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Abstract. Algorithms for the Boolean operations and relations on shapes and labelled shapes are 
presented. 

This paper has two parts. The first part accomplishes two objectives. First, an 
efficient and uniform representation for shapes is presented, which is based on a 
linear order on the maximal lines of a shape. Second, simple and efficient algorithms 
for the Boolean operations on shapes (shape union, difference, and intersection) and 
the Boolean relations on shapes (subshape and shape equality) are presented. The 
second part deals with the computational aspects involved in performing the Boolean 
operations and relations on shapes and labelled shapes. An algorithm for the efficient 
decomposition of the Boolean operations and relations is presented. Last, the data 
structures required to implement the shape algorithms are described. 

The relevant definitions and notations upon which this paper is based are given in 
Stiny (1980). Each shape is assumed to be initially described by a set of maximal 
lines; each labelled shape is given by a shape and an associated set of labelled points. 

Rational shapes 
A restriction is introduced to limit the class of shapes dealt with in this paper. This 
restriction—albeit a practical one—is necessitated by the fact that algorithms are 
defined with respect to some form of computing machine. In a random access 
machine with limited memory a real number is represented by a finite approximation 
which is determined by the word size of memory. This makes for inexact arithmetic. 
Moreover, it is usual for shapes to be drawn on some kind of graphics device such as 
a visual display unit or a digital plotter. On these devices only a limited number of 
points can be addressed, and the location of each point is given by an integral 
multiple or a pair of integral multiples of a unit of measurement. Since correct 
algorithms require exact arithmetic it is convenient to consider just those shapes 
which can be so described. Therefore, attention will be restricted to shapes which 
are, in the mathematical sense, rational. The following definition makes the notion 
of a 'rational shape' precise. 

Definition: A point p is rational if and only if each of its coordinates x^p),..., xd(p), 
d > 2, can be expressed as the ratio of two integers. A labelled point p:A is rational 
if and only if p is rational. A line /, I = {pi, Pi), is rational if and only if its end 
points, p1 and p2, are rational. A shape s is rational if and only if each of its 
maximal lines is rational. A labelled shape o, o = (s, p)9 is rational if and only if s is 
rational and every labelled point in point set P is rational. 

The ratio of two integers, rn/rd, may be expressed as the ordered pair, <rn, r&), which, 
in turn, may be described by its unique primitive form. A pair of integers, (rn, r&) is 
primitive if and only if the following conditions are satisfied: 
(a) rn and rd are integers, 
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(b) rd > 0, 
(c) rn andfa are relatively prime—that is, there is no positive integer, say k ¥= 1, 
such that k divides both rn and rd. 
When rn < 0, the primitive is said to be negative. 

Examples of primitives are now given. An integer n is described by the primitive 
(n, 1); infinity ©o is described by the primitive (1, 0); zero 0 is described by the 
primitive <0, 1). A rational number r, r = rjrdi can always be reduced to its primitive 
form by applying Euclid's greatest common denominator (gcd) algorithm (see for 
instance, Aho et al, 1974, pages 300-302). The following procedure outlines the 
steps involved in determining the primitive form for the ratio of two integers, r = rjrd, 
rd > 0. Let a = gcd(|rn|, \rd\), where, for any integer q, \q\ denotes the absolute 
value of q. Let b = \rd\/rd. Then, r is described by the primitive <(&rn)/<z, \rd\la). 

Primitives allow one to compare two numbers for equality. Let r* = (r^, rd) 
denote the primitive of the number r where r may be rational, integral, or infinity. 
Two numbers rx and r2 are equivalent if and only if their primitives r\ and r\ are 
equal. That is, r*hn = r*2iVi and r*hd = r*2id. 

Arithmetic computation involving primitives can be conveniently described by the 
following algorithmic notation. The expression: 

variable <-p (expression) 

signifies that the 'variable' is assigned the primitive form of the number that results 
from the 'expression'. For example, let u, v, w be primitives. Then 

w.«-p (u + v) 

is equivalent to the steps: 
set Wn = unvd + udvni 

set wd = udvd, 
define w' to be the ratio of integers, Wn/wd, 
assign to w the primitive form of w' by means of the procedure outlined above. 

Part 1 
A representation for shapes 
A good shape algorithm requires a good internal representation for shapes. It is 
widely accepted that by a good algorithm is meant one which has computational 
time-complexities and space-complexities (Aho et al, 1974, pages 12-14) which are 
polynomials of its input size. For shape algorithms, the inputs are essentially the 
maximal lines and the labelled points of the labelled shapes to which they apply. 
How these labelled shapes are represented, in turn, depends upon the type and 
nature of the computational steps involved in performing the shape operations and 
relations. It is clear that shape algorithms must satisfy the following two computational 
requirements: 
1. There is an effective mechanism or method for determining whether or not two 
lines are colinear. 
2. There is an effective mechanism or method for determining whether or not a point 
is coincident with a line. 
Once these requirements can be satisfied it is fairly straightforward to determine 
whether or not two colinear lines share a common line. 

A simple representation for the maximal lines of a shape will completely satisfy 
these requirements. The representation for two-dimensional rational labelled shapes is 
demonstrated, and the extensions to ^-dimensional, d > 3, rational labelled shapes 
will be apparent. 
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Line descriptors 
Consider an infinite line drawn in a cartesian coordinate system. Its equation can be 
written as 

y — x(slope) 4- ̂ -intercept , if line is nonvertical, 

x = x-intercept , if line is vertical. 

Every maximal line may be viewed as a finite line segment on some infinite line 
whose equation takes on one of the above forms. Consequently, any two maximal 
lines which correspond to finite line segments on the same infinite line are colinear. 
Hence, every maximal line may be associated with a line descriptor, i//, which is the 
ordered pair given by \p = (fx, v), where fi is the slope, and v is the ^-intercept if the 
line is nonvertical, and the x-intercept if the line is vertical. It is easy to show that 
for a rational line, its line descriptor may be represented by an ordered pair of 
primitives. Colinear lines have identical line descriptors and noncolinear lines do not. 

Coincident points and shared lines 
Let / and K be ordered pairs of primitives, where / = </l5 /2) , and K = (kl9 k2). 
Then, / is less than K, denoted by / < K, if and only if either j \ < kx or j \ = kx 

and j2 < k2. Here, < is an order relation. 
The ordering, < , on the points introduces an orientation on the maximal lines in 

the following manner. One may assume, without loss of generality, that / = {pl9 p2} 
is a line the end points of which satisfy px < p2. Then, / is represented as the 
ordered pair given by / = (pl9 p2). The endpoints px and p2 are, respectively, 
referred to as the tail and head of /. For any line /, tail of / < head of /. 

It follows, therefore, that a point which is coincident with a line must lie between 
the tail and head of the line. In other words, a point p is coincident with the line 
given by / = {px, p2) if and only if either px = p, or p2 = p, or p satisfies (1) the 
equation of the line; and (2) the inequality px < p < p2. Since, for the shape 
algorithms considered in this paper, only colinear lines are compared, condition (1) is 
always satisfied. 

The ordering of the points allows one to compare two colinear lines for overlap. 
This comparison, as will be seen, is important to the effectiveness of the shape 
algorithms. Two colinear lines lx and l2 are said to share a common iine if and only if 
tail of lx < head of l2 and tail of l2 < head of lx. Their common line /, / = (pl9 p2), 
is given by px which is the maximum of the tails of /x and l2, and p2 which is the 
minimum of the heads of lx and l2. 

Figure 1 presents examples of pairs of colinear lines, lx and l2, some of which 
overlap, in which case their common line is indicated by a thick line. The end points 
of lx and l2 are, respectively, denoted by o and • . End points common to lx and l2 

are denoted by ©. For each pair of colinear lines the conditions on their tails and 
heads are stated. 

tailC/J < head(/2) tail(/,) < head(/2) 
tail(/2) > headC )̂ o o • • tail(/2) < headC/,) © o • 

tail^) < head(/2) tail(/t) < head(/2) 
tail(/2) = headC/J o © • tail(f2) < headC/̂ i • -

taiK/,) < head(/2) ^ ^ < head(/*> 
tail</2) < headC/,) o • o • tail(/a) < head^) « 0 o • 

Figure 1. Pairs of colinear lines (end points of lt and l2 are, respectively, denoted by o and •; 
common end points are denoted by ©). 
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Ordering maximal lines 
It is now possible to present the representation for shapes based on a linear ordering 
on the maximal lines of the shape. Let s be a shape described by a set of maximal 
lines each of which is associated with a line descriptor. The line descriptor induces a 
natural partition of s into disjoint subshapes sx, ..., sn, where each Si, 1 < / < n, 
consists of multiple colinear lines. Each maximal line in Sf, 1 < i < n, has the same 
line descriptor, </*/, -̂>. Moreover, whenever / =£ /, 1 < /, / < n, the shape inter
section st' Sj is empty, and s is described by shape union: s = Sx +s2 + ... +sn. 
Figure 2 presents a shape and its decomposition into disjoint subshapes each of which 
comprises colinear maximal lines. 

The subshapes sx, ..., sn of s are arranged so that their line descriptors form a 
linearly ordered list. That is, {nx, vx) < ... < </x„, vn). Each subshape, st, 1 < i < «, 
in turn, is represented by a linearly ordered list of colinear maximal lines Lt, 
U = <//, i , ..., li,m) where each element in Lt has the same line descriptor </x/, vt). 
(Where no confusion can arise subscripts will be omitted.) The lines in L, 
L = (ll9..., /w>, are arranged so that whenever 1 < / < k < m, head of /y- < tail of lk, 
which is denoted by /;« < lk. Such a linear ordering of the maximal lines in st is 
always possible since any pair of colinear maximal lines in the same shape cannot 
overlap. 

The labelled points for labelled shapes are likewise treated. The labelled points are 
arranged into lists, each list consisting of all the labelled points which have the same 
label. The lists are Unearly ordered according to a lexicographical ordering on the labels. 
The labelled points in each list may be arranged according to the order relation <. 

Thus, every labelled shape o, o = (s, P>, is represented by the ordered pair o given 
by a = (L, P). L i s a linearly ordered list of linearly ordered lists of maximal lines, 
L = (Lu ..., Ln), where Lj, 1 < / < n, contains all the maximal lines in s with the same 
line descriptor, </z/, vj) and </zl5 vx) < ...< <JU„, vn). P is a linearly ordered list of 

L. Shape s 

*10 

L 
1 -a 

sn s 
Sit 

1 -X 

^lS S11 S19 S21 S23 S25 
S16 S18 S20 ^22 S24 SH 

Figure 2. The decomposition of a shape s into disjoint subshapes, each of which comprises 
colinear maximal lines. 
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linearly ordered lists of labelled points, P = (Pl9 ..., Pm) where Pk, 1 < k < m, 
contains all the labelled points of P with the same label, Ak, and A1 < ... < Am . 

List comparison properties 
The linear-order based reorganisation of labelled shapes yields the following list 
comparison properties which are given for the maximal lines in the shape. Similar 
properties hold for the labelled points of the shape. For any list N, let \jj(N) denote 
the line descriptor for the maximal lines in TV. Then: 
1. Let L = </2, ..., lnL) and M = {ml, ..., mnM) be linear lists of colinear maximal 
lines such that \jj(L) = ty(M). Then, if //, 1 < / < nL, is the first line in L which 
shares a common line with mk, 1 < k < nM, in M, then the lines mk>, k < k! < nM, 
do not share a common line with the lines If, 1 < / ' < /. This observation enables 
one, as will be proved later, to compare two lists of colinear lines in a time linear in 
the number of maximal lines in both lists. 
2. Let L = (Li, ..., LnL) and M = (Mx, ..., MnM) be lists of lists of colinear maximal 
lines. Then, if Lf, 1< j < nL, and Mk, 1 < k < nM are lists such that \jj(Lf) = \p(Mk), 
the lists Lf, 1 < / ' < /, and Mk>, k < k' < nM satisfy: i//(X/0 < $(Mk>)* 

Shape arithmetic 
Let • be a variable over the Boolean operations and relations. Then, the shape 
operation or relation ox • o2 is equivalent to the ordered pair (Lx • L2, Pi ° P2), 
where Lxn L2 represents the shape operation or relation, and Pt • P2 represents the 
corresponding set operation or relation. For example, let • be the shape union 
operator. Then, ox + o2 is the labelled shape given by the shape represented by the 
shape union: Lx + L2, and its associated set of labelled points represented by the set 
union: / J

1 +/ J
2 . Again, for example, let a be the subshape relation, < . Then, ox < o2 

if and only if Lx represents a subshape of the shape represented by L2, and Px represents 
a subset of the set of labelled points represented by P2. 

The shape operation or relation, Lx • L2, can be decomposed into a list of shape 
operations or relations on pairs of shapes each of which consists of colinear maximal 
lines. Since the Boolean operations and relations on shapes are defined in terms of 
overlapping lines (see Stiny, 1980), it is sufficient to compare the maximal lines in 
lists, one each from Lx and L2, which share the same line descriptor. 

For convenience, let the subscripts be omitted, and let Lx and L2 be referred to as 
L and M, L = (Lx, ..., Lni) and M = (Mx,..., MnM). Let 0 denote the empty list of 
maximal lines. Suppose • is an operator. Then, L • M is the list N, say, where 
N = (Nx, ..., NnN), and each Nt, 1 < i < n/y < nL + n/u, is a list of colinear maximal 
lines given by one of the following: 

f if Lf, 1 < / < nL, and Mk, 1 < k < nM, are lists such that 
\LinM* x}j(Lf)= xjj(Mk) mdLfnMk^0; 

J if • and • are not the same operator, and Lf, 1 < / < TIL , is a 
' ~ 1 > list such that for each k,\<k<nM, i//(Zy) ^ ^(Mk); 

if • is the operator +,. and Mk, 1 < k < HM, is a list such that 
[Mk for each /, 1 < / < nL, \jj(Mk) ^ \p(Lf). 

Clearly, N can be arranged so that i//(7Vi) < ... < 4i(NnN). 
Suppose, on the other hand, • is a relation. For integers n and m, let n • m denote 

n < m in the case when a is the subshape relation, and n = m otherwise. Then, 
L • M if and only if nL • nM and for each list Lf, 1 < j < nL, there is a list Mk, 
1 < k < nM, such that i//(X/) = ^(Mk) and LfuMk. Therefore, it follows that all 
one requires are shape algorithms for pairs of shapes each consisting of colinear 
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maximal lines, and that the maximal lines in the two shapes have the same line 
descriptor. 

In a similar fashion, Px • P2 can be decomposed into a list of set operations or 
relations on pairs of sets of labelled points having the same label. Again, all that is 
required are set algorithms for sets of identically labelled points. 

Shape algorithms 
Let • be a Boolean operator on shapes. Then, the shape expression 

signifies that o3 is the labelled shape resulting from the shape operation ax • o2. I*1 

the special case, where a3 is either ox or o2, say ax, the expression 

°x *~ °i ° °2 

signifies that a2 is replaced by the result of the shape operation ox • o2. The latter 
expression is particularly relevant to the shape grammar formalism. In any shape 
grammar there is a current shape denoted by 7. Suppose a shape rule, denoted by 
a -> |3, applies to 7. That is, there is a euclidean transformation r such that T(CL) < 7. 
Then, shape rule application is described by the following two shape expressions in 
sequence: 

7 «- 7 — T(OL) , 7 «- 7 + T(/3) . 

Algorithms for shape rule application are taken up in greater detail in Krishnamurti 
(1981). 

The following shape expressions are considered: 
(a) ax <- ax 4- a2 , 
(b) ax *- o1-o2 , 
(c) o3 <- ol • a2 , 
(d) is o2 < oxl 
(e) is ax = a2? 
The shape expressions (a) and (b) are chosen with the view to implementing the 
shape grammar formalism. Other shape expressions are possible. For instance, 
interested readers can devise their own algorithms for the shape expressions o3 <- ox + o2. 
To that end, they may find the presentation in this paper for the shape expression (c) 
useful. 

The inputs to the shape algorithms are ordered lists of colinear maximal lines, L 
and M, both lists sharing the same line descriptor. It is assumed that M is nonempty. 
The proofs for the correctness of the algorithms are provided in their descriptions, 
and where necessary illustrations are provided to facilitate explanation. 

(a) Shape union: L «- L+M 
Step 0 (Is L empty?) If L is empty, go to step 8. Otherwise, set i <- 1, and select 
the first line, mx, in M and copy it into m which is referred to as the 'working line'. 
Set / «- 1, and select the first line, lx, in L. 
Step 1 If tail of lf < head of m, go to step 3. Otherwise, m shares no common line 
with any line lk >f in L, and m < if. This condition is illustrated in figure 3(a). 
Insert m into L as the maximal line immediately preceding /y in the list, and continue 
with step 2. 
Step 2 If M is not exhausted, set i +- i+1, and select the next line, mi9 in M and 
copy it into m. (Notice that at no stage in the execution of the algorithm is the 
head of m altered, and therefore, at all times m < mk>i.) Go to step 1. Otherwise, 
M is exhausted, and go to step 9. 
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Step 3 (Determine if m and // share a common line.) If tail of m < head of //, go 
to step 5. Otherwise, continue with step 4. [The working line m shares no common 
line with any line preceding and including /;- in L and m> /;-. But m may share a 
common line with line(s), lk >;«, in L. This situation is illustrated in figure 3(b).] 
Step 4 If L is not exhausted, set j <-j+l, and select the next line, //, in L and go 
to step 1. Otherwise, insert m as the last line in L and go to step 8. (The reader can 
verify that m is a maximal line.) 
Step 5 Asm and /;- either share a common line or share an end point, they can 
therefore be combined to form a single line. This is illustrated in figure 3(c). Set tail 
of m and /;- to the minimum of the tails of m and /y-. 
Step 6 (m and lj now have the same tail; one of these lines must contain the other, 
and the appropriate line is discarded from further consideration.) Go to step 7 if 
head of /;- > head of m, otherwise, delete /;- from L and go to step 4. [At this stage 
m contains /7-. It will be assumed, for convenience, that the subscripts of the lines in 
L are not altered. That is, at any stage of the algorithm the line currently preceding /;-
in the list L may not necessarily be the line originally subscripted lj-x. This step and 
the next are illustrated in figures 3(d) and 3(e).] 
Step 7 As If contains m, then m is not maximal and can be ignored. Go to step 2. 
Step 8 (All the lines, if any, in L have been examined. There may still be some 
unexamined lines in M.) Copy all the unexamined lines in M in their order, and 
attach them to the end of list L. 
Step 9 (Finishing touch.) All the lines both in L and in M have been examined. 
L contains the maximal lines of the shape union in their sorted order. 

_ m _ _ * I m 

rrii I 

(a) tail(/;0 > head(m) m^ 

Sli 

* m 

:ail(?w) > head(/y) 

h 
m t 

'/ 
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mt 

h 
rh 

. mi . 

/ 

\ 

h * 

(d) head(w) > head(/;) 

h 
m ^ 

m 

(e) head(w) <. head(/;) 

m 

mi 

deletedv^ ^ 

m 

m 

li 

m 

t 
^mt 

(c) tail(/y) ^ head(w) and tail(m) < head(/y) 

Figure 3. Some conditions that can arise in the algorithm for shape union (asterisks indicate the 
end points that are compared, and arrow heads indicate an unfixed end point). 
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The computational complexity of this algorithm can easily be determined as 
follows. Let there be nL lines in L and nM lines in M. In the worse case, each Hne, /, 
in L is compared once with the current working line, m, except when (in step 2) 
tail of / > head of m or when (in step 7) / contains m, that is, when m is redefined 
(step 2). But there are nM redefinitions of m once for each line in M. Therefore, the 
worst case time bound for shape union is 0(nL 4- nM). 

(b) Shape difference: L «- L-M 
Step 0 (It is assumed that L is nonempty; otherwise the shape difference is empty.) 
Set / «- 1, and select the first line, mx, in M. Set / <- 1 and select the first line, lx, 
in L. 
Step 1 If head of mt > tail of If, go to step 3. [Otherwise, mt shares no common 
line with If, through its successor line in M, mi+l, may. See figure 4(a).] 
Step 2 If Af is not exhausted, set i *- j + 1, and select the next line, mi, in M and 
then go to step 1. Otherwise, the procedure is finished, and exit from algorithm. 
Step 3 If head of If > tail of rm9 go to step 5. [Otherwise, If shares no common Une 
with mt, though its successor line in L, lf+1, may. See figure 4(b).] 
Step 4 If L is not exhausted, set / «- / + 1 , and select the next Une, //, in L and then 
go to step 1. Otherwise, the procedure is finished, and exit from algorithm. 
Step 5 The lines If and mt share a common line, and their corresponding tails and 
heads can now be compared. One of the following four cases must arise: 
(1) lj -mi = /A, /A = <tail of If, tail of m,>, when tail of mf > tail of /;-, and 
head of mt > head of If; 
(2) If — mi = /B , /B = <head of mt, head of If), when tail of If i> tail of mt, and 
head of If > head of mt; 
(3) If - mt = lA+ /B, when tail of m\ > tail of If and head of If > head of m,-; 
(4) If -mi is the empty line, when tail of If > tail of mt and head of mt > head of/;-. 
Compare the corresponding tails and heads of /,• and mt. Depending upon the four 
above mentioned cases, one of the following is performed: 
Case (1): replace the line /;- in L by /A and go to step 4. 
Case (2): replace the line /;- in L by /B and go to step 2. 
Case (3): replace the line /;- in L by /B. Insert a copy of lA to precede If in the list. 
That is, /A < /B in L. Go to step 2. 
Case (4): delete /;- from L. Go to step 4. 
(Figure 5 pictorially illustrates the four cases mentioned above.) 

To complete the proof of the correctness of the algorithm, the following observations 
are made: 
1. If /;- and lk are two successive Unes in L which share a common line with m in M, 
then If - m and lk-m are relatively maximal, and, moreover, the order < between 
the lines in L is preserved. 

(a) Step 1: head(m/) <> tail(/y) 

... h * ... ... _^k ... 

* mi ... . . . m 

(b) Step 3: head(/y) <> tail(m0 
Figure 4. Two conditions that can arise in the algorithm for shape difference (asterisks indicate the 
end points that are compared). 
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2. If mt and mk are two successive lines in M which share a common line with / in L, 
then I-mi and l~mk are relatively maximal, and, moreover, the order < between 
the lines is preserved. 
As in the case of shape union, the computational complexity for shape difference is 
0(nL + nM) where nL and nM are, respectively, the numbers of maximal lines in L and M. 

(c) Shape intersection: N *- L • M 
L may be assumed to be nonempty, otherwise the shape intersection is empty. 
Shape intersection is essentially the complement of the algorithm for shape difference. 
Only steps 0 and 5 are modified. In addition to those statements, in step 0 the 
following initialization statement must be included: 

N *- 0 , k «- 0 . 

(That is, initialize the result list to be empty, k is an index to lines in N.) 
Step 5 is modified to read as: 
Step 5' Corresponding to each case in step 5 for shape difference, the four cases hold: 
( ! ) / / • w/ = <tail of ntf, head of //>, when tail of mt > tail of // and 
head of m\ ^ head of //; 
(2) /; • mi = (tail of //, head of m/>, when tail of lj ^ tail of m(- and 
head of mt < head of //; 
(3) // • mt = (tail of m,-, head of m^, when tail of m/ > tail of lj and 
head of mt < head of //; 
(4) // • rm ~ (tail of /;, head of /;>, when tail of lj > tail of mf and 
head of m% ^ head of lj. 
These cases are illustrated in figure 6. The following steps simulate the cases. Set 
k «- k+l, and let nk denote the next line in N; nk represents // • mt which is not 
empty since lj and mf share a common line. 
Step 5'J Set tail of nk equal to the maximum of the tails of //and m\. 
Step 5\2 If head of / / ^ head of mti set head of nk equal to the head of mt, and 
then go to step 2. 
Step 5\3 Otherwise, set head of nk equal to head of // and then go to step 4, 

...*-
_// shape difference^ ^ / / 

* m ... ... m 

(a) tail(m/) > tail(/y) and head(m/) ^ head(//) 

// * //^shape difference 

Wj * 

(b) tafl(/,) ^ tail(jw,) <*/irf headfy) > head(m,) ' 

shape difference , 

4 ... ... _L _L_'/ . 
mi 

^m{ (c) tailfm,) > tail(/y) and head(/y) > head(/w,) 

deleted line 7 deleted line , 

rtij ntj 

(d) tail(/;) ^ tail(/w/) and head(w/) > headfy) 
Figure 5. The four cases of step 5 in the algorithm for shape difference (asterisks indicate the end 
points of the lines in the shape difference). 
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The proof of the correctness for the algorithm follows from the observation that 
the intersection of two overlapping maximal lines is a maximal line. The computational 
complexity for shape intersection is linear in the number of lines in L and M. 

(d) Subshape and equality: M < LI and M = LI 
In this case L is nonempty, otherwise the relationship does not hold (since M is 
assumed to be nonempty). The subshape algorithm will be considered here; the 
equality algorithm is equivalent to determining if the two lists are identical. A 
Boolean variable flag which returns a value true if M < L, and false otherwise. 
Step 0 Set flag +- true. Set / «- 1, and select the first line, lx, in L. Set i «- 1, and 
select the first line, mx, in M. 
Step 1 If tail of m,- < head of If, go to step 3. 
(Otherwise, If does not share a common line with m{ though its successor, / / + 1 , in L 
may.) 
Step 2 If Z is not exhausted, set / < - / + 1 , and select the next line, /y, in L and then 
go to step 1. 
Otherwise, <, does not hold. Set flag to false and go to step 6. 
Step 3 If tail of If < head of mt, go to step 4. 
Otherwise, there is no line in L which contains mt. Set flag to false and go to step 6. 
Step 4 (If and mt share a common line. Does /y contain m,-?) 
If tail of rrii ^ tail of lf and head of mt < head of /y, go to step 5. 
Otherwise, /y does not contain m(. Set flag to false and go to step 6. 
Step 5 (If contains mt. Choose next line in M.) 
If M is not exhausted, set / «- f+1 , and select next line, mt, in L and then go to 
step 1. 

L_* y±... 
rrij ^ mi 

(a) tail(m/) > tail(/y) and head(m/) ^: head(/y) 
x,. •nk (shape intersection) 

. * // ... ... L 
jm * _ ^ ... 

(b) tail(/y) ^ tail(m/) and head(/y) > head(mj) 
^nk (shape intersection) 

h h 
mt w j^rtij 

(c) tail(ml-) > tail(/y) and head(/y) > head(w/) 

_ * h_* ... s!i 
mt ^ mi 

nk (shape intersection) 

^nk (shape intersection) 
(d) tail(/y) ^ tail(m/) and head(m/) > head(/y) 

Figure 6. The four cases of steps 5' in the algorithm for shape intersection (asterisks indicate the 
end points of the common line). 
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Step 6 (Finishing touch.) The procedure is finished, and flag contains the Boolean 
value representing whether or not the relation M < L holds. Exit from algorithm 
with the value in flag. 

Figures 7 through 10 present pictorial descriptions of the workings of the 
algorithms on sample shapes. 

The corresponding operations and relations on sets of identically labelled points 
can be performed by means of the standard procedures for manipulating linear lists 
(see, for instance, Horowitz and Sahni, 1976, chapter 2). 
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Part 2 
Efficient decomposition of the Boolean operations and relations 
It has been shown that a Boolean operation or relation on labelled shapes can be 
decomposed into (a) a list each element of which is the shape operation or relation 
on linear lists of colinear maximal lines, and (b) a list each element of which is the 
set operation or relation on linear lists of labelled points having the same label. Now 
consider the following problem. 

Suppose U and V are ordered lists of lists of elements, where U = (Ux, ..., Un), 
V = (Vx, ..., Vm), and the Uks and Vjs are sorted according to their respective keys 
{ux, ..., un) and {vx, ..., vm). That is, ux < ... < un, and vx < ... < vm. Let • be an 
operator. The problem is that for each list Vj with key Vj in V to search the list U 
for a list Uk such that uk = Vj. If the search is successful Uk is replaced by Uk • Vj, 
which may lead to the deletion of Uk from U in the case when • is a difference or 
intersection operator. This occurs when Uk • Vj is empty. If the search is unsuccessful 
a copy of Vj is inserted into the list U in the case when • is a union operator, but at 
the same time preserving the linear ordering of the elements of U. Here U is a 
dynamic list and V is a static list. The analogy to the shape algorithms is obvious. 

The crucial computation question related to the problem is: how effectively can 
this list searching, and/or list insertion/deletion be carried out? The answer to this 
depends to a large extent on the internal organization for the list. Two possible 
types of data structures are considered: (a) linked lists, and (b) balanced binary trees. 
Linked lists are useful when the lists are static and reasonably small in size, which is 
often the case with shape rules. Balanced binary trees are useful when the lists are 
dynamic and constantly increasing in size, which is generally the case with the current 
shape in the shape grammar formalism. Algorithms for searching, insertion, and 
deletion on linked lists are straightforward (see, for instance, Aho et al, 1974). In 
the remainder of this section a search algorithm is presented when the list U is 
organized as a balanced binary tree. This algorithm utilizes the Brown-Tarjan (1979) 
fast merge algorithm. 

Organizing a linear list as a balanced binary tree 
It will be assumed that the reader is familiar with binary tree terminology (see, for 
instance, Knuth, 1973b) with the exception that the term 'son' is now replaced by 
'offspring'. A binary tree is height-balanced if the height of the left subtree of any 
node never differs by more than ± 1 from the height of the right subtree of the node. 
The height of a tree is the length of the longest path from the root to a leaf node. 

Figure 11. A balanced tree representation for shapes in figure 2 (GD denotes the node representing 
shape s, and the numbers within the brackets are the balance factors). 
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A leaf node has no offsprings. The left and right subtrees of a node are, respectively, 
the trees rooted at the left and right offsprings of the node. 

A linear list is organized as a balanced binary tree as follows. Each node in the 
tree represents a list element, and is referenced by its key. If k is the key presented 
by a node, then all nodes in its left subtree have keys <k, and all nodes in its right 
subtree have keys >k. The proper location of a node in the tree with a given key 
value can be determined by a standard binary tree search (Knuth, 1973a) in O(lbw) 
time, where n is the list size. The linear list can be reproduced in its original list 
order by an inorder traversal (Knuth, 1973a) of the tree in a time proportional to the 
list size. Figure 11 gives a balanced tree representation for the shape in figure 2. 

A balanced tree search algorithm 
The obvious method for comparing U and V is to take each key Vj in turn, and search 
the balanced tree for U, for a node associated with a key which equals vf. If such a 
node exists, the search is successful. When • is a difference or intersection operator the 
algorithm may involve the deletion of the node from the tree. If no such node exists, 
the search is unsuccessful. When • is a union operator the algorithm involves inserting 
a new node with key value equal to Vj into the tree. To insert a node into or to 
delete a node from the balanced tree requires 0(lb«) additional steps for rebalancing 
the tree. Rebalancing becomes necessary whenever the modified tree—as a result 
either of node insertion or of node deletion—fails the height balancing requirement. 
Rebalancing will be considered in greater detail later in this section. Knuth (1973b, 
algorithm 6.2.3A) provides a good description of node insertion into a tree. Deletion, 
however, is slightly more difficult. For a reasonable discussion of node deletion from 
a balanced tree the reader is referred to Crane (1972, pages 43-45, and chapter 4 for 
an ALGOLW description of the algorithm) and Wirth (1976, algorithm 4-64). The 
computational effort involved in comparing U and V is, in the worst case, 0(m lbra). 

When n> m the time bound can be improved. In the case of merging two disjoint 
lists into a single list Brown and Tarjan (1979) have demonstrated a computational 
time bound of 0[ra lb(n/m)]. I believe their contribution to balanced tree search can 
be used for other forms of list comparisons without materially changing the time 
complexity. The following material is adopted from their paper. As before, the first 
step is to search tree U for a node with its key equalling Uj. Once vx has been 
compared, some appropriate algorithmic action takes place which may result in a 
copy of vx together with the list element Vx being inserted into the tree, or the node 
whose key equals vx being deleted from the tree, or the tree being left as it is. At 
the start of the general step, the keys vx, ..., vk have been compared with the nodes 
in tree U, and a record is maintained of the nodes in the search path from the root 
to the last node compared with key vk, which may, in the case of insertion, be the 
node whose key equals vk. This path acts as a 'finger' into tree U moving from left 
to right as the keys of the lists in V are compared; the finger is useful since only 
nodes to the right of it have to be visited during later comparisons. This follows 
from list comparison property 2 (see page 467). 

The general step comprises two parts. First, the finger is retracted towards the 
root, just far enough to the position that vk+1 'lies' in the subtree rooted at the end 
of the finger. The key vk+l is compared with the nodes in this subtree, and the 
finger is extended to follow the search path. After m - 1 executions of the general 
step the algorithm is complete. 

However, this scheme is complicated by the fact that both insertion and deletion 
into the tree may require rebalancing of the tree. When rebalancing takes place, it 
may remove a node from the finger path traced out by the search. It is possible to 
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update the finger to be consistent with the rearrangement, but Brown and Tarjan 
suggest that it is easier to just 'forget' about the part of the path which is corrupted. 
That is, to retract the finger to the last, and in the case of insertion the only, point 
of rebalancing. The algorithm takes the form shown in figure 12. At the start of the 
general step one now has a record on only part of the search path to the last node 
compared with vk. The general step proceeds as before. Notice that the first step 
need not be treated separately. At the start of the algorithm, the finger is initialized 
to the root of tree U (which is always on the path to the first comparison), and the 
general step is executed m times. 

The algorithm can be speeded up by keeping a record of all nodes on the finger 
path where the finger turns left—that is, those nodes on the path whose left offspring 
is also in the path. It is easy to show that these are precisely the nodes on the path 
which have a larger key than the most recently compared item. Then, only these 
nodes have to be examined in the 'climbing up' phase of the general step. 

contains all 
the nodes 
that have 
been examined 
in comparing 

root 
finger 

last point of 
rebalancing 

last node examined in the 
comparison with vk 

(a) Start of the general step 

contains all the nodes 
that may have to be 
examined in comparing 
Vk+l, -.., Vm 

all the nodes 
that may have 
to be compared 
with vk+1 lie in 
this subtree 

(b) Climbing up phase 

new' finger 
last point of 
rebalancing 

"last node examined in the 
comparison with ufc+1 

(c) Compare vk+1 and extend finger (d) Rebalancing the tree 

Figure 12. The form of the balanced tree search algorithm. 

Rebalancing transformations 
Rebalancing is required whenever the balanced tree becomes unbalanced—that is, the 
tree fails to satisfy the height-balance requirement as a result of an insertion or a 
deletion. Each node is associated with a balance factor which is the difference 
between its right and left subtree heights, and can take on values from lefttaller (-1), 
balanced (0), and righttaller(+l) which have the obvious interpretations. Consequently, 
insertion of a node into the left (right) subtree of a node whose balance factor is 
originally lefttaller (righttaller), or deletion of a node from the left (right) subtree of 
a node whose balance factor is originally right taller (lefttaller) results in the entire 
tree becoming unbalanced. 

A leaf node is always inserted or deleted. In the case of deletion, if the node to 
be deleted is not a leaf node, the contents of a specific leaf node is copied into the 
node designated to be deleted, and the leaf node is deleted instead. Furthermore, the 
finger is extended to follow the search path to the node to be deleted. Rebalancing 
can be described as follows. Let x denote the inserted or deleted node. The 
successive ancestors of x (denoted by z) moving up towards the root along the search 
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path are examined; and, if necessary, the finger is retracted to z. During this climb 
one of the following steps is performed. 
(1) z is originally balanced: 
Change the balance factor of z to ± 1 as appropriate. In the case of insertion the 
climb is continued; in the case of deletion the tree remains height-balanced, and 
the climb is stopped. 
(2) z is originally unbalanced: 
z becomes either balanced or doubly unbalanced. In the latter case, the subtree 
rooted at z is locally modified via one of two types of transformations: single and 
double rotation. These are shown in figure 13 wherein the symbol El indicates the 
deleted node, and the symbol ® indicates the inserted node. Notice that both in 
single and in double rotation the mirror-image transformation is possible. In fact 
there is an additional special case of double rotation which occurs when h = 0, and 
x is an inserted node. In that case, x equals w and the subtrees a, 0, 7, and 5 are 
empty. In the case of deletion one still has to continue the climb; for insertion, the 
rebalancing is completed. 

If the root is reached during the climb rebalancing is complete; for insertion the 
balanced tree has increased in height, and for deletion decreased in height. 

X 

(a) (b) 
Figure 13. Modifying the subtree rooted at z by the rebalancing transformation; (a) single rotation, 
and (b) double rotation. 

Data structures 
The following data structures serve to represent a labelled shape a, which is described 
by the ordered pair (L, P), where L = (Ll9 ..., Ln) and P = (Pl9 ..., Pm). L is an 
ordered list of ordered lists of colinear maximal lines. P is an ordered list of ordered 
lists of labelled points having the same label, a is assumed to be rational. Each data 
structure is described by the fields of the nodes in the data structure. The internal 
implementation of the data structures is given in terms of data classes. Each data 
class defines the fields of each data node in the class. 

Each node in the data class POINT comprises two fields, and for rational shapes 
each field represents a pair of integers. POINT inplements the data structures for the 
coordinates of a point and the line descriptor for a list of multiple colinear lines. 
The data structures are: 

coordinate node 

line descriptor node 
x\y 

The fields in the data structures have the obvious interpretation. 
The data class LABEL consists of one field, A, which stores the label for a list of 

labelled points sharing the same label. 
Each node in the data class LIST consists of three fields one of which, referred to 

as next, is a pointer to a node in LIST. LIST serves to implement linked lists. 
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Linked lists are used to implement the lists L, P, Lj and Pk. The data structures are: 

Zy-node or Pk-node key N next 

point mark next 

B left right key N 

where key is a pointer either to a node in POINT which contains the line descriptor 
for a list of colinear maximal lines, or to a node in LABEL which stores the label for 
a list of labelled points sharing the same label; TV is a pointer to a node in LIST 
which is the first node of the linked list representing either the list of colinear 
multiple lines or the list of labelled points having the same label; and next points to 
the next mode in the linked list in the sense that key [node] < key [next [node]]. 

line-node 

where point points to a node in POINT which stores the coordinates of a labelled 
point; mark is an integer which is not used in this paper (see Krishnamurti, 1981); 
and next satisfies the property point[node] < point[next[node]]. 

The last data class to be considered is BTREE. BTREE simulates height-balanced 
binary trees. Each node in BTREE consists of five fields. 

tree-node 

The fields have the following interpretation. B is the balance factor of a node in a 
balanced tree; left and right are pointers to nodes in BTREE and represent, 
respectively, the left and right offsprings of a node in a balanced tree; and key and TV 
have the same interpretations as given earlier. 

Each labelled shape a is represented by the pair (tops, topP) where top is a pointer 
to a linked list or a pointer to a height-balanced tree. The subscript s refers to 
the data structure which maintains the maximal lines and the subscript P refers to the 
data structure which maintains the labelled points. A shape is described by the pair 
(topSi null> where null is a special pointer which points to an empty node. In a 
similar fashion, a labelled shape consisting of only labelled points is represented by 
the pair (null, topP). Figure 14 illustrates the internal organization of a labelled shape 
in which its shape is housed in a balanced tree, and its set of labelled points is housed in 
a linked list. Notice that the data structures are arranged according to the data classes 
to which they belong with only sample links indicated. 

Remark: It is assumed that these data structures can be implemented without 
violating or mixing data types. For instance, the data classes can be regarded as 
collections of integer arrays, and the fields may be equivalenced via some mechanism, 
say the Fortran EQUIVALENCE statement. 

Algorithm 
The data structures are incorporated into algorithms 1-4 which describe, in Algol-like 
notation, the algorithmic framework for decomposing the Boolean operations or 
relations on labelled shapes into (a) lists of shape operations or relations on lists of 
colinear maximal lines, or (b) lists of set operations or relations on lists of identically 
labelled points. The set of algorithms 1-4 is based on the modified Brown-Tarjan 
balanced tree search algorithm, and are called: SHAPE EXPRESSION, DELETE 
NODE, INSERT NODE, and ROTATE TREE. SHAPE EXPRESSION describes the 
algorithmic framework in which the algorithms for the shape expressions ol^ ox • o2 

in the case that • is an operator, and o2
 n ox if n is otherwise, are invoked. The 

inputs are the labelled shapes ox and a2; the shape operator or relation • which takes 
on values from {+, - , •, < , =}; and a parameter c which takes on values from {s,P}. 
SHAPE EXPRESSION invokes algorithms DELETE NODE and INSERT NODE, 
respectively, wherever a node is deleted from or inserted into the balanced tree rooted 
at topc fa). DELETE NODE and INSERT NODE both invoke ROTATE TREE 
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Algorithm SHAPE EXPRESSION (a t , a2, n, c) 
f This routine describes the decomposition of the Boolean operations and relations based on the fast 

balanced tree search. The following shape expressions are considered as illustrative examples: 
Ox «- aj • a2 for • an operator, and a2^ax for n otherwise. 
Oi is represented by the pair < tops(ot), topp(ax)), where top<fpt)? c 6 {?, P } , is the root of a 
balanced binary tree. 
The following 'conventions' are adopted: 
l.Nu denotes the list of elements represented by node u, the first element of which is pointed to 

by N[u]. 
2. \p(u) is the key associated with node u, and is given by: (p., v)[key[u]] for c = s, and 

Alkeylu]] for c otherwise. 
3. The expressions: 

node <= DATA CLASS fetches an unused (available) node in DATA CLASS, initializes all its 
fields, and assigns it to node. 

DATA CLASS <= node releases the node pointed to by node^and makes it available for future 
use f 

f Initialization 
path: an array containing all the nodes traversed from the root to the current node. 

For I < i < pptr, path[i+\] is an offspring of path[i]. 
successor: an array containing all the nodes in path whose left offsprings are also in path. 

For 1 < / < sptr, path[successor[j]+1] = left[path[successor[f]]]. 
pptr, sptr: pointers to the last entry in path and successor respectively. 
flag: a Boolean variable which signifies whether or not o2 •=> ox if a is a relation, and 

ax u a2 = 0 if D is otherwise H 
path[pptr «- 1] •«- topc(ox) f ox is initially assumed nonempty H 

sptr <- 0 
flag <- true 
11 Balanced tree search algorithm 

GETNEXT(/opc(a2)) is a global routine which fetches, on each invocation, the 'next' node, in 
order, in the data structure headed by topc(o2), c € {s, P}. 
u, v: nodes representing the current lists under consideration in c(aj) and c(a2), c E {s, P}, 

respectively H 
for v *- GETNEXT(/opc(a2)) while (v =£ null and flag) 

fU Climb up phase. Retract'the path until top of path, u, is either the root or satisfies 
\p(u) < \p(v). It is only necessary to examine the nodes pointed to in successor 1f 

(pptr «- successor[sptr] 
I sptr - «- 1 

- path[pptr] 
I f Balanced tree search. Compare keys and extend the path 1f 

search «- true 
| while search 

if IKH) = Hv) 
\ 1f Matching keys found. Perform the appropriate action f 

search <- false 
case n in 

( + » ' , ~ ) 11 Shape or set operation U 
Nu<-NuuNv 

| DELETE NODE 
I flag <- path [ 1 ] =£ null 

(<, =) H Shape or set relation 1f 
do 4 I I /&£ +- NvnNu 

if iKi;) < ,//(") 
H Branch left f 
successor[sptr + *- 1] +- pptr 

^x <- left[u] 
i H Branch right H 
- x «- r/g/z?[w] 

| if x = null 
1f There is no list Nu with the same key value as Nv f 
search <- false 
case a in 

1f Insert iV„ into the tree H 

x <= ^ras^ 
\j/(x) <- i//(u) 

INSERT NODE 
) if swccessorlspf/-] = pptr then spfr* - <- 1 
= ) flag *~ false 

while (sptr > 0) and (\p(v) > \}j[path[successor[sptr]]]) do 

do < 

then 

else 

then 

else 

if Nu = 0 then 

then 

(+) 

(<, 
H Finishing touches f 
case n in 

(+, • , - ) topcW <-path[l] 
return 

(<, =) retarn(flag) 
end SHAPE EXPRESSION 

Algorithm 1. 
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else 
else then 

else 

while left[y] ¥= i 

Algorithm DELETE NODE 
f This routine deletes node u from the tree and rebalances the tree H 
if right[u] - null 
then x +- left[u] 

if left[u] = null 
then x «-right[u] 

1f u has nonempty subtrees. Delete, instead, a node from the higher subtree of u 
after copying its content into u so that the resulting tree still represents the altered 
list in its original list order H 

if B[u] = righttaller 
f H Let y be the immediate successor of u in the list 1f 
I path[pptr + <- 1 ] +- y «- right[u] 

null do Inaworto*\T U *~ ? ? r , 
\path[pptr+ +• 1] *-y *~ left[y] 

[x +~ right[y] 
f H Let y be the immediate predecessor of u in the list H 
successor[sptr+ *- 1] *- pptr 

\path[pptr+ <- 1] <-y *-left [it] 
while r/g/irl^] =£ null do path[pptr-\- *- 1] -*-y +> rightly] 

U <- fc//[y] 
H Copy contents of y into u and rename >> U 
Hu] *- i//[y] 
iV [M]<-%] 

[ M^-V 
if c = 5 then POflVT <- key[w] else LABEL «•» key[u] 
BTREE <= a 
ppfr - <- 1 
H x is either the root or becomes an offspring of the former parent of u U 
if pptr = 0 
f. jpath[pptr «- 1] «-x H x equals null signifies an empty tree H 

1 sptr «- 0 
f Deleting a node from the right (left) subtree effectively makes the left(right) subtree 

taller 1J 
z <- path[pptr] 
if « = «g/zf[z] 

right[z] «- x 
. a «- lefttaller 
Ueft[z] *~ x 
I a*- right taller 

H Save the path pointer so as not to destroy path. Trace back along the path towards the 
root either adjusting the balance factors or rebalancing the tree 1f 

saveptr «- pptr 
while (saveptr > 0) and (B[z] ¥= balanced) 

\XB[z]*a 
r 1f Subtree rooted at z has become balanced f 
\B[t 4-z] *- balanced 

else ^ | then \ if (saveptr-+• 1) > 0 then a *- (if t = right[z <- path[saveptr]] 
then lefttaller 
else righttaller) 

[ f z has become doubly unbalanced. That is, the difference in the heights of the 
right and left subtrees of z equals ±2. Rotate the subtree rooted at z and let 
w be the new root H 

do 4 I ;> «- (if fl = righttaller then rig/if [z] else fe/f[z]) 
ROTATE TREE 
r «-z 

else < path[pptr **- wvep/r] «- w 
I if (saveptr - «- 1) > 0 

if r = right[z -*- path[saveptr]] 

u . then { **'J*J V 
then 4 \ a <- lefttaller 

f /e/r[z] <- w 
1 a «- righttaller 

if javeprr > 0 then 5[z] «- a 
U Rebalancing may have corrupted the path. Delete the invalidated section H 
while (sptr > 0) and (successor[sptr] > pptr) do sptr - «- 1 

end DELETE NODE 

then 

else 

else 

Algorithm 2. 
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Algorithm INSERT NODE 
f This routine inserts a new mode JC as an offspring of u, and rebalances the tree f -
if \p(x) < \}/(u) then left[u] «- JC else right[u] «- JC 
path[pptr+ +- 1] <- x 
U Save the path pointer so as not to destroy path. Trace back along the path towards the root 

adjusting the balance factors until the point of rebalancing is reached f 
z •«- path[saveptr «- pptr- 1] 
j> « - JC 

while (saveptr> 1) and (Z?[z] = balanced) 
(Biz] «- (if j> = right [z] then right taller else left taller) 

do\ y +- z 
L z «- path [saveptr — *- 1 ] 

H z is either the root or the point of rebalancing. Determine in which subtree of z is JC inserted H 
a «- (if >> = right[z] then right taller else left taller) 
H The following segment is a translation of steps 7-10 of algorithm 6.2.3A in Knuth (1973b) f 
if Biz] ^ a 

then I ^ ^ e t r e e r e m a u l s height-balanced 1f 
lB[z] + <- a 

f z is doubly unbalanced. That is, the difference in the heights of the right and left subtrees 
of z equals ±2. Rotate the subtree rooted at z, and let w be the root of the rotated 
subtree H 

ROTATE TREE 
else |path[pptr +- saveptr] <- w 

if saveptr > 1 then { f *" Vath\saveptr- 1] 
^ I if z = right[t] then ri#Mf] *- w else /e/*[f] «- w 

f Rebalancing may have corrupted the path; delete the invalidated section 1f 
L while (sptr > 0) and (successor[sptr] > pptr) do sptr - <- 1 

end INSERT NODE 

Algorithm 3. 

Algorithm ROTATE TREE 
1f This routine rotates the subtree rooted at z. w contains the new root of the subtree, a, w, y, 

and z are global variables 1f 
if B[y] = -a 

11 Double rotation [figure 13(b)] H 
if a = right taller 

' w <- fe/f[j>] 
fe/r[^l **- ng/i/[w] 

then i rightlw] «- >> 
ng/z^tz] «- /e/r[w] 

lfe/r[w] <-z 
then i (w +- rightly] 

rightly] «- fe/r[w] 
else < /e/f[u>] +~ y 

leftlz] *- rightlw] 
[ rightlw] +- z 

I Biz] «- (if 2?[w] = a then -a else balanced) 
Bly] +- (if Blw] = -a then a else balanced) 

I Blw] «- balanced 
' H Single rotation [figure 13(a)] 1f 
I w •*- y 

if a = right taller 

else then J r ^ ^ z ] *" W W 
I /<?//[>>] <- z 

else / W ^ ] 4 - ^ ^ ] 
1 rfe/if LH «- z 

l.-£[j>] **- (if 5 [w] = balanced then ~ (5[z] «- A) else J?[z] «- balanced) 
end ROTATE TREE 

Algorithm 4. 
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which describes the two types of rebalancing transformation: single and double 
rotation which are shown in figure 13. GETNEXT which is not given here is a global 
routine for selecting the nodes in the data structure rooted at topc (a2) in order. 
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