
Environment and Planning B, 1980, volume 7, pages 463-484

The arithmetic of shapes

R Krishnamurti
Centre for Configurational Studies, The Open University, Milton Keynes, MK7 6AA, England
Received 28 November 1980, in revised form 15 December 1980

Abstract. Algorithms for the Boolean operations and relations on shapes and labelled shapes are
presented.

This paper has two parts. The first part accomplishes two objectives. First, an
efficient and uniform representation for shapes is presented, which is based on a
linear order on the maximal lines of a shape. Second, simple and efficient algorithms
for the Boolean operations on shapes (shape union, difference, and intersection) and
the Boolean relations on shapes (subshape and shape equality) are presented. The
second part deals with the computational aspects involved in performing the Boolean
operations and relations on shapes and labelled shapes. An algorithm for the efficient
decomposition of the Boolean operations and relations is presented. Last, the data
structures required to implement the shape algorithms are described.

The relevant definitions and notations upon which this paper is based are given in
Stiny (1980). Each shape is assumed to be initially described by a set of maximal
lines; each labelled shape is given by a shape and an associated set of labelled points.

Rational shapes
A restriction is introduced to limit the class of shapes dealt with in this paper. This
restriction—albeit a practical one—is necessitated by the fact that algorithms are
defined with respect to some form of computing machine. In a random access
machine with limited memory a real number is represented by a finite approximation
which is determined by the word size of memory. This makes for inexact arithmetic.
Moreover, it is usual for shapes to be drawn on some kind of graphics device such as
a visual display unit or a digital plotter. On these devices only a limited number of
points can be addressed, and the location of each point is given by an integral
multiple or a pair of integral multiples of a unit of measurement. Since correct
algorithms require exact arithmetic it is convenient to consider just those shapes
which can be so described. Therefore, attention will be restricted to shapes which
are, in the mathematical sense, rational. The following definition makes the notion
of a 'rational shape' precise.

Definition: A point p is rational if and only if each of its coordinates x^p),..., xd(p),
d > 2, can be expressed as the ratio of two integers. A labelled point p:A is rational
if and only if p is rational. A line /, I = {pi, Pi), is rational if and only if its end
points, p1 and p2, are rational. A shape s is rational if and only if each of its
maximal lines is rational. A labelled shape o, o = (s, p)9 is rational if and only if s is
rational and every labelled point in point set P is rational.

The ratio of two integers, rn/rd, may be expressed as the ordered pair, <rn, r&), which,
in turn, may be described by its unique primitive form. A pair of integers, (rn, r&) is
primitive if and only if the following conditions are satisfied:
(a) rn and rd are integers,

464 R Krishnamurti

(b) rd > 0,
(c) rn andfa are relatively prime—that is, there is no positive integer, say k ¥= 1,
such that k divides both rn and rd.
When rn < 0, the primitive is said to be negative.

Examples of primitives are now given. An integer n is described by the primitive
(n, 1); infinity ©o is described by the primitive (1, 0); zero 0 is described by the
primitive <0, 1). A rational number r, r = rjrdi can always be reduced to its primitive
form by applying Euclid's greatest common denominator (gcd) algorithm (see for
instance, Aho et al, 1974, pages 300-302). The following procedure outlines the
steps involved in determining the primitive form for the ratio of two integers, r = rjrd,
rd > 0. Let a = gcd(|rn|, \rd\), where, for any integer q, \q\ denotes the absolute
value of q. Let b = \rd\/rd. Then, r is described by the primitive <(&rn)/<z, \rd\la).

Primitives allow one to compare two numbers for equality. Let r* = (r^, rd)
denote the primitive of the number r where r may be rational, integral, or infinity.
Two numbers rx and r2 are equivalent if and only if their primitives r\ and r\ are
equal. That is, r*hn = r*2iVi and r*hd = r*2id.

Arithmetic computation involving primitives can be conveniently described by the
following algorithmic notation. The expression:

variable <-p (expression)

signifies that the 'variable' is assigned the primitive form of the number that results
from the 'expression'. For example, let u, v, w be primitives. Then

w.«-p (u + v)

is equivalent to the steps:
set Wn = unvd + udvni

set wd = udvd,
define w' to be the ratio of integers, Wn/wd,
assign to w the primitive form of w' by means of the procedure outlined above.

Part 1
A representation for shapes
A good shape algorithm requires a good internal representation for shapes. It is
widely accepted that by a good algorithm is meant one which has computational
time-complexities and space-complexities (Aho et al, 1974, pages 12-14) which are
polynomials of its input size. For shape algorithms, the inputs are essentially the
maximal lines and the labelled points of the labelled shapes to which they apply.
How these labelled shapes are represented, in turn, depends upon the type and
nature of the computational steps involved in performing the shape operations and
relations. It is clear that shape algorithms must satisfy the following two computational
requirements:
1. There is an effective mechanism or method for determining whether or not two
lines are colinear.
2. There is an effective mechanism or method for determining whether or not a point
is coincident with a line.
Once these requirements can be satisfied it is fairly straightforward to determine
whether or not two colinear lines share a common line.

A simple representation for the maximal lines of a shape will completely satisfy
these requirements. The representation for two-dimensional rational labelled shapes is
demonstrated, and the extensions to ^-dimensional, d > 3, rational labelled shapes
will be apparent.

The arithmetic of shapes 465

Line descriptors
Consider an infinite line drawn in a cartesian coordinate system. Its equation can be
written as

y — x(slope) 4- ̂ -intercept , if line is nonvertical,

x = x-intercept , if line is vertical.

Every maximal line may be viewed as a finite line segment on some infinite line
whose equation takes on one of the above forms. Consequently, any two maximal
lines which correspond to finite line segments on the same infinite line are colinear.
Hence, every maximal line may be associated with a line descriptor, i//, which is the
ordered pair given by \p = (fx, v), where fi is the slope, and v is the ^-intercept if the
line is nonvertical, and the x-intercept if the line is vertical. It is easy to show that
for a rational line, its line descriptor may be represented by an ordered pair of
primitives. Colinear lines have identical line descriptors and noncolinear lines do not.

Coincident points and shared lines
Let / and K be ordered pairs of primitives, where / = </l5 /2) , and K = (kl9 k2).
Then, / is less than K, denoted by / < K, if and only if either j \ < kx or j \ = kx

and j2 < k2. Here, < is an order relation.
The ordering, < , on the points introduces an orientation on the maximal lines in

the following manner. One may assume, without loss of generality, that / = {pl9 p2}
is a line the end points of which satisfy px < p2. Then, / is represented as the
ordered pair given by / = (pl9 p2). The endpoints px and p2 are, respectively,
referred to as the tail and head of /. For any line /, tail of / < head of /.

It follows, therefore, that a point which is coincident with a line must lie between
the tail and head of the line. In other words, a point p is coincident with the line
given by / = {px, p2) if and only if either px = p, or p2 = p, or p satisfies (1) the
equation of the line; and (2) the inequality px < p < p2. Since, for the shape
algorithms considered in this paper, only colinear lines are compared, condition (1) is
always satisfied.

The ordering of the points allows one to compare two colinear lines for overlap.
This comparison, as will be seen, is important to the effectiveness of the shape
algorithms. Two colinear lines lx and l2 are said to share a common iine if and only if
tail of lx < head of l2 and tail of l2 < head of lx. Their common line /, / = (pl9 p2),
is given by px which is the maximum of the tails of /x and l2, and p2 which is the
minimum of the heads of lx and l2.

Figure 1 presents examples of pairs of colinear lines, lx and l2, some of which
overlap, in which case their common line is indicated by a thick line. The end points
of lx and l2 are, respectively, denoted by o and • . End points common to lx and l2

are denoted by ©. For each pair of colinear lines the conditions on their tails and
heads are stated.

tailC/J < head(/2) tail(/,) < head(/2)
tail(/2) > headC)̂ o o • • tail(/2) < headC/,) © o •

tail^) < head(/2) tail(/t) < head(/2)
tail(/2) = headC/J o © • tail(f2) < headC/̂ i • -

taiK/,) < head(/2) ^ ^ < head(/*>
tail</2) < headC/,) o • o • tail(/a) < head^) « 0 o •

Figure 1. Pairs of colinear lines (end points of lt and l2 are, respectively, denoted by o and •;
common end points are denoted by ©).

R Krishnamurti

Ordering maximal lines
It is now possible to present the representation for shapes based on a linear ordering
on the maximal lines of the shape. Let s be a shape described by a set of maximal
lines each of which is associated with a line descriptor. The line descriptor induces a
natural partition of s into disjoint subshapes sx, ..., sn, where each Si, 1 < / < n,
consists of multiple colinear lines. Each maximal line in Sf, 1 < i < n, has the same
line descriptor, </*/, -̂>. Moreover, whenever / =£ /, 1 < /, / < n, the shape inter
section st' Sj is empty, and s is described by shape union: s = Sx +s2 + ... +sn.
Figure 2 presents a shape and its decomposition into disjoint subshapes each of which
comprises colinear maximal lines.

The subshapes sx, ..., sn of s are arranged so that their line descriptors form a
linearly ordered list. That is, {nx, vx) < ... < </x„, vn). Each subshape, st, 1 < i < «,
in turn, is represented by a linearly ordered list of colinear maximal lines Lt,
U = <//, i , ..., li,m) where each element in Lt has the same line descriptor </x/, vt).
(Where no confusion can arise subscripts will be omitted.) The lines in L,
L = (ll9..., /w>, are arranged so that whenever 1 < / < k < m, head of /y- < tail of lk,
which is denoted by /;« < lk. Such a linear ordering of the maximal lines in st is
always possible since any pair of colinear maximal lines in the same shape cannot
overlap.

The labelled points for labelled shapes are likewise treated. The labelled points are
arranged into lists, each list consisting of all the labelled points which have the same
label. The lists are Unearly ordered according to a lexicographical ordering on the labels.
The labelled points in each list may be arranged according to the order relation <.

Thus, every labelled shape o, o = (s, P>, is represented by the ordered pair o given
by a = (L, P). L i s a linearly ordered list of linearly ordered lists of maximal lines,
L = (Lu ..., Ln), where Lj, 1 < / < n, contains all the maximal lines in s with the same
line descriptor, </z/, vj) and </zl5 vx) < ...< <JU„, vn). P is a linearly ordered list of

L. Shape s

*10

L
1 -a

sn s
Sit

1 -X

^lS S11 S19 S21 S23 S25
S16 S18 S20 ^22 S24 SH

Figure 2. The decomposition of a shape s into disjoint subshapes, each of which comprises
colinear maximal lines.

The arithmetic of shapes 467

linearly ordered lists of labelled points, P = (Pl9 ..., Pm) where Pk, 1 < k < m,
contains all the labelled points of P with the same label, Ak, and A1 < ... < Am .

List comparison properties
The linear-order based reorganisation of labelled shapes yields the following list
comparison properties which are given for the maximal lines in the shape. Similar
properties hold for the labelled points of the shape. For any list N, let \jj(N) denote
the line descriptor for the maximal lines in TV. Then:
1. Let L = </2, ..., lnL) and M = {ml, ..., mnM) be linear lists of colinear maximal
lines such that \jj(L) = ty(M). Then, if //, 1 < / < nL, is the first line in L which
shares a common line with mk, 1 < k < nM, in M, then the lines mk>, k < k! < nM,
do not share a common line with the lines If, 1 < / ' < /. This observation enables
one, as will be proved later, to compare two lists of colinear lines in a time linear in
the number of maximal lines in both lists.
2. Let L = (Li, ..., LnL) and M = (Mx, ..., MnM) be lists of lists of colinear maximal
lines. Then, if Lf, 1< j < nL, and Mk, 1 < k < nM are lists such that \jj(Lf) = \p(Mk),
the lists Lf, 1 < / ' < /, and Mk>, k < k' < nM satisfy: i//(X/0 < $(Mk>)*

Shape arithmetic
Let • be a variable over the Boolean operations and relations. Then, the shape
operation or relation ox • o2 is equivalent to the ordered pair (Lx • L2, Pi ° P2),
where Lxn L2 represents the shape operation or relation, and Pt • P2 represents the
corresponding set operation or relation. For example, let • be the shape union
operator. Then, ox + o2 is the labelled shape given by the shape represented by the
shape union: Lx + L2, and its associated set of labelled points represented by the set
union: / J

1 +/ J
2 . Again, for example, let a be the subshape relation, < . Then, ox < o2

if and only if Lx represents a subshape of the shape represented by L2, and Px represents
a subset of the set of labelled points represented by P2.

The shape operation or relation, Lx • L2, can be decomposed into a list of shape
operations or relations on pairs of shapes each of which consists of colinear maximal
lines. Since the Boolean operations and relations on shapes are defined in terms of
overlapping lines (see Stiny, 1980), it is sufficient to compare the maximal lines in
lists, one each from Lx and L2, which share the same line descriptor.

For convenience, let the subscripts be omitted, and let Lx and L2 be referred to as
L and M, L = (Lx, ..., Lni) and M = (Mx,..., MnM). Let 0 denote the empty list of
maximal lines. Suppose • is an operator. Then, L • M is the list N, say, where
N = (Nx, ..., NnN), and each Nt, 1 < i < n/y < nL + n/u, is a list of colinear maximal
lines given by one of the following:

f if Lf, 1 < / < nL, and Mk, 1 < k < nM, are lists such that
\LinM* x}j(Lf)= xjj(Mk) mdLfnMk^0;

J if • and • are not the same operator, and Lf, 1 < / < TIL , is a
' ~ 1 > list such that for each k,\<k<nM, i//(Zy) ^ ^(Mk);

if • is the operator +,. and Mk, 1 < k < HM, is a list such that
[Mk for each /, 1 < / < nL, \jj(Mk) ^ \p(Lf).

Clearly, N can be arranged so that i//(7Vi) < ... < 4i(NnN).
Suppose, on the other hand, • is a relation. For integers n and m, let n • m denote

n < m in the case when a is the subshape relation, and n = m otherwise. Then,
L • M if and only if nL • nM and for each list Lf, 1 < j < nL, there is a list Mk,
1 < k < nM, such that i//(X/) = ^(Mk) and LfuMk. Therefore, it follows that all
one requires are shape algorithms for pairs of shapes each consisting of colinear

468 R Krishnamurti

maximal lines, and that the maximal lines in the two shapes have the same line
descriptor.

In a similar fashion, Px • P2 can be decomposed into a list of set operations or
relations on pairs of sets of labelled points having the same label. Again, all that is
required are set algorithms for sets of identically labelled points.

Shape algorithms
Let • be a Boolean operator on shapes. Then, the shape expression

signifies that o3 is the labelled shape resulting from the shape operation ax • o2. I*1

the special case, where a3 is either ox or o2, say ax, the expression

°x *~ °i ° °2

signifies that a2 is replaced by the result of the shape operation ox • o2. The latter
expression is particularly relevant to the shape grammar formalism. In any shape
grammar there is a current shape denoted by 7. Suppose a shape rule, denoted by
a -> |3, applies to 7. That is, there is a euclidean transformation r such that T(CL) < 7.
Then, shape rule application is described by the following two shape expressions in
sequence:

7 «- 7 — T(OL) , 7 «- 7 + T(/3) .

Algorithms for shape rule application are taken up in greater detail in Krishnamurti
(1981).

The following shape expressions are considered:
(a) ax <- ax 4- a2 ,
(b) ax *- o1-o2 ,
(c) o3 <- ol • a2 ,
(d) is o2 < oxl
(e) is ax = a2?
The shape expressions (a) and (b) are chosen with the view to implementing the
shape grammar formalism. Other shape expressions are possible. For instance,
interested readers can devise their own algorithms for the shape expressions o3 <- ox + o2.
To that end, they may find the presentation in this paper for the shape expression (c)
useful.

The inputs to the shape algorithms are ordered lists of colinear maximal lines, L
and M, both lists sharing the same line descriptor. It is assumed that M is nonempty.
The proofs for the correctness of the algorithms are provided in their descriptions,
and where necessary illustrations are provided to facilitate explanation.

(a) Shape union: L «- L+M
Step 0 (Is L empty?) If L is empty, go to step 8. Otherwise, set i <- 1, and select
the first line, mx, in M and copy it into m which is referred to as the 'working line'.
Set / «- 1, and select the first line, lx, in L.
Step 1 If tail of lf < head of m, go to step 3. Otherwise, m shares no common line
with any line lk >f in L, and m < if. This condition is illustrated in figure 3(a).
Insert m into L as the maximal line immediately preceding /y in the list, and continue
with step 2.
Step 2 If M is not exhausted, set i +- i+1, and select the next line, mi9 in M and
copy it into m. (Notice that at no stage in the execution of the algorithm is the
head of m altered, and therefore, at all times m < mk>i.) Go to step 1. Otherwise,
M is exhausted, and go to step 9.

The arithmetic of shapes 469

Step 3 (Determine if m and // share a common line.) If tail of m < head of //, go
to step 5. Otherwise, continue with step 4. [The working line m shares no common
line with any line preceding and including /;- in L and m> /;-. But m may share a
common line with line(s), lk >;«, in L. This situation is illustrated in figure 3(b).]
Step 4 If L is not exhausted, set j <-j+l, and select the next line, //, in L and go
to step 1. Otherwise, insert m as the last line in L and go to step 8. (The reader can
verify that m is a maximal line.)
Step 5 Asm and /;- either share a common line or share an end point, they can
therefore be combined to form a single line. This is illustrated in figure 3(c). Set tail
of m and /;- to the minimum of the tails of m and /y-.
Step 6 (m and lj now have the same tail; one of these lines must contain the other,
and the appropriate line is discarded from further consideration.) Go to step 7 if
head of /;- > head of m, otherwise, delete /;- from L and go to step 4. [At this stage
m contains /7-. It will be assumed, for convenience, that the subscripts of the lines in
L are not altered. That is, at any stage of the algorithm the line currently preceding /;-
in the list L may not necessarily be the line originally subscripted lj-x. This step and
the next are illustrated in figures 3(d) and 3(e).]
Step 7 As If contains m, then m is not maximal and can be ignored. Go to step 2.
Step 8 (All the lines, if any, in L have been examined. There may still be some
unexamined lines in M.) Copy all the unexamined lines in M in their order, and
attach them to the end of list L.
Step 9 (Finishing touch.) All the lines both in L and in M have been examined.
L contains the maximal lines of the shape union in their sorted order.

_ m _ _ * I m

rrii I

(a) tail(/;0 > head(m) m^

Sli

* m

:ail(?w) > head(/y)

h
m t

'/
m

mt

h
rh

. mi .

/

\

h *

(d) head(w) > head(/;)

h
m ^

m

(e) head(w) <. head(/;)

m

mi

deletedv^ ^

m

m

li

m

t
^mt

(c) tail(/y) ^ head(w) and tail(m) < head(/y)

Figure 3. Some conditions that can arise in the algorithm for shape union (asterisks indicate the
end points that are compared, and arrow heads indicate an unfixed end point).

470 R Krishnamurti

The computational complexity of this algorithm can easily be determined as
follows. Let there be nL lines in L and nM lines in M. In the worse case, each Hne, /,
in L is compared once with the current working line, m, except when (in step 2)
tail of / > head of m or when (in step 7) / contains m, that is, when m is redefined
(step 2). But there are nM redefinitions of m once for each line in M. Therefore, the
worst case time bound for shape union is 0(nL 4- nM).

(b) Shape difference: L «- L-M
Step 0 (It is assumed that L is nonempty; otherwise the shape difference is empty.)
Set / «- 1, and select the first line, mx, in M. Set / <- 1 and select the first line, lx,
in L.
Step 1 If head of mt > tail of If, go to step 3. [Otherwise, mt shares no common
line with If, through its successor line in M, mi+l, may. See figure 4(a).]
Step 2 If Af is not exhausted, set i *- j + 1, and select the next line, mi, in M and
then go to step 1. Otherwise, the procedure is finished, and exit from algorithm.
Step 3 If head of If > tail of rm9 go to step 5. [Otherwise, If shares no common Une
with mt, though its successor line in L, lf+1, may. See figure 4(b).]
Step 4 If L is not exhausted, set / «- / + 1 , and select the next Une, //, in L and then
go to step 1. Otherwise, the procedure is finished, and exit from algorithm.
Step 5 The lines If and mt share a common line, and their corresponding tails and
heads can now be compared. One of the following four cases must arise:
(1) lj -mi = /A, /A = <tail of If, tail of m,>, when tail of mf > tail of /;-, and
head of mt > head of If;
(2) If — mi = /B , /B = <head of mt, head of If), when tail of If i> tail of mt, and
head of If > head of mt;
(3) If - mt = lA+ /B, when tail of m\ > tail of If and head of If > head of m,-;
(4) If -mi is the empty line, when tail of If > tail of mt and head of mt > head of/;-.
Compare the corresponding tails and heads of /,• and mt. Depending upon the four
above mentioned cases, one of the following is performed:
Case (1): replace the line /;- in L by /A and go to step 4.
Case (2): replace the line /;- in L by /B and go to step 2.
Case (3): replace the line /;- in L by /B. Insert a copy of lA to precede If in the list.
That is, /A < /B in L. Go to step 2.
Case (4): delete /;- from L. Go to step 4.
(Figure 5 pictorially illustrates the four cases mentioned above.)

To complete the proof of the correctness of the algorithm, the following observations
are made:
1. If /;- and lk are two successive Unes in L which share a common line with m in M,
then If - m and lk-m are relatively maximal, and, moreover, the order < between
the lines in L is preserved.

(a) Step 1: head(m/) <> tail(/y)

... h * _^k ...

* mi m

(b) Step 3: head(/y) <> tail(m0
Figure 4. Two conditions that can arise in the algorithm for shape difference (asterisks indicate the
end points that are compared).

The arithmetic of shapes 471

2. If mt and mk are two successive lines in M which share a common line with / in L,
then I-mi and l~mk are relatively maximal, and, moreover, the order < between
the lines is preserved.
As in the case of shape union, the computational complexity for shape difference is
0(nL + nM) where nL and nM are, respectively, the numbers of maximal lines in L and M.

(c) Shape intersection: N *- L • M
L may be assumed to be nonempty, otherwise the shape intersection is empty.
Shape intersection is essentially the complement of the algorithm for shape difference.
Only steps 0 and 5 are modified. In addition to those statements, in step 0 the
following initialization statement must be included:

N *- 0 , k «- 0 .

(That is, initialize the result list to be empty, k is an index to lines in N.)
Step 5 is modified to read as:
Step 5' Corresponding to each case in step 5 for shape difference, the four cases hold:
(!) / / • w/ = <tail of ntf, head of //>, when tail of mt > tail of // and
head of m\ ^ head of //;
(2) /; • mi = (tail of //, head of m/>, when tail of lj ^ tail of m(- and
head of mt < head of //;
(3) // • mt = (tail of m,-, head of m^, when tail of m/ > tail of lj and
head of mt < head of //;
(4) // • rm ~ (tail of /;, head of /;>, when tail of lj > tail of mf and
head of m% ^ head of lj.
These cases are illustrated in figure 6. The following steps simulate the cases. Set
k «- k+l, and let nk denote the next line in N; nk represents // • mt which is not
empty since lj and mf share a common line.
Step 5'J Set tail of nk equal to the maximum of the tails of //and m\.
Step 5\2 If head of / / ^ head of mti set head of nk equal to the head of mt, and
then go to step 2.
Step 5\3 Otherwise, set head of nk equal to head of // and then go to step 4,

...*-
_// shape difference^ ^ / /

* m m

(a) tail(m/) > tail(/y) and head(m/) ^ head(//)

// * //^shape difference

Wj *

(b) tafl(/,) ^ tail(jw,) <*/irf headfy) > head(m,) '

shape difference ,

4 _L _L_'/ .
mi

^m{ (c) tailfm,) > tail(/y) and head(/y) > head(/w,)

deleted line 7 deleted line ,

rtij ntj

(d) tail(/;) ^ tail(/w/) and head(w/) > headfy)
Figure 5. The four cases of step 5 in the algorithm for shape difference (asterisks indicate the end
points of the lines in the shape difference).

472 R Krishnamurti

The proof of the correctness for the algorithm follows from the observation that
the intersection of two overlapping maximal lines is a maximal line. The computational
complexity for shape intersection is linear in the number of lines in L and M.

(d) Subshape and equality: M < LI and M = LI
In this case L is nonempty, otherwise the relationship does not hold (since M is
assumed to be nonempty). The subshape algorithm will be considered here; the
equality algorithm is equivalent to determining if the two lists are identical. A
Boolean variable flag which returns a value true if M < L, and false otherwise.
Step 0 Set flag +- true. Set / «- 1, and select the first line, lx, in L. Set i «- 1, and
select the first line, mx, in M.
Step 1 If tail of m,- < head of If, go to step 3.
(Otherwise, If does not share a common line with m{ though its successor, / / + 1 , in L
may.)
Step 2 If Z is not exhausted, set / < - / + 1 , and select the next line, /y, in L and then
go to step 1.
Otherwise, <, does not hold. Set flag to false and go to step 6.
Step 3 If tail of If < head of mt, go to step 4.
Otherwise, there is no line in L which contains mt. Set flag to false and go to step 6.
Step 4 (If and mt share a common line. Does /y contain m,-?)
If tail of rrii ^ tail of lf and head of mt < head of /y, go to step 5.
Otherwise, /y does not contain m(. Set flag to false and go to step 6.
Step 5 (If contains mt. Choose next line in M.)
If M is not exhausted, set / «- f+1 , and select next line, mt, in L and then go to
step 1.

L_* y±...
rrij ^ mi

(a) tail(m/) > tail(/y) and head(m/) ^: head(/y)
x,. •nk (shape intersection)

. * // L
jm * _ ^ ...

(b) tail(/y) ^ tail(m/) and head(/y) > head(mj)
^nk (shape intersection)

h h
mt w j^rtij

(c) tail(ml-) > tail(/y) and head(/y) > head(w/)

_ * h_* ... s!i
mt ^ mi

nk (shape intersection)

^nk (shape intersection)
(d) tail(/y) ^ tail(m/) and head(m/) > head(/y)

Figure 6. The four cases of steps 5' in the algorithm for shape intersection (asterisks indicate the
end points of the common line).

L

M

L

M

L -

M-

L -

M-

L -

M ~

L

M-

L -

M

L .

M

L .

M

L

M

L -

M

L -

M

Fig

m

t

h
m

m{

h
m

_L
mi*

m
mt

m
rrii

h
m

m,

h

h
m

m

u

JJ. step 0

ty steps 1, 3, 5

§ steps 6, 7, 2

fy steps 1, 3, 5

§ steps 6, 4

\ steps 1, 3, 5

fy steps 6, 7, 2

m

t
I steps 1, 3, 5

mi _

JJ, step 6

m _

\ step 4

rrij

\ step 8

Halt

ure 7. L +-L+M.

L

m
fy step 0

M

Ĵ, steps 1,

h
M

mi**

\ steps 1,

h
M

fy steps 1,

M

§ steps 1,

M

Halt
Figure 8. L +-L-M.

3, 5 (case 2), 2

3, 5 (case 3), 2

3, 5 (case 1), 4

S'l

3, 5 (case 4), 4

mt

474 R Krishnamurti

Step 6 (Finishing touch.) The procedure is finished, and flag contains the Boolean
value representing whether or not the relation M < L holds. Exit from algorithm
with the value in flag.

Figures 7 through 10 present pictorial descriptions of the workings of the
algorithms on sample shapes.

The corresponding operations and relations on sets of identically labelled points
can be performed by means of the standard procedures for manipulating linear lists
(see, for instance, Horowitz and Sahni, 1976, chapter 2).

L .

M

4 step 0

L ^ <

M
S

N m

^ steps 1, 3, 5' (case 1), 4

A,
L ^ i

M ™l

N y
n^ \ steps 1, 3, 5' (case 4), 4

L di
M Ull

N — —?-
Hk J, steps 1, 2

L S

N —

§ steps 1, 3, 4

L
M — 2 L

N —

fy steps 1, 3, 5' (case 4)

L -

M

N
4 "iS;

Halt

Figure 9. N+-L-M.

L
M

L '/

M

L

M

L

M

(a)

L

M

mis*

L

1 step 0

flag «- true

JJ, steps 1, 3, 4, 5

rn^S

\ steps 1, 2

A

JJ. steps 1, 2

St

n steps 1, 3, 4, 6
Halt flag is true

fy step 0

flag«- true

JJ, steps 1, 3,4, 5

Jl
M

mis*

L

M

L

M

(b)
Figure 10.

$ steps 1,3,4,5

Jl

^<mi
§, steps 1, 3, 4

Jl
mi flag <- false

^ flag is false
Halt

IsM<Z,?

The arithmetic of shapes 475

Part 2
Efficient decomposition of the Boolean operations and relations
It has been shown that a Boolean operation or relation on labelled shapes can be
decomposed into (a) a list each element of which is the shape operation or relation
on linear lists of colinear maximal lines, and (b) a list each element of which is the
set operation or relation on linear lists of labelled points having the same label. Now
consider the following problem.

Suppose U and V are ordered lists of lists of elements, where U = (Ux, ..., Un),
V = (Vx, ..., Vm), and the Uks and Vjs are sorted according to their respective keys
{ux, ..., un) and {vx, ..., vm). That is, ux < ... < un, and vx < ... < vm. Let • be an
operator. The problem is that for each list Vj with key Vj in V to search the list U
for a list Uk such that uk = Vj. If the search is successful Uk is replaced by Uk • Vj,
which may lead to the deletion of Uk from U in the case when • is a difference or
intersection operator. This occurs when Uk • Vj is empty. If the search is unsuccessful
a copy of Vj is inserted into the list U in the case when • is a union operator, but at
the same time preserving the linear ordering of the elements of U. Here U is a
dynamic list and V is a static list. The analogy to the shape algorithms is obvious.

The crucial computation question related to the problem is: how effectively can
this list searching, and/or list insertion/deletion be carried out? The answer to this
depends to a large extent on the internal organization for the list. Two possible
types of data structures are considered: (a) linked lists, and (b) balanced binary trees.
Linked lists are useful when the lists are static and reasonably small in size, which is
often the case with shape rules. Balanced binary trees are useful when the lists are
dynamic and constantly increasing in size, which is generally the case with the current
shape in the shape grammar formalism. Algorithms for searching, insertion, and
deletion on linked lists are straightforward (see, for instance, Aho et al, 1974). In
the remainder of this section a search algorithm is presented when the list U is
organized as a balanced binary tree. This algorithm utilizes the Brown-Tarjan (1979)
fast merge algorithm.

Organizing a linear list as a balanced binary tree
It will be assumed that the reader is familiar with binary tree terminology (see, for
instance, Knuth, 1973b) with the exception that the term 'son' is now replaced by
'offspring'. A binary tree is height-balanced if the height of the left subtree of any
node never differs by more than ± 1 from the height of the right subtree of the node.
The height of a tree is the length of the longest path from the root to a leaf node.

Figure 11. A balanced tree representation for shapes in figure 2 (GD denotes the node representing
shape s, and the numbers within the brackets are the balance factors).

476 R Krishnamurti

A leaf node has no offsprings. The left and right subtrees of a node are, respectively,
the trees rooted at the left and right offsprings of the node.

A linear list is organized as a balanced binary tree as follows. Each node in the
tree represents a list element, and is referenced by its key. If k is the key presented
by a node, then all nodes in its left subtree have keys <k, and all nodes in its right
subtree have keys >k. The proper location of a node in the tree with a given key
value can be determined by a standard binary tree search (Knuth, 1973a) in O(lbw)
time, where n is the list size. The linear list can be reproduced in its original list
order by an inorder traversal (Knuth, 1973a) of the tree in a time proportional to the
list size. Figure 11 gives a balanced tree representation for the shape in figure 2.

A balanced tree search algorithm
The obvious method for comparing U and V is to take each key Vj in turn, and search
the balanced tree for U, for a node associated with a key which equals vf. If such a
node exists, the search is successful. When • is a difference or intersection operator the
algorithm may involve the deletion of the node from the tree. If no such node exists,
the search is unsuccessful. When • is a union operator the algorithm involves inserting
a new node with key value equal to Vj into the tree. To insert a node into or to
delete a node from the balanced tree requires 0(lb«) additional steps for rebalancing
the tree. Rebalancing becomes necessary whenever the modified tree—as a result
either of node insertion or of node deletion—fails the height balancing requirement.
Rebalancing will be considered in greater detail later in this section. Knuth (1973b,
algorithm 6.2.3A) provides a good description of node insertion into a tree. Deletion,
however, is slightly more difficult. For a reasonable discussion of node deletion from
a balanced tree the reader is referred to Crane (1972, pages 43-45, and chapter 4 for
an ALGOLW description of the algorithm) and Wirth (1976, algorithm 4-64). The
computational effort involved in comparing U and V is, in the worst case, 0(m lbra).

When n> m the time bound can be improved. In the case of merging two disjoint
lists into a single list Brown and Tarjan (1979) have demonstrated a computational
time bound of 0[ra lb(n/m)]. I believe their contribution to balanced tree search can
be used for other forms of list comparisons without materially changing the time
complexity. The following material is adopted from their paper. As before, the first
step is to search tree U for a node with its key equalling Uj. Once vx has been
compared, some appropriate algorithmic action takes place which may result in a
copy of vx together with the list element Vx being inserted into the tree, or the node
whose key equals vx being deleted from the tree, or the tree being left as it is. At
the start of the general step, the keys vx, ..., vk have been compared with the nodes
in tree U, and a record is maintained of the nodes in the search path from the root
to the last node compared with key vk, which may, in the case of insertion, be the
node whose key equals vk. This path acts as a 'finger' into tree U moving from left
to right as the keys of the lists in V are compared; the finger is useful since only
nodes to the right of it have to be visited during later comparisons. This follows
from list comparison property 2 (see page 467).

The general step comprises two parts. First, the finger is retracted towards the
root, just far enough to the position that vk+1 'lies' in the subtree rooted at the end
of the finger. The key vk+l is compared with the nodes in this subtree, and the
finger is extended to follow the search path. After m - 1 executions of the general
step the algorithm is complete.

However, this scheme is complicated by the fact that both insertion and deletion
into the tree may require rebalancing of the tree. When rebalancing takes place, it
may remove a node from the finger path traced out by the search. It is possible to

The arithmetic of shapes 477

update the finger to be consistent with the rearrangement, but Brown and Tarjan
suggest that it is easier to just 'forget' about the part of the path which is corrupted.
That is, to retract the finger to the last, and in the case of insertion the only, point
of rebalancing. The algorithm takes the form shown in figure 12. At the start of the
general step one now has a record on only part of the search path to the last node
compared with vk. The general step proceeds as before. Notice that the first step
need not be treated separately. At the start of the algorithm, the finger is initialized
to the root of tree U (which is always on the path to the first comparison), and the
general step is executed m times.

The algorithm can be speeded up by keeping a record of all nodes on the finger
path where the finger turns left—that is, those nodes on the path whose left offspring
is also in the path. It is easy to show that these are precisely the nodes on the path
which have a larger key than the most recently compared item. Then, only these
nodes have to be examined in the 'climbing up' phase of the general step.

contains all
the nodes
that have
been examined
in comparing

root
finger

last point of
rebalancing

last node examined in the
comparison with vk

(a) Start of the general step

contains all the nodes
that may have to be
examined in comparing
Vk+l, -.., Vm

all the nodes
that may have
to be compared
with vk+1 lie in
this subtree

(b) Climbing up phase

new' finger
last point of
rebalancing

"last node examined in the
comparison with ufc+1

(c) Compare vk+1 and extend finger (d) Rebalancing the tree

Figure 12. The form of the balanced tree search algorithm.

Rebalancing transformations
Rebalancing is required whenever the balanced tree becomes unbalanced—that is, the
tree fails to satisfy the height-balance requirement as a result of an insertion or a
deletion. Each node is associated with a balance factor which is the difference
between its right and left subtree heights, and can take on values from lefttaller (-1),
balanced (0), and righttaller(+l) which have the obvious interpretations. Consequently,
insertion of a node into the left (right) subtree of a node whose balance factor is
originally lefttaller (righttaller), or deletion of a node from the left (right) subtree of
a node whose balance factor is originally right taller (lefttaller) results in the entire
tree becoming unbalanced.

A leaf node is always inserted or deleted. In the case of deletion, if the node to
be deleted is not a leaf node, the contents of a specific leaf node is copied into the
node designated to be deleted, and the leaf node is deleted instead. Furthermore, the
finger is extended to follow the search path to the node to be deleted. Rebalancing
can be described as follows. Let x denote the inserted or deleted node. The
successive ancestors of x (denoted by z) moving up towards the root along the search

R Krishnamurti

path are examined; and, if necessary, the finger is retracted to z. During this climb
one of the following steps is performed.
(1) z is originally balanced:
Change the balance factor of z to ± 1 as appropriate. In the case of insertion the
climb is continued; in the case of deletion the tree remains height-balanced, and
the climb is stopped.
(2) z is originally unbalanced:
z becomes either balanced or doubly unbalanced. In the latter case, the subtree
rooted at z is locally modified via one of two types of transformations: single and
double rotation. These are shown in figure 13 wherein the symbol El indicates the
deleted node, and the symbol ® indicates the inserted node. Notice that both in
single and in double rotation the mirror-image transformation is possible. In fact
there is an additional special case of double rotation which occurs when h = 0, and
x is an inserted node. In that case, x equals w and the subtrees a, 0, 7, and 5 are
empty. In the case of deletion one still has to continue the climb; for insertion, the
rebalancing is completed.

If the root is reached during the climb rebalancing is complete; for insertion the
balanced tree has increased in height, and for deletion decreased in height.

X

(a) (b)
Figure 13. Modifying the subtree rooted at z by the rebalancing transformation; (a) single rotation,
and (b) double rotation.

Data structures
The following data structures serve to represent a labelled shape a, which is described
by the ordered pair (L, P), where L = (Ll9 ..., Ln) and P = (Pl9 ..., Pm). L is an
ordered list of ordered lists of colinear maximal lines. P is an ordered list of ordered
lists of labelled points having the same label, a is assumed to be rational. Each data
structure is described by the fields of the nodes in the data structure. The internal
implementation of the data structures is given in terms of data classes. Each data
class defines the fields of each data node in the class.

Each node in the data class POINT comprises two fields, and for rational shapes
each field represents a pair of integers. POINT inplements the data structures for the
coordinates of a point and the line descriptor for a list of multiple colinear lines.
The data structures are:

coordinate node

line descriptor node
x\y

The fields in the data structures have the obvious interpretation.
The data class LABEL consists of one field, A, which stores the label for a list of

labelled points sharing the same label.
Each node in the data class LIST consists of three fields one of which, referred to

as next, is a pointer to a node in LIST. LIST serves to implement linked lists.

The arithmetic of shapes 479

Linked lists are used to implement the lists L, P, Lj and Pk. The data structures are:

Zy-node or Pk-node key N next

point mark next

B left right key N

where key is a pointer either to a node in POINT which contains the line descriptor
for a list of colinear maximal lines, or to a node in LABEL which stores the label for
a list of labelled points sharing the same label; TV is a pointer to a node in LIST
which is the first node of the linked list representing either the list of colinear
multiple lines or the list of labelled points having the same label; and next points to
the next mode in the linked list in the sense that key [node] < key [next [node]].

line-node

where point points to a node in POINT which stores the coordinates of a labelled
point; mark is an integer which is not used in this paper (see Krishnamurti, 1981);
and next satisfies the property point[node] < point[next[node]].

The last data class to be considered is BTREE. BTREE simulates height-balanced
binary trees. Each node in BTREE consists of five fields.

tree-node

The fields have the following interpretation. B is the balance factor of a node in a
balanced tree; left and right are pointers to nodes in BTREE and represent,
respectively, the left and right offsprings of a node in a balanced tree; and key and TV
have the same interpretations as given earlier.

Each labelled shape a is represented by the pair (tops, topP) where top is a pointer
to a linked list or a pointer to a height-balanced tree. The subscript s refers to
the data structure which maintains the maximal lines and the subscript P refers to the
data structure which maintains the labelled points. A shape is described by the pair
(topSi null> where null is a special pointer which points to an empty node. In a
similar fashion, a labelled shape consisting of only labelled points is represented by
the pair (null, topP). Figure 14 illustrates the internal organization of a labelled shape
in which its shape is housed in a balanced tree, and its set of labelled points is housed in
a linked list. Notice that the data structures are arranged according to the data classes
to which they belong with only sample links indicated.

Remark: It is assumed that these data structures can be implemented without
violating or mixing data types. For instance, the data classes can be regarded as
collections of integer arrays, and the fields may be equivalenced via some mechanism,
say the Fortran EQUIVALENCE statement.

Algorithm
The data structures are incorporated into algorithms 1-4 which describe, in Algol-like
notation, the algorithmic framework for decomposing the Boolean operations or
relations on labelled shapes into (a) lists of shape operations or relations on lists of
colinear maximal lines, or (b) lists of set operations or relations on lists of identically
labelled points. The set of algorithms 1-4 is based on the modified Brown-Tarjan
balanced tree search algorithm, and are called: SHAPE EXPRESSION, DELETE
NODE, INSERT NODE, and ROTATE TREE. SHAPE EXPRESSION describes the
algorithmic framework in which the algorithms for the shape expressions ol^ ox • o2

in the case that • is an operator, and o2
 n ox if n is otherwise, are invoked. The

inputs are the labelled shapes ox and a2; the shape operator or relation • which takes
on values from {+, - , •, < , =}; and a parameter c which takes on values from {s,P}.
SHAPE EXPRESSION invokes algorithms DELETE NODE and INSERT NODE,
respectively, wherever a node is deleted from or inserted into the balanced tree rooted
at topc fa). DELETE NODE and INSERT NODE both invoke ROTATE TREE

•
u

to
p s

(a
)

to
pp

io
) \

ke
y

N

ne
xt

po
in

t
m

ar
k

ne
xt

po
in

t
m

ar
k

ne
xt

2
2 K

Fi
gu

re
 1

4.

T
he

 i
nt

er
na

l
or

ga
ni

za
tio

n
of

 a
 l

ab
el

le
d

sh
ap

e.

Algorithm SHAPE EXPRESSION (a t , a2, n, c)
f This routine describes the decomposition of the Boolean operations and relations based on the fast

balanced tree search. The following shape expressions are considered as illustrative examples:
Ox «- aj • a2 for • an operator, and a2^ax for n otherwise.
Oi is represented by the pair < tops(ot), topp(ax)), where top<fpt)? c 6 {?, P } , is the root of a
balanced binary tree.
The following 'conventions' are adopted:
l.Nu denotes the list of elements represented by node u, the first element of which is pointed to

by N[u].
2. \p(u) is the key associated with node u, and is given by: (p., v)[key[u]] for c = s, and

Alkeylu]] for c otherwise.
3. The expressions:

node <= DATA CLASS fetches an unused (available) node in DATA CLASS, initializes all its
fields, and assigns it to node.

DATA CLASS <= node releases the node pointed to by node^and makes it available for future
use f

f Initialization
path: an array containing all the nodes traversed from the root to the current node.

For I < i < pptr, path[i+\] is an offspring of path[i].
successor: an array containing all the nodes in path whose left offsprings are also in path.

For 1 < / < sptr, path[successor[j]+1] = left[path[successor[f]]].
pptr, sptr: pointers to the last entry in path and successor respectively.
flag: a Boolean variable which signifies whether or not o2 •=> ox if a is a relation, and

ax u a2 = 0 if D is otherwise H
path[pptr «- 1] •«- topc(ox) f ox is initially assumed nonempty H

sptr <- 0
flag <- true
11 Balanced tree search algorithm

GETNEXT(/opc(a2)) is a global routine which fetches, on each invocation, the 'next' node, in
order, in the data structure headed by topc(o2), c € {s, P}.
u, v: nodes representing the current lists under consideration in c(aj) and c(a2), c E {s, P},

respectively H
for v *- GETNEXT(/opc(a2)) while (v =£ null and flag)

fU Climb up phase. Retract'the path until top of path, u, is either the root or satisfies
\p(u) < \p(v). It is only necessary to examine the nodes pointed to in successor 1f

(pptr «- successor[sptr]
I sptr - «- 1

- path[pptr]
I f Balanced tree search. Compare keys and extend the path 1f

search «- true
| while search

if IKH) = Hv)
\ 1f Matching keys found. Perform the appropriate action f

search <- false
case n in

(+ » ' , ~) 11 Shape or set operation U
Nu<-NuuNv

| DELETE NODE
I flag <- path [1] =£ null

(<, =) H Shape or set relation 1f
do 4 I I /&£ +- NvnNu

if iKi;) < ,//(")
H Branch left f
successor[sptr + *- 1] +- pptr

^x <- left[u]
i H Branch right H
- x «- r/g/z?[w]

| if x = null
1f There is no list Nu with the same key value as Nv f
search <- false
case a in

1f Insert iV„ into the tree H

x <= ^ras^
\j/(x) <- i//(u)

INSERT NODE
) if swccessorlspf/-] = pptr then spfr* - <- 1
=) flag *~ false

while (sptr > 0) and (\p(v) > \}j[path[successor[sptr]]]) do

do <

then

else

then

else

if Nu = 0 then

then

(+)

(<,
H Finishing touches f
case n in

(+, • , -) topcW <-path[l]
return

(<, =) retarn(flag)
end SHAPE EXPRESSION

Algorithm 1.

482 R Krishnamurti

else
else then

else

while left[y] ¥= i

Algorithm DELETE NODE
f This routine deletes node u from the tree and rebalances the tree H
if right[u] - null
then x +- left[u]

if left[u] = null
then x «-right[u]

1f u has nonempty subtrees. Delete, instead, a node from the higher subtree of u
after copying its content into u so that the resulting tree still represents the altered
list in its original list order H

if B[u] = righttaller
f H Let y be the immediate successor of u in the list 1f
I path[pptr + <- 1] +- y «- right[u]

null do Inaworto*\T U *~ ? ? r ,
\path[pptr+ +• 1] *-y *~ left[y]

[x +~ right[y]
f H Let y be the immediate predecessor of u in the list H
successor[sptr+ *- 1] *- pptr

\path[pptr+ <- 1] <-y *-left [it]
while r/g/irl^] =£ null do path[pptr-\- *- 1] -*-y +> rightly]

U <- fc//[y]
H Copy contents of y into u and rename >> U
Hu] *- i//[y]
iV [M]<-%]

[M^-V
if c = 5 then POflVT <- key[w] else LABEL «•» key[u]
BTREE <= a
ppfr - <- 1
H x is either the root or becomes an offspring of the former parent of u U
if pptr = 0
f. jpath[pptr «- 1] «-x H x equals null signifies an empty tree H

1 sptr «- 0
f Deleting a node from the right (left) subtree effectively makes the left(right) subtree

taller 1J
z <- path[pptr]
if « = «g/zf[z]

right[z] «- x
. a «- lefttaller
Ueft[z] *~ x
I a*- right taller

H Save the path pointer so as not to destroy path. Trace back along the path towards the
root either adjusting the balance factors or rebalancing the tree 1f

saveptr «- pptr
while (saveptr > 0) and (B[z] ¥= balanced)

\XB[z]*a
r 1f Subtree rooted at z has become balanced f
\B[t 4-z] *- balanced

else ^ | then \ if (saveptr-+• 1) > 0 then a *- (if t = right[z <- path[saveptr]]
then lefttaller
else righttaller)

[f z has become doubly unbalanced. That is, the difference in the heights of the
right and left subtrees of z equals ±2. Rotate the subtree rooted at z and let
w be the new root H

do 4 I ;> «- (if fl = righttaller then rig/if [z] else fe/f[z])
ROTATE TREE
r «-z

else < path[pptr **- wvep/r] «- w
I if (saveptr - «- 1) > 0

if r = right[z -*- path[saveptr]]

u . then { **'J*J V
then 4 \ a <- lefttaller

f /e/r[z] <- w
1 a «- righttaller

if javeprr > 0 then 5[z] «- a
U Rebalancing may have corrupted the path. Delete the invalidated section H
while (sptr > 0) and (successor[sptr] > pptr) do sptr - «- 1

end DELETE NODE

then

else

else

Algorithm 2.

The arithmetic of shapes 483

Algorithm INSERT NODE
f This routine inserts a new mode JC as an offspring of u, and rebalances the tree f -
if \p(x) < \}/(u) then left[u] «- JC else right[u] «- JC
path[pptr+ +- 1] <- x
U Save the path pointer so as not to destroy path. Trace back along the path towards the root

adjusting the balance factors until the point of rebalancing is reached f
z •«- path[saveptr «- pptr- 1]
j> « - JC

while (saveptr> 1) and (Z?[z] = balanced)
(Biz] «- (if j> = right [z] then right taller else left taller)

do\ y +- z
L z «- path [saveptr — *- 1]

H z is either the root or the point of rebalancing. Determine in which subtree of z is JC inserted H
a «- (if >> = right[z] then right taller else left taller)
H The following segment is a translation of steps 7-10 of algorithm 6.2.3A in Knuth (1973b) f
if Biz] ^ a

then I ^ ^ e t r e e r e m a u l s height-balanced 1f
lB[z] + <- a

f z is doubly unbalanced. That is, the difference in the heights of the right and left subtrees
of z equals ±2. Rotate the subtree rooted at z, and let w be the root of the rotated
subtree H

ROTATE TREE
else |path[pptr +- saveptr] <- w

if saveptr > 1 then { f *" Vath\saveptr- 1]
^ I if z = right[t] then ri#Mf] *- w else /e/*[f] «- w

f Rebalancing may have corrupted the path; delete the invalidated section 1f
L while (sptr > 0) and (successor[sptr] > pptr) do sptr - <- 1

end INSERT NODE

Algorithm 3.

Algorithm ROTATE TREE
1f This routine rotates the subtree rooted at z. w contains the new root of the subtree, a, w, y,

and z are global variables 1f
if B[y] = -a

11 Double rotation [figure 13(b)] H
if a = right taller

' w <- fe/f[j>]
fe/r[^l **- ng/i/[w]

then i rightlw] «- >>
ng/z^tz] «- /e/r[w]

lfe/r[w] <-z
then i (w +- rightly]

rightly] «- fe/r[w]
else < /e/f[u>] +~ y

leftlz] *- rightlw]
[rightlw] +- z

I Biz] «- (if 2?[w] = a then -a else balanced)
Bly] +- (if Blw] = -a then a else balanced)

I Blw] «- balanced
' H Single rotation [figure 13(a)] 1f
I w •*- y

if a = right taller

else then J r ^ ^ z] *" W W
I /<?//[>>] <- z

else / W ^] 4 - ^ ^]
1 rfe/if LH «- z

l.-£[j>] **- (if 5 [w] = balanced then ~ (5[z] «- A) else J?[z] «- balanced)
end ROTATE TREE

Algorithm 4.

484 R Krishnamurti

which describes the two types of rebalancing transformation: single and double
rotation which are shown in figure 13. GETNEXT which is not given here is a global
routine for selecting the nodes in the data structure rooted at topc (a2) in order.

Acknowledgements. I am indebted to George Stiny for his support and whose suggestions
considerably improved the presentation of this paper. The research reported in this paper was
supported in part by a grant from the Science Research Council.

References
Aho A V, Hopcroft J E, Ullman J D, 1974 The Analysis and Design of Computer Algorithms

(Addison-Wesley, Reading, Mass)
Brown M R, Tarjan R E, 1979 "A fast merging algorithm" Journal of the Association for Computing

Machinery 26(2) 211 -226
Crane C A, 1972 Linear Lists and Priority Queues as Balanced Binary Trees PhD thesis, technical

report, STAN-CS-72-259, Computer Science Department, Stanford University, Stanford, Calif.
Horowitz E, Sahni S, 1976 Fundamentals of Data Structure (Computer Science Press, Woodland

Hills, Calif.)
Knuth D E, 1973a The Art of Computer Programming, Volume 1: Fundamental Algorithms

(Addison-Wesley, Reading, Mass)
Knuth D E, 1973b The Art of Computer Programming, Volume 3: Sorting and Searching (Addison-

Wesley, Reading, Mass)
Krishnamurti R, 1981 "The construction of shapes" Environment and Planning B 8 (forthcoming)
Stiny G, 1980 "Introduction to shapes and shape grammars" Environment and Planning B 1

343-351
Wirth N, 1976 Algorithms+Data Structure = Programs (Prentice-Hall, Englewood Cliffs, NJ)

p © 1980 a Pion publication printed in Great Britain

