled points. There are two 
cases to consider: a contains precisely one distinct labelled point; and a does not 
contain any labelled points. In the case when a. contains a labelled point, there are 
three possible subcases for each of which the labelled point is a distinguishable point 
of 7. Two of these subcases are illustrated in figure 7 in which a consists of a single 
maximal line denoted by / and a single labelled point denoted by p:A. The third and 
last subcase will be considered later in this section. 

Consider figure 7(a) in which the point p is not coincident with the maximal line /. 
For reasons that will become apparent, in general, p must not be coincident with any 
line colinear with /. Any transformation r which satisfies r(a) <* 7 must preserve the 
relative disposition of the point p and the maximal line /. Notice that T does not 
necessarily map / t o a maximal line in 7. However, suppose a line, passing through p, 
is constructed at right angles to / such that this line and / intersect at a point denoted 
by ±(p). Term this point the l-intersection point of the labelled point p and the 
maximal line /. Notice that in this case l(p) =£ p. Then, clearly r maps this point to 
a l-intersection point of r{p) in r(a). That is, r maps the pair of points (p, l(p)> of a 
to a corresponding pair of points <r(p), l[r(p)]> of 7. In other words, the l-intersection 
points of a shape are distinguishable points of the shape. Furthermore, since 7 has a 
limited number of labelled points and since for each labelled point, p, there are at 
most as many l(p) points as there are distinct partitions of 7 into lists of colinear 

point of ^ ^ \ ^ ^ 
intersection ^ ^ 

Figure 6. Examples of s(a) which consist of at least two distinguishable points all of which lie on a 
line. (• refer to labelled points.) 
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maximal lines, it follows that, in this case, only a limited number of possible 
transformations have to be examined for membership in TRt 7 , and TRi y is finite. 

On the other hand, consider figure 7(b) in which the labelled point p is coincident 
with the maximal line /. In fact, it is only necessary to ensure that p is coincident with 
a line colinear to /. That is, L(p) = p. In this situation there is an infinite number 
of transformations r each of which satisfies T(OL) <, 7. This is due to the fact that p 
and the end points of / do not form a triangle. Since r needs only preserve the 
relative disposition of p and the end points of /, the end points of r(/) correspond to 
points coincident with, but not necessarily equal to the end points of, a maximal line 
in 7. However, a finite number of transformations in TRj y correspond to those 
generated by forcing two end points of maximal lines one in a and the other in 7 as 
the second distinguishable points of a and 7, respectively. Notice that, under this 
restriction, only a finite number of transformations have to be examined for 
membership in 7]̂  T . 

Finally, consider the case when a contains no labelled points. In this case it is 
possible to determine some, but not all members of TRf 7 by selecting one or more of 
the distinguishable points from the end points of maximal lines in the shapes. Figures 
8, 9, and 10 illustrate this case. Consider figure 8 in which a comprises a single 
maximal line. For any labelled shape 7 with at least one maximal line, a can be 
mapped onto any part of any maximal line in 7. Each such mapping yields a 
transformation r for which r(a) <. 7 holds, and there is an infinite number of 
such transformations. Clearly, it is computationally impossible (and undesirable) to 
generate every possible transformation. Notice, however, that a finite number of 
these transformations correspond to mappings each of which takes the maximal line 
in a to a maximal line in 7. 

Figure 9 presents two labelled shapes: a which consists of three colinear maximal 
lines ll9 l2, and /3, and 7 which consists of a single maximal line /. Clearly, there is 
an infinite number of transformations r which satisfy r(a) <, 7. However, there are 
two particular transformations T\ and r$ which are of interest: rj maps the tail of lx 

to the tail of /, and the head of /3 to the head of /; every other end point of the 

/ 
KP) p':A 

7: .— 

labelled shapes 

p' = r\{p) 

p' = rl(p) 

p' = r3(p) 

•Kpi) = TJWP)] P' = rn(p) 

Pi = r\{p) : 

transformations riot) transformations T(OL) 

(a) (b) 

Figure 7. The case when a consists of exactly one distinct labelled point. 

p'i'-A 

-L(P'I) 
p2:A 

labelled shapes 

P\ = TJ(P) 

Kpi) = T\{UP)] 
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lines in a are mapped to points coincident with /; T\ maps the tail of lx to the head 
of /, and the head of /3 to the tail of /; every other end point of the lines in a are 
mapped to points coincident with /. Figure 9 represents a situation in which r J and T\ 
are transformations which take a pair of distinct end points of maximal lines in a to 
a pair of distinct end points of maximal lines in y. 

Figure 10 illustrates examples of pathological shape rule situations which arise 
when a consists of at least two parallel maximal lines. In such situations, if the shape 
rule does apply, then there is either an infinite number of transformations r for which 
ripe) ^ 7 holds [figures 10(a) and (c)] or only a finite number of transformations r 
for which r{a) <> y holds [figures 10(b) and (d)]. This is due to the fact r must 
preserve in T(OL) the relative lengths of the maximal lines of a as well as the relative 
distance between the two parallel lines. However, we may notice that in both cases 
above, a finite number of transformations can be obtained by mapping an end point of 
maximal lines in o: to an end point of a maximal line in y. In order to describe these 

h 

y: 
labelled shapes 

Tl(oO 

labelled shapes 
rXh) rf(/a) T?(/3) 

T2(a) T}th) TJ(/2) TJC/,) 

r3(a) 
T~3(i2) """ 

T„(«) 

transformations 

Figure 8. A shape rule situation that arises 
when a contains no labelled points. 

H(P) 

(a) 
H(p) 

r-

(b) 

(c) 

(d) 

H(p) 

7: 

H(p) 

transformations 

Figure 9. Another shape rule situation that arises 
when a contains no labelled points. 

T[H(P)] = H[TO0] 

r(a): 

rip) 

TMp)] -• 

Tia): 

Tip) 

Tioi): 

Tia): 

= HWp)] 

Tip) 

TWp)] = 

Tip) 

r[H(p)] = H[rip)] 

Figure 10. The case when a contains parallel maximal lines and no labelled points; (a) and (c) are 
for the infinite case, and (b) and (d) for the finite case. 
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transformations a second point is needed that is associated with a, and which maps 
onto a corresponding point associated with 7. This second point is determined as 
follows. Let /j and l2 be two parallel maximal lines in a. Let p be an end point of, 
say / j , which is mapped onto a corresponding end point r(p) of a maximal line in 7. 
Suppose a line is constructed perpendicular to lx and passing through p. This line 
intersects l2 at a point denoted by H(p). Term this point as the H-intersection point 
of the parallel maximal lines lx and l2 with respect to the end point p of lx. Then, 
clearly r must map H(p) to a corresponding point H[r(p)] in T{OL). That is, if an end 
point p of a maximal line is forced to be a distinguishable point of a shape, then all 
its H(p)s are distinguishable points of the shape. Notice that in some cases H(p) may 
be an end point of a maximal line in a. Since there are only a finite number of 
maximal lines in 7, there are only a limited number of transformations that have to 
be examined for membership in TRy y. Notice that in the case when TRt y is finite, all 
the members in TRt y will be determined. 

In each shape rule situation discussed above it has been assumed that a contains a 
sufficient number of points which may serve as distinguishable points of a. Suppose 
a has no maximal lines and precisely one distinct labelled point. Such shapes often 
occur as the left-hand side of shape rules in shape grammars when more than one 
initial shape is required. In these situations it is common practice to define a 
'dummy' initial shape consisting of a single labelled point and to use shape rules to 
generate the initial shapes. In this case the convention will be used that 7^ y consists 
of translations each of which is given by the mapping of the labelled point of a to a 
corresponding labelled point of 7. 

Therefore, shape rules can be divided into two classes: (a) those for which TR>y is 
deterministic; and (b) those for which TRi y is potentially infinite. For the latter 
class, a finite number of transformations can be obtained either by forcing as one or 
both distinguishable points of a and 7 end points of maximal lines in a and 7, or by 
introducing a convention as to the nature of the transformations in TR> y. In order to 
classify the shape rules provisos are stipulated which regulate the application of shape 
rules. 

Provisos to govern shape rule application 
Let R, R = (a, a - 0, |3 - a), be a shape rule. Let 7 be the labelled shape to which R 
is applied. Let, for any labelled shape a, s(o) denote its shape and P(o) denote its 
associated set of labelled points. That is, o is represented by the pair, (s(o), P(o)). 
For a labelled shape 0,0= (s(a), P(o)), define the following sets: 
(a) P*(o) = P(o)+P#(o) where P#(o) denotes the set of points of intersection of 
maximal lines in s(a). 
(b) P.(o) = {p\p is an end point of a maximal line in s(o)}. 
(C)/I(0r)= {l(p)=tp\PeP(o)}. 
(d) PH(a) = {H(p)\p ep.(o)}. 
Proviso 1: P*(OL) contains at least three distinct points, say plr p2, and p3 which do 
not all lie on a line. 
R applies to 7 whenever there is a transformation r which maps (px, p2, p3) to 
corresponding points (p'l9 p2, pf

3) in P*(y) which do not all lie in a line such that 
T(CL) <, 7. In this case, TRi y is finite. 
Proviso 2: P*(ot) contains at least two distinct points, say px and p2, and every point 
in P*(pc) lies on a line. 
R applies to 7 whenever there is a transformation r which maps (ply p2) to 
corresponding points (p'l9 p2) in P*(y) such that r(a) ^ 7. Here, again, TRi y is finite. 
Proviso 3: P*(oi) contains precisely one distinct point, say px, and Pi(a) contains at 
least one point, say L*(Pi). 
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R applies to 7 whenever there is a transformation r which maps <px, l*(Pi)> to 
corresponding points (p[, l(pi)> where p[ G P\y) and l ( p i ) G ^ ( 7 ) such that 
T(O) ^ 7. Here, again, TRt y is finite. 
Proviso 4: P*(ot) contains exactly one distinct labelled point, say pl, and PL{a) = 0 . 
R applies to 7 whenever there is a transformation r such that when s(a) is nonempty 
r maps the pair of points (p x , p2>, Pi G P.(a)5 onto the corresponding points (p[, p'2), 
p\ G P*(y), p 2 G P.(7), with r(a) ^ 7; and when s(a) is empty, r is a translation 
which maps pj onto a corresponding point p\ in P*(T)-

Proviso 5: P*(a) is empty. 
R applies to 7 wherever there is a transformation r with r(a) ^ 7 such that when 
s(a) consists of at least two parallel maximal lines r maps <p1? H(Pi)), P\ £ P.faO, 
H(Pi) G

 PH(<X) to the corresponding points (pi, H(pi)>, where pi G P. (7) and 
H(pi) G PH(T); and forS(OL) otherwise maps (pt, p2>, P\, p2

 e P.O*) to corresponding 
points (p\, p2>, where p i , p 2 G P. (7). 

The conditions of precisely one of these provisos applies to any shape rule with 
& ̂  (SQ, 0). Provisos 1, 2, and 3 are the normal situations in the sense that if 7 
contains a subshape similar to a, then the transformation which defines the similarity 
relationship is determinable by one of these provisos. Provisos 4 and 5 are restrictions 
to the normal situations in the sense that 7 may contain subshapes similar to a not 
determinable by any of the provisos. Proviso 4 includes the convention for handling 
shape rule situations occurring in shape grammars requiring more than one initial shape. 

Soundness of the provisos 
Suppose T is a transformation for which the subshape relation T(OL) <, 7 holds. Then, 
there exists at least one transformation r* which can be determined by the provisos 
such that r*(a) ^ 7 and either r* = r or r* is easily constructed from r. Note that r 
maps each, if any, distinguishable point of a to a corresponding distinguishable point 
of 7. Note also that o: satisfies the conditions for precisely one of the provisos. 
There are three cases to consider. 
(1) a satisfies the conditions for provisos 1, 2, or 3 
Since the provisos examine every possible correspondence between the distinguishable 
points of a and 7, r will be one of the transformations so examined. 
(2) a satisfies the condition for proviso 4 
Let p denote the distinct labelled point or point of intersection in a. The case when 
s(a) is the empty shape s$ is trivially true, since for if r is not a translation, there is 
a translation r* which maps p onto r(p) and which can be constructed from r by the 
composition r*[r -1(^)] where r"1 is the inverse transformation of r. Therefore, it 
may be supposed that £(0:) is nonempty. There are two possibilities. Either r maps 
at least one end point of a maximal line in a to a corresponding end point of a 
maximal line in 7 in which case r is the desired transformation, or r maps every point 
in P.(a) to points coincident with, but not equal to the end points of, maximal lines in 7. 
Notice that for any scale transformation, r c , TC[T(OC)] is similar to T(CL). However, 
TC maps r(p) to a point TC[T(P)] which is not identical to r(p). Nevertheless, there is 
a specific translation Tt which maps TC[T(P)] to r(p); that is, rt{rc[r{p)]} = r{p). 
Moreover, the resulting labelled shape r t{rc [7(0:)]} has the following property. For each 
maximal line / in a, the transformations of the line, Tt{rc[r(l)]} and r(/) are colinear. 
This follows from the fact that Pi (a) = 0. Hence, either Tt{Tc[r(a)]} ^ 7 or 
Tt{Tc[T(a)]} ^ 7. In the former case, if Tt[Tc(T)] maps at least one point inP.(a) to 
a corresponding end point in P.(7), then the composition rt[rc{r)] is the desired 
transformation r*. Otherwise, rc has scaled T(OL) by too low a factor. Hence, by 
enlarging 7>{TC[T(O0]} by a scale factor c, c > 1, followed by the appropriate trn 
translation, a new transformation is derived, say r', for which r'(o0 ^ 7 may hold. 
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In the latter case, rc has scaled r{a) by too large a factor. Hence, by shrinking 
rt{Tc[r(oc)]} by a scale factor c, 0 < c < 1, followed by the appropriate translation, a 
new transformation is obtained, say r", for which T"{OL) ^ y may hold. In either case, 
it is clear that there is an alternating sequence of scale transformations and translations, 
the composition of which yields, say f, which satisfies r* = T(T) and r*(a) ^ y. 
(3) a satisfies the condition for proviso 5 
The case when s{a) has no parallel maximal lines is trivially true, since if r is not the 
desired transformation, then r* can be constructed from r by applying to r a sequence 
of transformations which consists of a translation, a scale and another translation the 
details of which is left to the reader. As an example, suppose a has exactly one -,.--
maximal line /. Then, r(/) must be contained in some maximal line /' in 7. First, 
apply the translation rtx which maps the midpoint of r(/) to the midpoint of /'. 
Next apply the scale transformation rc by the scale factor, c, which equals the ratio 
of the length of / ' to the length of r f i[r(/)]. Last, apply the translation rti which 
maps the midpoint of rc{rt\r{l)]} to the midpoint of /'. Clearly, r* = r^{rc[r f i(r)]} 
gives the desired transformation. Suppose s{a) has at least two parallel maximal lines. 
There are two possibilities: either r maps an end point, say p, in P.(a) to a 
corresponding end point, say p', in P.(7), or r maps each end point in P.(<x) to points 
coincident with, but not equal to the end points of, maximal lines in 7. In the former 
case, r is the desired transformation since r will also map the H-intersection point(s) 
of p, H(p), to corresponding H-intersection point(s) of p\ H(p'), H(p') = r[H(p)]. 
In the latter case, notice that any translation rt of r(a) preserves the euclidean 
distance between any pair of parallel maximal lines in r(a). For each end point r(p) 
of a maximal line r(/) in r(a), let p' be the end point of a maximal line /' in 7 nearest 
to it [in the euclidean sense] such that /' is colinear with r(/). [In fact, it is possible to 
show that r(/) is contained in /'.] Let d[p\ r(p)] be the euclidean distance between 
p' and T(P). Let, over all such pairs, the pair, say (p\, r^Px)) have the minimum 
distance d[p[, r(p{)]. Let 77 be the translation which maps T(px) to p\. Clearly, 
Tt[r(cx)] < 7. Moreover, Tt(r) is the desired transformation r*. 

When TR> y = 0 , none of the possible transformations generated by the provisos 
will satisfy the subshape relationship. 

Thus, for any left-hand side a of a shape rule there is a proviso which will always 
yield a transformation r* for which r*(a) < 7 holds if and only if TR> 7 is nonempty. 
If, in addition, TR>y is finite the proviso will determine every transformation in TRi7. 

The number of possible transformations 
The conditions imposed on the provisos define the type of the shape rule. If the left 
side of a shape rule satisfies the condition for proviso 7, 1 < / < 5, the shape rule is 
said to be of type j . For each type of shape rule there is only a limited number of 
possible transformations that have to be examined for membership in TRt7. 

Suppose a contains the labels (including #) Ax, A2, ..., ANa . Let nf, 1 < j < Na, 
denote the number of labelled points of 7 having the form p:Aj. Moreover, let 
nx < n2 < ... < nNa . Let n&a) and n£y) denote respectively the cardinalities of P.(a) 
and PXy). Let Ma and My be the number of disjoint subshapes of s(a) and s(y) 
wherein each subshape consists of colinear maximal lines. Let m(a) and m(y) denote 
respectively the number of maximal lines in s(a) and s(y). Let NT be the number of 
possible transformations that have to be examined for membership in TRt7. 

Consider shape rules of types 1 and 2. It may be supposed that for shape rules of 
type 1 the choice for the fixed triple of points is from one of the four combinations 
ranging from (pi'.Al9 p2.Ax, p^.Ax) through (px\Ax, p2'>A2, p3:A3); and for shape 
rules of type 2 the fixed pair is either (p1:A1, p2.Ax) or (px\Au p2\A2). The fixed set 
of labelled points so chosen yields the smallest possible NT. 
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At this stage, the remark is made that shape rules of type 1 are equivalent to those 
of type 2 in the following sense: any transformation that maps a triple of labelled 
points of a to a corresponding triple of labelled points of r(o:) in y, also maps any 
triangle relative to a to a similar triangle which bears the same relationship to 7(a). 
And so, for shape rules of type 1 discard the third point p3 from the triple and 
employ the construction for the triples provided by equations (14) through (17) to 
specify r. In fact, it is sometimes computationally more efficient to do so. For 
instance, suppose the fixed triple is (p1:Al,p2'-Al,p3:A1). Then, by means of proviso 1, 
the number of possible mappings that have to be examined is nl{nl - \)(nx - 2). 
On the other hand, by means of proviso 2, the number of possible mappings that 
have to be examined is n1(nl-1)2. Clearly, proviso 2 is more efficient when n1 > 5. 
Below are given the least conditions on the rij s under which it is computationally 
more efficient to treat a shape rule of type 1 as though it was of type 2: 

fixed triple least condition on the «;-s 

<P\-Aup2:Aup3.Ax) «i > 5 
<Pi-Aup2:Aup3:A2) n2>3 
<Pi:Aup2:A29p3:A2) n2>4 
<Pi'Al9p2:A2,p3:A3) n3>3 

The following shapes, shown in figure 11, are of particular interest: 
(a) a single maximal line; 
(b) a set of colinear maximal lines; 
(c) parallel sets of colinear maximal lines—that is, each maximal line in a set is 
parallel to any other maximal line in any other set; 
(d) two maximal lines which intersect; 
(e) two or more sets of colinear maximal lines such that each line in a set intersects 
every other line in any other set at the same point. 
For shape rules of types 3 and 5 s(a) is identical to one of the shapes: (a), (b), or (c); 
whereas for shape rules of type 4, when s(a) is not empty, s(a) is identical to one of 
the shapes (a), (b), (d), or (e). 

As in the case of shape rules of types 1 or 2, for shape rules of type 3 it is only 
necessary to consider all possible mappings between a fixed pair of distinguishable 
points of a and corresponding points associated with a. Clearly, in this case NT is 
minimized if the fixed labelled point of oc is of the form px *A\. 

Consider shape rules of type 4 with a nonempty s(a). Clearly, in this case the 
distinct labelled point or point of intersection is fixed, and it may be assumed to take 
the form Pi'.Ax. Moreover, since Pi(ot) = 0 , px lies on a line colinear with every 
maximal line in s(a), and, hence, it is only necessary to consider the correspondences 

(a) (b) 

common pomt 
common pomt ^ o f mtersection 
of mtersection 

(c) (d) (e) 

Figure 11. Examples of the possible shapes s(a) that may occur in shape rules of types 3, 4, and 5. 
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between (pl9 p2), p2 is an end point of a maximal line in s(a), and (p\, p'2) where p'2 

is an end point of a maximal line in s(y) which is colinear with the line with which 
p\ is coincident. p\, of course, is the point associated with y corresponding to px. 

Finally, consider shape rules of type 5, for which, clearly, the Ma subshapes are all 
parallel to each other. Let r be a transformation such that T(O) < y. Then, r must 
map each of the Ma subshapes onto either a single maximal line or a collection of 
colinear maximal lines. There are two cases to consider: Ma = 1 and Ma > 1. 

In the case when Ma = 1, there must be—vide proviso 5—two end points of 
maximal lines in s(a), px and p2, such that T(px) and r{p2) are end points of maximal 
lines in s{y). Moreover, if {pl9 p2} is a maximal line, (rCpj), r(p2)} is also a maximal 
line. In order to determine the possible transformations, it is sufficient to consider 
the mappings between (px, p2) and corresponding points (p\, p2) such that the line 
{Pu Pi) is colinear with some maximal line in s(y). That is, one need only consider 
the correspondence between (Pi,p2) and the end points of maximal lines in each 
of the Ma subshapes in turn. 

Each correspondence yields two possible transformations r\ and T*2 which are 
mirror reflections of each other. Notice that if T\(OL) < y, rl(a) < y holds. 
Moreover, Tl(a) = r^ot). However, rJ(/3) is not necessarily identical to r5(j3). Since 
each correspondence is a mapping of a pair of end points {px, p2) onto a corresponding 
pair of end points (p\, p'2), the computation can be speeded up by considering just 
the set of all pairings between pairs of end points {pt, p2} and {p\, p2}. Each 
pairing yields two possible correspondences: {px, p2) maps onto {p\, p2) and 
(pl, p2) maps onto (p2 , p\). In other words, one can fix the ordering on the points 
px and p2 and on the points p\ and p2. Therefore, it may be supposed that px < p2 

and p\ < p2. There are two cases to consider: 
(1) px is the tail (head) of a maximal line and p2 is the head (tail) of a maximal line. 
Points p\ and p2 are respectively the tail (head) and head (tail) of maximal lines. In 
this case both the correspondences (Pi, p2) maps onto <pi, p2) and (pu p2) maps 
onto (p2, p\) may yield transformations r for which T{OL) <, y holds [see figures 12(a) 
and 12(b)]. 
(2) pt and p2 are both tails (heads) of maximal lines. 
In this case p\ and p2 are either both tails or both heads of maximal lines. In the 
case that px and p\ are both tails or both heads of maximal lines, only the 
correspondence {pu p2) may yield transformations r for which T{OL) <> y holds 
[figure 12(c)]; and for px and p\ otherwise, only the correspondence (px, p2) maps 
onto (p2, p\) needs to be considered [figure 12(d)]. 

A probabilistic argument is now given to estimate the average for NT, denoted by7Vr. 
Each pair of maximal lines that share a common end point cannot be colinear. Hence 
\n.{y) < m(y) < l\[nJiy)+My\ J, where for any real number r, LrJ denotes the 
greatest integer not exceeding r. The assumption that the maximal lines are equally 
distributed among the My subshapes of s(y), gives 

[3m(y) "I 
7Vr = 4m(a)m(y) 4- m(a) [m(a) - 1] m(y) —ri 1 . 

In the case when Ma > 1, any transformation r for which T(OL) <, y must m a p -
vide proviso 5—an end point px of a maximal line in s(a) to a corresponding end 
point p\ of a maximal line in s(y). Moreover, r must map each of (Ma — 1) 
H-intersection points of px to a corresponding H-intersection point of p i . That is, 
for each p\ there must be at least (Ma -1) H-intersection points. Clearly, r must map 
each of the Ma subshapes of s{a) into a distinct subshape of s(y). That is, r must 
map each collection of colinear maximal lines in s(a) into a collection of colinear 
maximal lines in s(y). 
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Each mapping between corresponding pairs of points (pl9 HiPx)) and (p[, H(pi)> 
yields two possible transformations, say T\ and r\. Let r j preserve in rj(a), the 
original ordering on the maximal lines in a. Since r\ is a mirror reflection of r\, r\ 
reverses this ordering of maximal lines in T\(ti). Let p be an end point of a maximal 
line such that {p, px} is colinear with this maximal line. If p < px, then 
rl(p) < rJCpj) and r^(Pi) < r | 0 ) , and if ^ < p, then rJCpO < rJO) and 
TKP) < ^ (P i ) - Clearly, if r^o:) ^ 7, then 7^(0) ^ 7, and if T%(a) ^ 7, then 
rl(a) jL 7. That is, at most one of T\ and T\ will satisfy the subshape relationship. 
There are two cases to consider: 
(1) px is the tail (head) of a maximal line in s(a) and p\ is tail (head) of a maximal 
line in 5(7). 
In this case, only T\ may possibly satisfy rj(a) <, 7. 
(2) px is the tail (head) of a maximal line in S(OL) and p\ is the head (tail) of a 
maximal line in s(y). 
In this case only r\ may possibly satisfy r\ (a) <, 7. 

Now, consider a possible transformation rx which maps (pl9 \-\(Pi)) to a corresponding 
(Pi, H(Pi)>. Another possible transformation r2 is determined when (pl9 H(Px)) is 
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Figure 12. The possible correspondences between pairs of points for shape rules of type 5 with 
Ma=l. 
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mapped onto a corresponding (p2, H(p2)>, provided there is a translation r such that 
TXP'I) ~ Pi a n d ^"'[H(/?i)i = H(p2)- Then, r2 is given by the composition r 'Oi) . 
On the other hand a possible transformation r3 is determined when <p2, H(/?2)) is 
mapped onto <pi, H(/?i)>, provided there is a translation r" such that r"(p2) = Pi a n d 
f"[HQ?2)] = W(Pi). In this case, r3 is given by the composition T^T"). Consequently, 
only a limited number of possible transformations have to be computed. The 
remaining transformations are obtained by simple translations of these basic 
transformations. There are at mostMaMy(My - 1) such basic transformations. Suppose 
the maximal lines in s(a) and s(y) are uniformly distributed among their respective Ma 

and My subshapes. Then, one has NT ^ [4m(a)m(y)/(MaMy)]0[MaMy(My - 1)], 
where O is the order function. 

Finally, since each maximal line has two end points, n.(a) = 0[2ra(a)] and 
n.(y) = 0[2m(y)]. Therefore, it follows from the preceding arguments that Nr 

satisfies one of the following inequalities: 

for type 1, «i(«i ™ l)(«i -2) < NT < n1n2n3 ; 

for type 2, 2n1(n1 -1) < NT < 2n1n2 ; 

for type 3, NT < 2n1My ; 

= ^ 1 , S(CL) = 5 0 , 

< SnlO[m(a)m(y)] , otherwise; 

(4m(a)m(y) + 0{[m(a)m(y)]2/My}, Ma = I , 

[40[m(a)m(y)My] , otherwise. 

The shape rule application algorithm 
An algorithm is now presented, based on the ideas developed in the preceding section, 
to construct the set TRt y, the set of all transformations under which the shape rule R 
applies to the current shape y, subject to the restrictions imposed by the provisos. 
This section is divided into two parts. First, the internal representations for shapes 
and shape rules are described. Second, a step by step description of the algorithm is 
presented. Wherever necessary illustrations are provided to facilitate the description. 
Although no formal proof for the algorithm is given, sufficient informal arguments 
are provided in the description to demonstrate its correctness. 

Internal representation for shapes and shape rules 
Let a be a labelled shape, let s(o) denote the set of maximal lines in a, and 
let P(or) + P#(a) denote the set of labelled points and points of intersection in o. 
P(o) + P#(o) is partitioned into subsets Pi(a), P2(a), ..., P^CT(a), where each 
Pj(o), 1 < / < Na, consists of all the points in o having the label Aj(o). The labels 
satisfy Ax < ... < ANa. For each /, 1 < / < Na, let the cardinality of P7(a) be 
denoted by w7-(a). 

The shape s(o) is partitioned into disjoint subshapes s1(o),s2(o), ...,sMa (°) e a c ^ °f 
which consists of colinear maximal lines. For all i =£ k, 1 < /, k < Ma, the shape 
intersection st(o) • sk(o) is the empty shape S0. The number of maximal lines in 
sk(o), 1 < k < Ma, is denoted by mk(o). The line descriptor for the maximal 
lines in sk(o), 1 < k < Ma, is denoted by \pk(o) = (ixk(o), vk(o)), and satisfies 
M a ) < . . . < ^ a ( a ) . 

The current labelled shape 7 is represented internally as the ordered triple, 
y = (s(y), P\y), n(T)>, where P*(y) = P(y) +P#(y), and IK7) = M l ) , ..., TT(A^)> gives a 
permutation of the indices of Pt(y)9 ..., PN (7) satisfying n^iy) < ... < n^N){y). 
7r(/) is the index of the /th largest set P^iy). 

for type 4, 

for type 5, 
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Each shape rule, R: a -> |3, is represented internally by the four-tuple R, with 
R = <a, a—/3, | 3 - a, type), and by an associated set DPa, where 
a is the labelled shape (s(a), P*(cx)) with 

rP(a)+P # (a)+i i (a) , for type = 3, 
P*(a) = I P(a) +P#(Q:) + P.(a), for type = 4, 

lP(a:)+P#(aO, otherwise; 
a - 0 is the labelled shape (s(a - j3), P(a - 0)>; 
0 - a is the labelled shape (s(($ - a), P(/3 - a)>; 
type determines the proviso under which the shape rule applies and takes on values 

from 1 through 5, that is, the type of shape rule; 
DPa is a set of distinguishable points associated with a and is, initially, given by: 

(a) for type = 1, a triple of distinct points in P(a) +P#(a) which form a 
triangle, 
(b) for type = 2, a pair of distinct points in P(a) +P#(a), 
(c) for type = 3, the distinct point in P(a) and a point in PL(ct) 
(d) for type = 4, the distinct point in P(a) +P#(a); 
(e) for type = 5, the empty set. 

Notice that DP& initially contains the fixed distinguishable points associated with a. 
For computational reasons, in order to minimize the number of transformations that 
have to be examined, these points in DPa are computed once for each application of 
the shape rule. 

Algorithm: the construction of T^y 
The algorithm comprises five steps: 
0. initialization; 
1. the construction of the fixed distinguishable points in DPa; 
2. the mappings for shape rules of types 1, 2, 3, and 4; 
3. the mappings for shape rules of type 5; 
4. finishing touches. 

Step 0: Initialization 
Substep 0.1: Let nt be the number of transformations in 7^ 7 , and / the number of 
fixed labelled points in DP^; then 

nt ^ o f+- {4-type> f o r type< 3> 
' 15-type, otherwise. 

If / = 0, go to substep 3.1. 
Substep 0.2: P(a) +P#(a) =£ 0 ; hence determine if a contains more labelled points 
with a given label than 7. For each/, 1 < 7 < Na, do: 
Compare Aj(a) with labels ^1(7), ..., AN (7) for a label, say Ak(y), such that 
Aj(a) = Ak(y). If no such label Ak(y) exists, go to substep 4.2 (in this case, the 
shape rule cannot possibly apply to 7 and TR, 7 = 0 ) , otherwise, if n^a) > nk(a), go 
to substep 4.2 (in this case, again the shape rule cannot possibly apply to a and 
TR, y = 0 ) . [Notice that if P(y)+P#(y) is organized as a balanced tree (see 
Krishnamurti, 1980), this step requires at worst 0(7Valb7V7) time.] 

Step 1: The construction of the fixed distinguishable points in DPa. 
Substep 1.1: Let dptr be the pointer to the last entry in DPa\ set dptr <- k <- 0. 
Substep 1.2: k <- k+1. Let the fcth element in 11(7) be n(k). 
Substep 1.3: Compare A^ with labels Ax{a), ..., A^a (pi) for a label, say Aj(a), such 
that A^k)(y) = Aj(a). If no such label Aj(a) exists, go to substep 1.2. 
Substep 1.4: An^(y) = Aj(a) and from substep 0.2 n^k)(y) > w7-(a); set 
n ~̂ nir(k)(y), f +~ dptr. For l < i < »/(a) and either until all the points in Pj(a) 
have been examined or until dptr = / do the following: 
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Let Pi be the zth point in Pj(ot), and compare p( with the points in DPa(l, ..., / ' ) for 
distinctness. [Since all the points in Pj{a) are distinct, pt need not be compared with 
the points, if any, in DPa (> / ' ) . ] 
If Pi is distinct from the points in DPa, set dptr +- dptr+ 1, DP^idptr) <- pf, 
map{dptr) <- ir(k) (where map contains the index of the set of labelled points in 7 
which have the same label as pt), and n <- n + l. 
If dptr = / and type = 1 then, if n > 2, set dptr <-f+-2 (that is, shape rules of 
type 1 can be treated as shape rules of type 2), otherwise (for n < 2) compare the 
slopes of the lines formed by {DPa(l), DPa(2)} and {DP^l), DPa(3)} for equality. If 
equality holds (the lines are colinear and hence do not form a triangle) set dptr <- 2 
and n <- n +1. [In this case, the last point added to DPa is eliminated. This can be 
done since colinearity of lines is transitive which ensures that for shape rules of 
type 1, irrespective of the choices for the first two points in DPa there will always be 
a third point which forms a triangle with these two points. Since substeps 0.2 and 1.3 
ensure that all the labelled points in P(a) +P#(a) will be examined, this third point 
will always be found. Of course, it is assumed that the shape rule is properly type 
classified.] 
Substep 1.5: All the points in Pj{a) have been examined or else dptr = f. If 
dptr < / , go to substep 1.2, otherwise (that is, dptr = f) go to substep 2.1 except in 
the case of type = 3, that is, set DPa{2) <- a single point in ij.(a) and then go to 
substep 2.1. 

Step 2: The generation of all possible mappings from DPa(j) to Pmapo)(y), 1 < 7 < / , 
and the mappings for shape rules of types 1, 2, 3, and 4. 
Each mapping may be viewed as a combination of / distinct points one from each of 
the / sets Pmap(i)(y), - , PmaP(f)(j)' However, DPa may contain points which 
correspond to labelled points with the same label in which case their corresponding 
points of 7 are selected from the same labelled point set. That is, their 'map' values 
are the same. Furthermore 7 may contain two different labelled points which share 
the same coordinates. In order to ensure that the / points are distinct, a variable 
mark is associated with each labelled point of 7, which essentially takes on two 
values: that is, +1 if p is available for selection, and - 1 if p is used in some pair 
(DPaO), P), for 1 < 7 < / . 

For each point p in DP^l, ..., / ) the corresponding point p' from Pmap(\y . . . , /)(T) is 
stored in DPy(l,...,/). That is, for 1 < / < / , (DPM), DPy(j)) describes a point-point 
mapping. The combinations—that is, the points in DPy—are generated via the 
standard technique of backtrack programming (see, for instance, Krishnamurti and 
Roe, 1979, pages 198-201). The following is a step by step translation of figure 13 
which gives a pictorial illustration of backtrack programming. The dotted lines 
indicate the order in which the combinations are generated. 

Figure 13. Search tree for generating the point-point mappings between DPa and DP^ 
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Substep 2.1: dptr points to the current entry in DPy. Set dptr <- 0. 
Substep 2.2: Set dptr +- dptr+1, and / «- 1. 
Substep 2.3: If / > nmap(dptr) go to substep 2.5, otherwise [for / < nmap(dptry, that 
is, there are still some unexamined points in Pmap(dptr)(y)] let pj be the /th point in 
^map(dpfr)(7)-

Substep 2.4: If mark(pj) < 0 (p;- has already been selected in Z)P7) set / « - /+1 and 
go to substep 2.3; otherwise, compare p7- with the points, if any, in DPy. If pj shares 
the same coordinates with any other point in DPy, set / <- / + 1 and go to substep 2.3; 
if not (/?/ has not been selected and is distinct from the points, if any, in DPy) do the 
following: 
Set DPy{dptr) <- pj and index(dptr) <- j [index points to the indices of the points in 
Pmap(i,...,dPtr)(y) that have been selected inDPy]. If dptr < f, set mark(pj) <—mark(pj) 
(notice that this assignment marks pj as selected) and go to substep 2.2; otherwise 
{dptr = / and DPy has been constructed) set / « - /+ l and go to substep 2.3 after 
performing one of the following group of statements depending upon the value of / : 
(a) for / = 3 (that is, for shape rules of type 1) determine if the points in DPy form 
a triangle, and if so, determine, if the triangles formed by the points in DPa and DPy 

are similar. Again, if so, determine the coefficients of the transformation r, defined by 
the mapping DPa{\,..., 3) «• DPy(l,..., 3), by means of equations (10) through (12). 
If T(OL) <, y, set nt <- nt+1 and push r into TRty. 
(b) for / = 2 (that is, for shape rules of type 2) construct the similar triangles 
defined with respect to the mapping DPa{\,..., 2) <* DPy(l,..., 2) via the construction 
given by equations (14) through (16), and determine the coefficients of the two 
transformations T\ and r\, given by equation (17), by mean§ of equations (10) 
through (12). If either r\{a) ^ y or 7*2(0:) <, 7 then increment nt accordingly and 
push the appropriate transformation(s) into TR>y. 
(c) for / = 1 (that is, for shape rules of types 3 and 4), if type = 4 and s(a) = s$, 
then r is a translation which takes DPa(\) onto DPyil), and in which case increment r 
and push r into TRf y; otherwise, perform the following substeps: 
Substep 2.4.1: If type = 3 go to substep 2.4.4; otherwise, set / «- 1. 
Substep 2.4.2: Let n.(oi) denote the cardinality of P.(«). If i > n£ci), go to 
substep 2.4.6; otherwise, let pt be the /th point in P.(a). 
Substep 2.4.3: If pt = DPa(l), set / •*- z+1 and go to substep 2.4.2; otherwise, set 
DPa(2)^Pi. 
Substep 2.4.4: For each k, 1 < k < My do the following: Let </zfc, vk) be the line 
descriptor for the maximal lines in ^ (7) . Let p' be the 1-intersection point of DPy{\) 
and the line with line descriptor </zfc, vk). If pr =£ DPy(l) and type = 3 set 
DPy(2)-<- / / and determine the transformations rj and ri*, as in (b) of substep 2.4, 
each of which is examined for membership in TRi y. 
On the other hand, if DPy(l) = p' and 0>/?e = 4, then do the following loop: for 
each end point p'2 of a maximal line in sk(y) such that p'2 =£ DP7(1) set DPy(2) •<- p 2 

and, as in (b) of substep 2.4, determine transformations rj and j \ , defined by the 
mapping -DPa(l, ..., 2) <* DPy(l, ..., 2), each of which is examined for membership in 
Tj^y. 

Substep 2.4.5: All the subshapes ^ (7 ) , 1 < k < My have been examined. If 
type = 4, set i «- 1+1 and go to substep 2.4.2. 
Substep 2.4.6: The mappings for shape rules of types 3 and 4 for the given 
DPoi(l) o DPy{\) mapping have been generated. 
Substep 2.5: All the points in Pmap(dptr)(i) have been examined. That is, all the 
choices for DPy(dptr) given the choices forDP7[l , ..., (dptr-1)] have been examined* 
Backtrack and select the next choice, if possible, for DPy(dptr- 1) and continue. Set 
dptr «- dptr - 1; and if dptr > 0, set pj <- DPy(dptr), mark(pj) «- -mark(pj) (note 
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that this assignment unmarks pj), and / <- index(dptr) +1 and then go to substep 2.3; 
otherwise (dptr = 0 and all possible mappings between the fixed labelled points of a 
and the corresponding labelled points of y have been considered) go to substep 4.1. 
Step 3: The mappings for shape rules of type 5. 
Substep 3.1: If Ma > 1, go to substep 3.4. 
Substep 3.2: Otherwise Ma = 1, that is, all the maximal lines in s(a) are colinear. 
By proviso 5, each transformation r for which T(OL) ^ 7 must map a pair of end 
points of maximal lines in s{a) to corresponding end points of maximal lines in s(y). 
Let e(p) be the function which takes on the value t in the case that p is the tail of a 
maximal line and the value h for p otherwise. Let t = -h, and let {pl9 p2} and 
{p'i, Pi) denote the corresponding pairs of end points where px < p2 and p\ < p'2. 
Then, one or both of the following correspondences: 

(PuPi) *> (p'uP'i) , <PuPi) <* (P2,P\), (18) 

may yield transformations r such that r(a) <, 7. For each pair of end points of 
maximal lines in s(a), {px, p2), px < p2, carry out the following: 
If {Pi, p2} is a maximal line is s(a), perform substep 3.2.1 for each k, 1 < k < My. 
Substep 3.2.1: For each maximal line /, / = </?i, p2) in ^ (7 ) the following is 
determined: 
For each correspondence in expressions (18) the two transformations r\ and T2 given 
by conditions (17) via the construction provided by equations (14) through (16), 
and by means of equations (10) through (12) to compute their coefficients determine 
if rl(ot) ^ 7. If so [then r2 also satisfies T2(a) <> 7] push both transformations 
into TRjy and increment nt by 2. Notice that in this case for each k, 1 < k < My, 
only 2mk(y) transformations have to be tested for membership in TR> y; the 
remaining 2mk(y) transformations are either automatically accepted or rejected as 
members of TR> y. 

Otherwise, {pt, p2} is not a maximal line; set ex *- e(px), e2 «- e(p2) and 
perform substep 3.2.2. 
Substep 3.2.2: For each pair of end points of maximal lines in sk(y), (p[, p'2), 
p\ < p2 do the following: 
Set e\ +- e(p[) and e2 +- e(p'2). If 2ex +e2 = 2e\ +e'2, compute and test 
transformations T\ and r2 defined by the first of correspondences (18). As before, 
only one of these transformations, say rJ , need be examined for membership in TRi y. 
The other is automatically accepted or rejected for membership in TRi y. If, in 
addition, ex = -e2, compute and test transformations rj and r2 defined by the 
second of correspondences (18) in the above manner. On the other hand, if 
2ex +e2 = -(2e[ +e'2), compute and test transformations rj and T2 defined by the 
second of correspondences (18), again, in the above manner. 

Notice that in this substep for each k, 1 < k < My, again only half the possible 
(1 + a)mk(y)[mk(y) — 14-a] transformations have to be tested for membership in TRt y, 
where a = \ex -e2\. 
Substep 3.3: All the mappings for shape rules of type 5 with Ma = 1 have been 
considered, and so step 3 is exited by going to substep 4.1. 
Substep 3.4: With Ma > 1, determine if s(y) contains at least Ma maximal lines all 
parallel to one another. Recall that for /, 1 < k < My, nf(y) is the slope of the /th 
subshape Sj(y). Since the subshapes of 5(7) are arranged according to increasing line 
descriptor values, it follows that for any j ¥* k, 1 < j < k < My, if JU/(T)

 = Vk(y), 
then tij(y) = ^(7) , for all j <i< k. Set yptr <- * <- 0. 
Substep 3.5: Set k <- k+1. 
Substep 3.6: If k> 'My-Ma 4-1, go to substep 3.7. If fxk(y) =£ M*+^-i(7)5 go 
to substep 3.5; otherwise, determine the largest 7, k+M^ - 1 < 7 < My, such that 
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M/(7) = M*(7) and, if / < My, M/+I(T) ^ M*(T). Then, set 7pfr <- yptr+1, 
ystack(yptr) <- </:, /), and fc <- /, and go to substep 3.5. 
Substeps 3.5 and 3.6 require 0(My) time to construct ystack which contains the 
indices of the subshapes with the least and greatest line descriptor values from a 
collection of parallel subshapes. 
Substep 3.7: In this substep, yptr contains the number of entries in ystack. If 
yptr = 0, that is, ystack is empty and the shape rule cannot possibly apply, go 
to substep 4.2, otherwise perform substep 3.8. 
Substep 3.8: For each/, 1 < / < Ma, let p be the least tail of the maximal lines in 
Sj(a), p the greatest head of the maximal lines in Sj(a), and H*(p) the H -intersection 
point of Sj(a) and Sj'(a), j =£ /', with respect to p. Then, for each i, 1 < / < yptr, 
set (bot, top) +- ystack{i), and then, for each k, bot < k < top, let p' be the least 
tail of the maximal lines in sk{y), and let p' be the greatest head of the maximal 
lines in sk(y). Then, for each k! =£ k, bot < k' < top, perform the following: 
Let Hfc(p') be the H-intersection point of sk(y) and sk'(y) with respect to p', compute 
the transformations T\ and rj defined by the mapping (p, H*(p)) o (p\ Hfc(j5')>, 
and determine for each /", /"•=£ j , j " ¥= /', 1 < /" < Ma, whether there is a k", 
bot < k" < top, k" ¥= k, k" =£ kr, such that rU</>/"<»] = \ M T ) . Notice that for 
all/", 1 < /" < Ma, T2[\pj"(a)] = r\[ypj"{oL)]\ and it may be supposed, without loss in 
generality, that r\ preserves in T\{OL) the original ordering on the maximal lines in a. 
If so, and p <K rl(p), then the following are determined and tested. For each of 
the end points pt of the maximal lines in sf(a), let T be the translation from r\{pi) 
to p, and let r" be the translation from r^Oi) to p\ Clearly the transformations 
defined by the mapping (pl9 H*^) ) o (pr, HAr'(/5

,)> are given by rx = T'(TD and 
r2 = T"(JI). Then, for each end point p\ of maximal lines in s(y), let r be the 
translation from p' to p\. Clearly, the transformations defined by the mapping 
(Pi, H*Q?i)> o (p[, Hk>(p[)) are given by r\ = rCrJ and T'2 = T(T2). NOW let e(p) 
be the function which takes the value t if p is the tail of a maximal line and the value h 
for p otherwise, and determine whether ri(a) ^ y, if e(pi) =/= e(p[) and p <£ T\{P) 
and r[(p) < p or r2(a) ^y,if e(Pl) * e(p\) and r2(p) < p and p' < T2(p). If so, 
add the appropriate transformation and increment nt. Figure 14 illustrates how the 
transformations T1,T2,T'1, and T2 are determined given the transformations r\ and T2 . 

Notice that in this substep, for each p, H*(p) is kept fixed. 
Substep 3.9: All the mappings for shape rules of type 5 with Ma < 1 have been 
considered, and so step 3 is exited by going to substep 4.1. 

Step 4: Finishing touches 
Substep 4.1: Does the shape rule apply? If nt =£ 0, go to substep 4.3, otherwise 
(7^} y is empty) go to substep 4.2. 
Substep 4.2: "Shape rule does not apply". Exit algorithm. 
Substep 4.3: "Shape rule applies". 
Tl9 T2, ..., Tnt are the transformations under which R applies to 7. Exit algorithm. 
Note that for shape rules of types 4 and 5 some of these transformations may be 
duplicated. However, for this algorithm this is immaterial. 
Remark: The designer may choose one of the transformations in TRfy[TRi7 =£ 0 ] , say 
Tj, 1 < / < nt, and apply the shape rule 7 <- [7 — r7(o: — &)] + r7-(j3 — a). For keeping 
track of rule application a rule stack may be employed. Each time rule R is applied 
under transformation r;- (R, Tj, j3*> is pushed into a 'rule stack', where /3* is the shape 
given by the shape intersection /T <- 7 • T7(/3 - a). 
Notice that j3* is computed before 7 is modified. Thus, if the designer should wish to 
return to an earlier state in the shape generation this can be done computationally by 
means of the backtracking identity 7 <- [7 - T;(j3 - a)] 4- TJ(OL - 0) + j3*. 
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Figure 14. Obtaining the transformations T\ and r̂  from r* and rj via a sequence of translations. 

Data structures 
In this section the relevant data structures necessary for an efficient implementation 
of the shape rule application algorithm are described. An Algol-like translation of the 
algorithm which incorporates the data structures is presented. 

The data structures necessary to represent labelled shapes have been discussed in 
Krishnamurti (1980). Each labelled shape is represented by either a pair of balanced 
binary trees or by a pair of linked lists. For each type of representation, one member 
of the pair houses the maximal lines while the other houses the labelled points. 
However, as has just been seen, for shape rule application, it is convenient to 
represent the current labelled shape y by the ordered triple <s, P*, IT) where P* is the 
set union P+P#, and a shape rule R by the ordered four-tuple (a, a - / 3 , /? -a , type). 



The construction of shapes 31 
PERSONAL SUBSCRIPT,™ 
FOR PRIVATE USE i ! N l f 

In the remainder of this section attention will be devoted to the data structures for 7 
and R, and in particular, the changes and additions made to the original data structures 
will be emphasized. It should be noted that the changes will not detract from the 
effectiveness of the data structures in implementing the shape algorithms described in 
Krishnamurti (1980). 

The current labelled shape y 
Consider the data structures for the maximal lines. The maximal lines are housed in 
a balanced binary tree. Each tree node contains a field, N, which is a pointer to a 
linked list which represents a list of multiple colinear maximal lines. That is, every 
maximal line in the list has the same line descriptor which is stored in the key field 
of the tree node. The linked list consists of nodes of which there are two kinds. 
The first is a 'header' node. The second kind is a 'line' node, which as the name 
implies represents a maximal line. Both kinds of nodes have three fields described 
below: 

line node 

tail and head are pointers to an array which stores the coordinates of the points, and 
next is a pointer to next node in the list. The list is ordered in the following sense: 
for any node, coordinates of tail[node] < coordinates of head[node] and coordinates 
of head[node] < coordinates of tail[next[node]]. 

header node 

top points to the first 'line' node in the list, hot points to the last 'line' note in the 
list, and thread is utilized in the algorithm for constructing a circular list which 
contains all the tree nodes representing maximal lines which share the same slope. In 
fact, the 'header' node is useful only for shape rules of type 5. For any tree node, 
N[tree node] points to a 'header' node of a list of colinear maximal lines. 

Now, consider the data structure for the set of labelled points. The labelled points 
are housed in a balanced binary tree. This balanced tree also incorporates the points 
of intersection in the following way. Each tree node contains a field, N, which points 
to a linked list which represents all the points which have the same label which is 
stored in the key field of the tree node. The 'key' takes on one of the following values: 

head tail next 

thread hot top 

key== ja label ,4, if node represents all labelled points of the form p: A, 
if node represents the points of intersection. 

point mark next 

The ordering on the labels is assumed to be At < A2 < ... < #. 
The linked list consists of nodes each of which represents a point. As in the case 

of maximal lines, there are two kinds of nodes: 'header' and 'point' nodes. Each 
node has three fields. The form for 'point' nodes is given by 

point node 

point is a pointer to an array which stores the coordinates of the point represented 
by the node, next points to the next node in the list, and mark is a positive integer 
which takes on values: 

r number of pairs of maximal lines which 
mark = < meet at the point represented by the list node, if key = #, 

l + l , otherwise. 

mark is mainly employed as the 'mark' variable for the shape rule application 
algorithm (see step 2), but it also serves to indicate the presence of a point in the 
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n 7r-pointer top 

P-pointer A-pointer next 

shape in the following sense: every time a new instance of the point occurs in 
the shape mark is updated. That is, mark is updated, in the case of points of 
intersection whenever <a node is added to or deleted from the data structure for 
maximal lines during a shape union or shape difference. In this way, the points of 
intersection do not have to be recomputed each time a shape rule is applied. Instead, 
mark can be updated after each execution of a shape union or a shape difference; all 
that has to be done is to keep track of all the data nodes added to or deleted from 
the data structure for the maximal lines, and the rest is straightforward. 

header node 

n is the number of nodes (hence, the number of points) in the list, top is a pointer 
to the first node in the list, and ir-pointer is a pointer to a node in a list which 
maintains the order of the point set cardinalities and is described in detail below. 

II, the permutation of the indices of the point sets in P+P# is represented by a 
linked list. Each node consists of three fields: 

7r-node 

next is a pointer to the succeeding node in the list. P-pointer is a pointer to a node 
in the balanced tree for the labelled points. For any tree node, N[tree node] points 
to the header node of the list of labelled points having the same label. Then, 
P-pointer satisfies the following identity: 
P-pointer[ir-pointer[N[tree node]]] = tree node. 

A pictorial description of the data structures representing the current labelled 
shape 7 is given in figure 15. Recall from Krishnamurti (1980) that the tree nodes 
belong to the data class BTREE and list nodes belong to the data class LIST. 

Algorithm SHAPE RULE APPLICATION (R, y) 
U This procedure constructs the set 7R, 7 1f 
U Step 0: Initialization, nt is the number of transformations, and error is a Boolean flag which is true only when it 

is determined that R does not apply to 7 f 
a «- shape-1 [R ] 
f<- (if type[R] < 3 then 4~type[R] else 5-type[R]) 
nt <- 0 
error <- false 
H For each label Aa determine whether it is also the label for some labelled point(s) in 7. If so, does the number of 

points in a having label Aa exceed the number of points in 7 having label Aa1 Note that for shape rules of types 3 
and 4 with tops[a] =£ null, topP[a] points to a node which represents either a single 1-intersection point or a list 
of end points of maximal lines none of which share the same coordinates as the distinct labelled point in a. f 

Pa-node «- (if ( / = 1) and (tops[a] 3= null) then next [topP[a]] else topP[a]) 
while (Pa-node =£ null) and (not error) 

(Aa<^A[key [Pa-node ] ] 
Py-node <- topp[y] 
H Search balanced tree rooted at topP[y] for a node whose 'key' equals Aa H 
while (Py-node =£ null) and (Aa =£ (Ay «- A[key [Py-node]])) 

do \ do Py-node «- (if Aa < Ay then left[Py-node] else right[Py-node]) 
if (Prnode i= null) and (n[N[Pa-node]] < n[N[Py-node]]) 
, J A-pointer[ir-pointe/[N[Py-node]]] «- Pa-node 

[Pa-node *- next[Pa-node] 
[else error «- true 

if For shape rules of types 3, 4, and 5, place in ystack the nodes, in order, from the balanced tree rooted at 
tops[y] H 

if (not error) and ( / < 1) and ((La-node <- tops[a]) =£ null) 
f yptr <- / «- 0 

stack[sptr «- 1] «- Ly-node <- tops[7l 1f stack is a temporary array % 
while sptr> 0 

then f if / = 0 then while left[Ly-node] * null do {f"*tf »+*-)] - Vf* 
I T {Ly-node <- left[Ly-node] 
J ystack[yptr + <- 1 ] «- Ly-node 
{(Ly-node, j) «- if right[Ly-node] =£ null then (right[Ly-node], 0> else (stack[(sptr-*-\) + \], 1> 

Algorithm 1. (This algorithm continues until page 38.) 
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shape-l shape-2 shape-3 type J 

The shape rule R 
Each shape rule is represented by a node in a data class, say R ULE, each of whose 
nodes consists of four fields: 

rule node 

shape-i (/ = 1, 2, 3) is a pointer to pairs of roots of data structures each pair 
representing a labelled shape. That is, 
shape-l: represents the labelled shape a, a = (s(a), P*(a)) 
shape-2: represents the labelled shape a - /3, a. - j3 = (s(a - j3), P(OL - /3)> 
shape-3: represents the labelled shape j3 — a, |3 — a — (s(P - a), P(j3 - a)>. 
The shapes may conveniently be stored in a data class, say SHAPE, each of whose 
nodes consist of two fields: 

shape node 

tops is a pointer to the 'top node' in the linked list which represents the maximal 
lines, and topP is a pointer to the 'top node' in the linked list which represents the 

tOps topP J 

H Step 1: The determination of the / labelled points in DPa. The following loop is performed until the fixed points 
have been determined. Provided that the rule type has been properly assigned, this loop will halt since from step 0 
it has been determined that there are a sufficient number of labelled points in y. Note that this loop is executed 
only if error is false and / > 0 H 

dptr «- (if not error then 0 else'/) 
TT-node «- n [7 ] U ir-node is set initially to the first node in the list representing the permutation 11(7) U 
while dptr < f 

[if A-pointer[ir-node] =£ null 
[f^dptr 

ocpoint <- next[N[A-pointer[ir-node]]] 
yheader +- N[P-pointer[ir-node]] 

• n[y header] 
I A-pointer[ir-node] •*- null 

while (otpoint =£ null) and (dptr < / ) 
\p •*- point [apoint] 

for / «- 1, / while 0" < / ' ) and «x , y)[p] ± (x, y)[DPa[j]]) do / + <- 1 
if 7 > / ' 

r U p is distinct from the points, if any, in DPa H 
I DPa[dptr++- 1] «-p 

map [dptr] *- yheader 
\ n~ - *- 1 

do then 

do 
then 

if rfpfr 

then < 

= / 
i f / = 3 

then 

' if « 7 > 2 
, J H Treat shape rules of type 1 as shape rules of type 2 1f 

e n \f+-dptr<- 2 

else < 

H Let (Xj, yj) denote the coordinates of DPa[j], That is, for 
1 < / < 3, {Xj, yj) <- <JC, y)[DPa[j]] H 

M12 *~p dyi ~ J 2 ) / ( ^ i - ^ 2 ) ) " 
M23 *~p ((^2 ~3 ;3)/ (^2 - ^ 3 ) ) 
H The points in DPa form a triangle only if the slopes /i12 and /x23 

unequal H 

if At12 = /i2 3 

then \dpnT} 
f / i 2 ^ ( ( 7 i - ^ ) 2 + ( ^ i - ^ 2 ) 2 ) 

else I /23 +-p ((y2 - y3)
2 + (x2 -x3)

2) 

[ U i « - P ( 0 ' 3 - ; ' i ) 2 + ( * 3 - * i ) 2 ) 

are 

[otpoint «- nexftapomf] 
[TT-node «- next[ir-node] 

H For shape rules of type 3 set Z)Pa[2] to a 1-intersection point of D P J l ] H 
if (not error) and (0>pe[#] = 3) then DPa[2] «- powftTVUoppIa]]] 
11 Reset the A-pointer values to null H 

j A-pointer[ir-node] «- null 
r-«otfe «- next[-n-node] 

if / > 0 then while it-node =£ null do 
J7T-7 

Algorithm 1 (continued) 
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H Step 2: Generate the mappings for shape rules of types 1, 2, 3, and 4. This step takes the form of an iterative 
version of backtrack programming. Note that this step is executed only if error is false and / > 0 f 

if (not error) and ( / > 0) then ypoint «- next [map [dptr <- 1]] else dptr <- 0 
while dptr > 0 

while ypoint ¥= null 
\ if mark[ypoint] > 0 

p' *- point[ypoint] 
for / <- 1, / while (/ < dptr) and «x, y)[p'] # <*, 7>U)P7[/]]) do / + «- 1 
if / = d^ff 

ff p' is distinct from the points, if any, in DPy % 
\DPr[dptr)+-p' 
I if dptr < f 

{ index[dptr] «- ypoint 
mark[ypoint] «—mark[ypoint] 
ypoint •*- map[dptr+ «-1] 

f case / in 
( = 3 ) H Shape rules of type 1. Let for/ , 1 < / < 3, (xj, yj) denote the 

coordinates of DPy[j]. That is (xj, yj) <- (x, y)[DPy[j]] f 

M23 ^ ( (^ -^aV^ i -^a ) ) 
% The points in Z)i>7 form a triangle only if slopes //'12 and //23 are 

unequal f 
if /i'n =* M23 

"for </, Jfe> e « 1 , 2>, <2, 3>, <3, 1» 

c/ *> (4//*) 
f The corresponding triangles are similar only if cx = c2 = c3 f 
if (cj = c2) and (c2 = c3) then TRANSFORMATIONS(3,l) 

Shape rules of type 2 f 

do 

do then 

then 

else 

then 

( = 2 ) 

(= 1) 

do 

then 

.ypoint «- next[ypoint] 
f Backtrack U 
if ( r f p f r - < - l ) > 0 

{ ypoint +• index[dptr] 
mark[ypoint] «—mark[ypoint] 
ypoint +- next [ypoint] 

TRANSFORM ATIONS(2,1) 
f Shape rules of types 3 and 4 f 
if La-node = null 

11 a has no maximal lines so r is a translation f 
TRANSFORM ATIONS( 1,1) 

V i , * ' ) *-<x,j>>[Z)/,
7[l]] 

for 7 G <1, ..., yptr) 
1f Let p be reserved to contain the 1-intersection point of 

DPy [ 1 ] and the maximal lines in the list pointed to by 
N[ystack[j]] U 

</u*, v*) +- (n, v)[key[ystack[j]]] 
case n* in 

(= 0) <x,y)[p] < - < x J , 0 
( = 00) <JC, y)[p] <- <*>', ^ > 

(otherwise) P «-p Q/J +JC1/M*) 
* [ £ ] * > ( 0 > - O / ( M * + 1 / / O ) 

equal «- <x, >>>[£] = <*;, >>;> 
if (not equal) and (0>pe[/?] = 3) 

then \DW^P 
\ TRANSFORM ATIONSQ, 1) 

if {equal) and (type[R] = 4) 
apoint <- JV[topj>[a]] 
while apoint =£ null 

Z)PJ2] <- point[apoint] 
yline «- /op[JV[7Stac&[/]]] 
while 7/wie ¥= null 

r' «- tail[yline] 
ti «- head[yline] 

then { I \X(x,y)[t'] =£ <*;,;>;> 
fDPy[2] <- / ' 

do <( lTRANSFORMATIONS(2,l) 
if <*,*>[&'] =* <*;,;>;> 
then J ^ I 2 ] - * ' 

1 TRANSFORMATIONS(2,l) 
[yline «- «exf [7/iwe] 

[apoint «- next[apoint] 

else 
do 

do 

Algorithm 1 (continued) 
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H Step 3: Generate the mappings for shape rules of type 5 f 

if / > 0 then Ma «- 0 else for Ma <- 0, Ma while La-node =£ null do 
\La-node next[La-node] 

if Ma > 1 
51 a contains at least two parallel maximal lines H 
for /j «- l , / i while 7*1 < (7pfr-Afa + l ) 

\ ft {p.* <- ulkeyVptacklhWY) = n[key[ystack[j2 « - / i + M * - l ] ] ] 
C while 0'2 < Tpfr) and (/x* = /x[A:ey[7rfacfc[7'2 + 1]]]) do 7*2 + «- 1 

H Link the nodes in ystack into a circular list f 
for A: e </1}..., (/2 - 1 ) ) do thread [N[ystack[k]]) «- fc+1 
thread[j2]+- j \ 
vx <- y[fa?j>[La-«ode **- top, [a]]] 
*>2 "*" "4&ej*[Hexf[La-?70Gte]]] 
while La-node =£ null 

Z)Pa[l] «-f «- tail[top[aheader <- N[La-node]]] 
h «- head[bot[aheader] 
DPa[2] «- H-point[aheader] 
for A:G</1 ,71 + 15...572> 

£ £ , [ 1 ] «- f '«- tail[top[yheader «- N[ystack[k]]]] 
h' <- head[bot[yheader]] 
i -*- thread[yheader] 
while / nffc fc 

i>* «- i>[fcej"[7Sfacfc['"]]] 
H Let p be reserved to contain the H-intersection point of ZJEytl] f 
case 11* in 

( = 0 ) <x,j->[0] * -<* [ * ' ] , O 
(=•») <*, >>>[/>] «-<*>*, y [n> 
(otherwise) *>«-p0/[f']+ x[f']/*£*) 

x [ 0 ] ^ P ( P - * • • ) / ( / * * + I//O) 
Mp]<-p(MMp] + 0 

£>P7[2] <- /) 
TRANSFORMATIONS(2,0) 
H r j and r^ are two possible transformations; rename them, if necessary. 

T\ preserves the original ordering on the maximal lines in a [see equations (3) 
and (4)]. Let for any r, T(V) be the transformation of the intercept v [see 
equations (1) and (2)] , and r (p) be the transformation of the point p U 

(k\ inc,^,j2) «- (if r iO^) < T\(V2) then </1} 1, > \ / 2 > else </2, - 1 , *<',/i>} 
v-match <- rj(/z) < (x, y)[ti] 
La-node2 <- tops[a] 
while La-node2 =£ null 

V <- T*l(y[key[Loc-node2]]) 
while (fc' not ^. / 3 ) and (»>* ̂ : v[key[ystack[k']]]) do fc'+ «-/«c 
v-match <- (fc' not ^ / 3 ) and (y* = i>[fcej>[7Stacfc[fc']]]) 

then 
do then 

doS 

do 

do<| 

do 

La-node2 *- next[La-node2] 

/1 + «- 1 

La-node • 

h 

if v-match 
H r j and T2 maps the line descriptors of the maximal lines in a to 

corresponding line descriptors of maximal lines in y f 
aline «- top[aheader] 
while aline =£ null 

r! «- tail[aline] 
hx «- head[aline] 
Let for 7 G ( 1 , 2}, p E {^1, / i i} , rw- be the translation from T/ ( /? ) to f'; 
let rf be the composition TPJ(T*J) 
yline «- top[yheader] 
while 7/me ¥= null 

/J «- tail[yline] 
then ^ I I J*i *- head[yline] 

Let for/? ' G { f j , / ^} , 
do^ I for ( p . p ^ e {<*!,*;>, 

do I if (f jflO < (x, y)[h']) and «x, >>>[f'] < nO)) 
0 ' I then if i^a) is a subshape of 7 then Tnt+ «_! «- fj 

for <p,p'>G{a l 5/zi>,<^1}fJ>} 
f T 2 ^ ( v ( T § ) ) 

do ^ if ( f 2 (0 < (x, J W ] ) and «x, ^>[r'] < r2Qi)) ^ 
I then if r2{a) is a subshape of 7 then rnt++-i «- r2 

[ yline «- next[yline] 
aline +-next[aline] 

<- thread[N[ystack[i]]] 
next[La-node] 

, TP> be the translation from t' to p' . 

Algorithm 1 (continued) 
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set of labelled points. The labelled shapes a. - 0 and |3 - a are represented in the same 
manner as labelled shapes in Krishnamurti (1980). The following changes apply only 
to the labelled shape a. 

Consider the shape s(a). As before, each list of colinear maximal lines is represented 
by a linked list which consists of, at most, two kinds of nodes: a 'header' node and 
'line' nodes. The 'line' node consists of three fields: tail, head, and next which have 
the same interpretations as before. The 'header' node comes into play only if 
type = 5. That is, for a list node in the list representing s(a): 

N[list node] points to I 
a header node, 
a line node, 

for type = 5 
otherwise. 

if aline maps onto yline if 

if Step 3: continued if 

if Ma = 1 
f U All the maximal lines in a are colinear if 
aheader <- N[tops[a]] 

| for / G <1, ..., yptr) 
(yline «- top[N[ystack[j]]] 
| while yline =fc null 

\ DPy[l] *- t[ <- tail[yline] 
DPy[2] *-h\*~ head [yline] 
aline «- top[aheader] 
while aline ¥= null 

fZ>Pa[l] « -*!«- tail[aline] 
DPa[2] ^ hx<- head[aline] 
TRANSFORMATIONS(2,2) 
alinel +- next[aline] 

| while alinel =£ null 
f2 «- tail[aline2] 
DPa[2) «- h2 <- head[aline2] 
TRANSFORM ATI0NS(2,2) f (tail, head} maps onto yline if 
yline2 «- next [yline] 
while 7///ie2 =£ null 

^ *" tail[yline2] 
DPy[2] <- h2 <- head[yline2] 

then 4 1 1 1 | | TRANSFORMATIONS(2,2) if (tail, head} maps onto (tail, head} if 

DPy[\]<-h\ 
TRANSFORMATIONS(2,l) if <head, head) maps onto (head, head) if 

do-( I \DPa[l]^h 
DPa[2] <- tx 

do { | TRANSFORMATIONS(2,l) if (tail, tail) maps onto (head, head) if 
DPa[2]^-h1 

DPy[2] <- fj 
TRANSF0RMATI0NS(2,2) if (head, tail} maps onto {head, tail} f 
DPa[l]«-h3 

DPy[l]*-t[ 
TRANSF0RMATI0NS(2,1) if (head, head) maps onto (tail, tail) if 
DPa[\]^H 
DPa[2] *- t2 

TRANSFORMATIONS(2,l) if (tail, tail) maps onto (tail, tail) if 
DPa[2] «- h2 

{yline2 <- next[yline2] 
z)/>7[2]+-ai 
aline2 «- next[aline2] 

[aline *- next [aline] 
{yline <- next [yline] 

do < 
do 

do 

if Step 4: Finishing touches if 
if (error) or (nt = 0) 
then "shape rule does not apply" 
else "(Tj,. . . , TM) contains all the transformations under which R applies to 7 " 
end SHAPE RULE APPLICATION 

Algorithm 1 (continued) 
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The header node consists of three fields: 

header node \-\-point hot top 

hot and top have the same interpretation as before, and H-point is a pointer to an 
array which stores the coordinates of points. In this case, H-point represents the 
H-intersection point of tail[top[header node]] and some maximal line parallel to the 
maximal line represented by top[header node]. 

The set of labelled points P*(OL) is represented in a similar fashion as P*(T) except 
for the following modifications depending upon the type of the shape rule. 
Case 1: type = 1 or 2. There is no change in the data structure to that described for 
PXi). 
Case 2: type = 3 or 4. In this case all the labelled points of a share the same 
coordinates. topP points to a node which represents either a list of 1-intersection 
points in the case that type = 3, or a list of end points of maximal lines of a for 
type otherwise. Since for shape rules of type 3 only one 1-intersection point is 

Algorithm TRANSFORMATIONS^, nrri) 
H This procedure which is invoked by SHAPE RULE APPLICATION computes the coefficients of, and if nm > 1, 

examines for membership in TR>y, the transformation(s) defined by the mapping DPa[j] <* DPy[j], 1 < / < nd. 
When nm = 2, the transformations defined by the mapping DPa[\ ... 2] -*> DPy[2 ... 1] are also examined U 

if nd = I 

then 

else 

H r is a translation f 
rx *> <0, 0, (x[DPy[l]] -x[DPa[l]])) 
Ty % <0, 0, (y[DPy[\]]-y[DPa[\]])) 

H With respect to the mapping DPa[\ ... nd] *> DPy[\ ... nd], construct the possible corresponding triples of 
points and place them in mapping U 

case nd in 
(= 2) Using equations (14) through (16) compute the coordinates of the vertices of the similar triangles. 

Let them be stored in qf and q), 1 < / < 3, respectively. 
mapping [I] «- (q2, q'3) 
mapping [mptr +- 2] «- (q'3, q'2) 
if nm = 2 

H Construct the possible triples of points corresponding to the mapping 
DPa[\...2]<*DPy[2...\] H 

<Ax', Ay') «-p «x, y)[DPy[2]]-(x, y)[DPy[l]]) 
(x, y)[q'4] <-p «JC, y)[q'2] +<Ax', A / » 
<x, y)[q's] *-p ((x, y)[q'3] + (Ax', Ay')) 
mapping[3] +- (q'4, q's) 
mapping [mptr +- 4] <- (q's, q\) 

Ux,y)[qj] *- Oc,y)[DPa[j]] 
\(x,y)[qj] <- <x,y)[DPy[j]] 

mapping[mptr <- 1] *- {q2 , q'3) 
H Compute the coefficients of the transformation(s) and store them in T\ mptr U 
for k G <1, ..., mptr) 

I ($2, <?3> "*" mapping[k] 
Compute the coefficients of the transformation given by the correspondence (qi,q2,q3) •**• (q'i,4'2,43) 
using equations (10) through (12). Let the computed transformation be (TX, ry) 
Tk "*" (Tx,Ty) 

if nm > 0 
H Examine the transformation(s) for membership in TRt y H 
for / «- 1, / while / < mptr 

f if r / (a ) is a subshape of y 

(Tnt + *-l *" Tj 
iftype[R] = 5 

H In this case Ma = 1 (see SHAPE RULE APPLICATION) and so the mirror 
then I image of T / , r/+1 is also in 7^ y U 

( = 3 ) 

then 

for j e <1,2, 3) do 

then 
do 

end TRANSFORMATIONS 

then 

else if type[R] = 5 then f? l / + < - l 
• not in Tj^ y H 

Algorithm 2. 

file:///-/-point
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required, then only one node is pointed to by N[topP\. For shape rules of type 4 
only end points of maximal lines which do not share the same coordinates as the 
distinct labelled point need be maintained in the list pointed to by N[topP]. In both 
cases, the nodes next[topP], next[next[top]] etc represent lists of labelled points. If 
'key' values of T and ' - ' a re permitted which have the obvious interpretations, then 
the following ordering on the point labels is adopted: 1 = *{AX < A2 < ... < #. 
Notice that in this case the list representing either the single 1-intersection point or 
the end points of maximal lines have no header node. 
Case 3: type = 4 and s(a) = 50. There is no change in the data structure to that 
described for P*(y). 
Case 4: type = 5. In this case, topP points to null. 

Figure 16 presents a pictorial description of the data structures required to 
represent the labelled shape a. 

Finally, an Algol-like translation of the shape rule application algorithm which 
utilizes these data structures is presented in algorithms 1 and 2. 
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