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Abstract. 3-rectangulations are spatial representatives of assemblies of boxes into a box. Algorithms 
to generate various classes of 3-rectangulations are developed. The method is extended to specify 
the generation of higher-dimensional <2-rectangulations, d > 4. 

3-rectangulations 
I consider the following combinatorial problem: how many arrangements of boxes 
into a box are there subject to the proviso that they be 'spatially distinct'? Within an 
architectural context an assembly of boxes into a box may be regarded as 'a three-
dimensional building description', and may be seen as the natural extension of the 
'floor-plan problem' which has been discussed elsewhere (see, for instance, March and 
Earl, 1977; Earl and March, 1979; Flemming, 1978; Krishnamurti and Roe, 1978). 
The solution presented here takes the form of a generative scheme or an algorithm 
which enumerates equivalent families of box packings defined in terms of line designs 
on a three-dimensional grid, namely the 3-rectangulations. The definitions and 
notations that appear herein are consistent with those for 2-rectangulations (Earl, 1978; 
Krishnamurti and Roe, 1978). The material presented in this paper is sufficiently 
self-contained. 

A 3-rectangulation is an arrangement of an (/, m, n) unit grid into nonoverlapping 
cuboids whose faces lie on grid planes. The faces are combined to form maximal 
planes (Earl, 1978). (A set of maximal planes is a set of plane segments the union of 
any two of which never forms a single plane segment.) Maximal planes may be 
defined by a set of boundary lines. Constructively a 3-rectangulation may be viewed 
as a finite set of maximal planes each of which is coincident with one of the grid 
planes. Of these, six share boundary lines (those of the bounding cuboid) whereas 
the rest have boundary lines coincident with other maximal planes but do not share 
boundary lines. Figure 1 illustrates this construction. 

3-rectangulations may be classified into the following type categories. 

1. A 3-rectangulation is proper if /, m, n > 2. 
[An improper 3-rectangulation may be considered as a solid 2-rectangulation of unit 
height.] 

Figure 1. The internal maximal planes of a 3-rectangulation. 
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2. A 3-rectangulation is trivalent if each cross section is a trivalent 2-rect angulation. 
[A cross section of a 3-rectangulation is a plane section parallel to one of the grid 
planes and which does not contain any maximal planes. Clearly each of the l+m + n 
possible cross sections corresponds to a packing of rectangles into a rectangle, or a 
2-rectangulation.] 

3. A 3-rectangulation is nonaligned if each grid plane contains at most one maximal 
plane. 

4. A 3-rectangulation is standard if each grid plane contains at least one maximal 
plane. 
[For standard 3-rectangulations it is clear that every grid plane must contain a face of 
one of the constituent cuboids.] 

5. A 3-rectangulation is fundamental if it is standard, trivalent, and nonaligned. 
[The name arises on account of its connection with 'fundamental architectural 
arrangements' described in March and Earl (1977).] 

The number of component cuboids of a 3-rectangulation is its content. A 
3-rectangulation with content p is explicitly referred to as a [p, 3]-rectangulation. 
Two 3-rectangulations are equivalent if they are identical after a sequence of 'right-
handed' rotations or reflections. Enantiomorphs, or right-handed and left-handed 
versions of the same object, are regarded as distinct arrangements. The proviso 
'spatially distinct' corresponds to the concept 'standard and nonequivalent'. In this 
paper the enumeration of nonequivalent standard proper [p, 3]-rectangulations, for p 
fixed, via the counting of the representatives—termed canonical 3-rectangulations—of 
the equivalence classes is considered. 

Canonical 3-rectangulations 
In this section a representation for 3-rectangulations is developed. This representation 
enables us to define a condition that uniquely determines a representative for each 
equivalence class. First we need to consider the (/, m, n) unit grids upon which the 
representation is based. 

6. Earl (1978) has shown that the dimensions of (/, m, n) unit grids for which there 
exists at least one standard [p, 3]-rectangulation must satisfy 

l+m + n—2<p<:lmn. (1) 

From symmetry considerations (which are explained later in this section) we may 
stipulate that 

l> m > n > 2 . (2) 

The following is the set of integer triples (/, m, n) that satisfy inequalities (1) and (2): 

A = Ul,m,n): 2<n< ( _ ^ J , n < m < [ P + ^ " J , 

maxjm, — f < / < p + 2-rc — m 

where, for any real number r, [r\ denotes the greatest integer less than or equal to r 
and \r] denotes the least integer greater than or equal to r. 

For each (/, m, n) E A we can define the following grid quantities. 

7. The grid cells are associated with unique integer coordinates (x,y,z), where 
x E Zl9 y E Zm, and z G Z „ . The internal grid planes lie on the planes X = x G Zz

+, 



3-rectangulations: an algorithm to generate box packings 333 

7 = 7 E Z+, and Z = z E Z+. (Zk = {0, 1,..., k~\} and Z£ = Z*-{0}.) The grid 
plane X = x0 separates the sets of grid cells {(x0 - l j G Z m , z G Zn)} and 
{(x0, y E Zm, z E Zn)}. Any internal grid plane may be considered as a set of grid 
faces each of which may be assigned integer coordinates. As an example the grid face 
(x0,y, z) on the plane X = x0 separates the grid cells (x0-\, y, z) and (x0, y, z), 
which in tum share the grid face. 

8. The threading pattern, T, is the bijection between the grid cells and the integers 
1, 2,..., Imn denoted by the ordered set 

( (*1? ^ l ? z l ) j (*2> ^ 2 ? zl)i •> (xlmn-> yimn-> zlmn)) > 

where 

T{xq, yq, zq) = lmzq + lyq + xq + l = q . 

The threading pattern is a particular numbering of the grid cells. In our case the 
cells have been labelled according to increasing x-9 increasing y-, and increasing 
z-coordinates in that order. Theoretically any bijection between the grid cells and the 
integers 1, 2, ..., Imn may be chosen as the threading pattern. The one given here is 
convenient for describing the generative scheme for 3-rectangulations. 

9. The cell type is the mapping of the grid cells onto the integers 0, 1,..., 7 defined 
by the following Boolean truth table: 

cell type 
x > 0 
y > 0 
z > 0 

0 
0 
0 
0 

1 
1 
0 
0 

2 
0 
1 
0 

3 
0 
0 
1 

4 
1 
1 
0 

5 
1 
0 
1 

6 
0 
1 
1 

7 
1 
1 
1 

Remark: Though the cell type is not required in developing the representation of 
3-rectangulations, its inclusion here may be justified on the grounds of completeness 
(since it is a grid parameter) and because of its particular relevance to the enumeration 
algorithms discussed in the subsequent sections. 

A [p, 3]-rectangulation R may be represented by a proper colouring of R by 
allocating p distinct colours to the component cuboids in such a manner that grid 
cells in the same cuboid have the same colour. For computational reasons the colours 
are identified with integers. Every colouring of R, C(R), may be represented by the 
ordered set <C(1), C(2),..., C{lmn)), where C(q) is the colour associated with the grid 
cell whose T-number is q. An important proper colouring is the 0-colouring of R, 
0CR), defined as follows. Label the cells, taken in their T-number order, with increasing 
numbers starting with 1 such that grid cells in the same cuboid have the same label: 
(j>{R) = <0(1), 0(2), ..., (j)(lmn)). It is easy to show that: 
(1) if 0ORO = 0CR2) then R1 = R2; 
(2) (j)(R) < L C(R) for any other proper colouring C of R, where < L denotes less than 

or equal to in the lexicographical sense. 
Consequently 0CR) may be chosen as the representation of R. 

Recall that 3-rectangulations are equivalent to one another if they are identical 
after a sequence of 'right-handed' rotations or reflections. Consider the group of 
transformations that maps a 3-rectangulation onto another in its equivalence class. In 
order to find a representative for each equivalence class, without loss in generality we 
may restrict our attention to those 3-rectangulations with / > m > n (see definition 6) 
and thus to those transformations that leave the unit grid invariant in space. Let T 
denote the group of such transformations; T is isomorphic to a (usually small-order) 
subgroup of the even subgroup of 03, the orthogonal group of rotations of the cube. 
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[A group is even if all its elements are even; that is, each element is isomorphic 
to a composition of an even number of axial inversions (or sign changes) and axial 
interchanges (or coordinate transpositions). The even elements of 03 correspond to 
'right-handed' rotations or reflections.] T depends upon the relative dimensions of 
the unit grid. All possible even subgroups of 03 and the cell-to-cell coordinate-map 
representations of their elements are listed in Krishnamurti and Roe (1979). The grid-
invariant transformations of a 3-rectangulation R are denoted by TR, for each r G T. 

10. A 3-rectangulation R is canonical if and only if (j)(R) < L 0(ri?) for all r G T. 
[0CR) is well-defined since if (j>(R) = 0(TR) then R = TR, in which case R is said to 
possess the symmetry of r. A canonical 3-rectangulation is taken as the representative 
of the equivalence class of 3-rectangulations under T.] 

Unfortunately 0(TR) cannot be directly computed from 0CR). Instead define 

T<KR) = <0[r-1(l)]3 0[T-1(2)],...,0[r-1(/^«)]> , 

where r~l(q) is the r-number of the cell that maps to (xq, yqi zq) under r G T. 
Let p be the content of R. Then there exists a permutation of the numbers from 1 
through p such that 7TT0CR) = (J)(TR). The permutation ir is constructed as follows. 

For all / mark ir(i) as 'undefined'. Mark the numbers from 1 through p as 'unused'. 
Select cells q from <1, 2,..., Imn) in order. Let q = r~l(q). Two cases arise. 
Case 1: 7r[0(g')] is undefined. Let u be the smallest unused number. Mark u as 

'used'. Assign u as the value of 7r[0(#')] and as the new colour of q. 
Case 2: 7r[0(g')] is defined. Assign this number as the new colour of q. 
It is clear that IT is a permutation. Since the new colours are associated with the cells 
in increasing order, it follows that 7rr0CR) is a 0-colouring of the transformed 
3-rectangulation TR\ that is, 7TT0OR) = <t>(jR). 

Standard and trivalent 3-rectangulations 
The enumeration algorithm for 3-rectangulations may be described by the following 
recursive backtrack procedure. Construct all possible #-tuples of integers from the 
current (g-l)-tuple of integers until q = Imn, with the condition that the resulting 
/rarc-tuple is a 0-colouring of some 3-rectangulation. The construction begins with the 
1-tuple <1>. 

Since each stage q of this procedure corresponds to determining 0(g), the colour 
associated with the cell whose T-number is q, given (0(1), 0(2),..., <t>{q — 1)>, the 
construction may be recast in terms of 'colouring rules'. 

The colouring rules may be expressed in terms of a colouring grammar, which 
consists of a set of grid parameters, a set of predicates, a set of colours, a set of 
colouring rules, and an initial colouring rule, where the rules take the form 

predicate 
uncoloured shape • Sx; coloured shape; 5*2 . 

The uncoloured shape is a collection of grid cells with at least one uncoloured cell, 
that results in the coloured shape after the application of the rule. Sx and S2 are sets 
of assignations involving grid parameters before and after the rule has been applied. 
The colouring rules depend upon the relative relationship between coloured cells in the 
uncoloured shape, and hence may be expressed in terms of parametrized colours, with 
the actual substitution taking place when the rule is applied. The predicate is a Boolean-
valued expression which must be satisfied in order that the entire rule may apply. 

The rule application may be described as follows. Let q denote the current 
uncoloured cell in the threading pattern I\ Select the uncoloured shape that 
corresponds to the neighbourhood of q. Then if the predicate, which is usually 
expressed as a functional in q, holds, apply the rule and colour cell q accordingly. 
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(More than one uncoloured cell may be coloured at any given stage, in which case the 
'next' q in T is explicitly assigned in one of the two sets of assignations St and S2; 
otherwise the 'next' q points to the next uncoloured cell in T and by convention no 
explicit assignment of q is stated in the rules.) A colouring grammar is a complete 
recursive specification for 3-rectangulations. 

It is convenient to have a pictorial description of the colour and spatial relationships 
between the grid cells. Consider the graph representation in which edges correspond 
to adjacent pairs of grid cells, and bold edges pairs of grid cells in the same cuboid. 
Each grid cell is represented by an open vertex which is darkened when the cell is 
coloured. A vertex may be labelled by the colour (or parametrized colour) of the 
grid cell it represents. In order to simplify the colouring rules a third type of edge, 
represented by dotted lines, which may stand for either a single edge or a bold edge, 
is introduced. Figure 2 presents the graph of a [5, 3]-rectangulation on the (2, 2, 2) 
unit grid. 

Since the colouring rules act according to some local criteria, it is necessary that an 
enumerative grammar accounts for all possible uncoloured shapes that can occur. One 
possibility is to view the uncoloured shape as the neighbourhood of grid cells that 
surround the intersections of grid planes. These intersections of the grid planes have 
been previously classified in terms of cell types (see definition 9). Let q denote the 
current uncoloured cell in T. Let r, s, t, q\ r\ s\ and t' denote the parametrized 

Figure 2. A [5, 3]-rectangulation on the (2,2,2) unit grid, and its graph representation. 

Table 1. All possible uncoloured shapes in a 3-rectangulation. 

Cell type r, s, f, etc Uncoloured shape 

r= t f fa - l ) 

r = (p(q - Im) 

r=0fo-l) 
s=<P(q-l-l) 
t=<Kq-t) 
r=<£q-l) 
s = (j){q-lm-\) 
t = <p(q - Irri) 
r=4>{q~l) 
s = (p(q -Im-t) 
t — (p(q- Im) 
r=<t>(q-l) 
s=4>(q~l-l) 
t=(p(q-l) 
q'= <t>{q~lm) 
r = 0(c7 -lm-1) 
s' = <p(g-lm-l-l) 
t'= <t>{q-lm-l) 

s+~ 

* * 
s t' 
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colours of the cells neighbouring q. The uncoloured shapes then take the forms 
indicated in table 1 (note that the open vertex represents q). 

The colouring rules may be easily determined using the information in table 1. 
One condition that rules must ensure is that eventually only cuboids are created. A 
desirable condition is that each 3-rectangulation is generated by a unique sequence of 
rule applications. 

Let JU denote the number of colours used so far. 

Case 1: Type = 0 . 
The grid cell is the first cell in T. By the 0-colouring requirements it must be 
coloured 1. The colouring rule is therefore 

0: o • V ; JU <- 1 . 

Rule 0 may be considered as the initial colouring rule. 

Case 2: Type = 1, 2, or 3. 
Here q may take on one of two colours: either r or a 'new' colour. That is, q is in 
the same cuboid as its adjacent coloured neighbour or in a different cuboid. The 
colouring rules are as follows: 

Case 3: Type = 4, 5, or 6. 
There are four possible uncoloured shapes that can arise; these are illustrated in 
figure 3(a). For each situation the colouring rules that may apply are those in 
figure 3(b). These rules can be combined and reduced to a smaller set by means of 
predicates. Consider the predicates 

Gi: (r = t) v (r ¥= s) , G2: (r ¥= t) A (si- t) , and G3: r =£ t . 

Then the eight rules in figure 3(b) can be replaced by the three rules in figure 3(c). 

Case 4: Type = 7. 
In this case there are sixty-seven possible uncoloured shapes that can occur, which 
result in one hundred and thirty-five colouring rules. A few examples are shown in 
figure 4(a). The colouring rules can be reduced to a set of four rules. The reason 
that only four rules are sufficient stems from the fact that cell q can either take on 
one of the colours of its three adjacent coloured neighbours or be assigned a new 
colour. The four rules are shown in figure 4(b), where the predicates are given by 

G4: (r = f) v (r = q') v [(r ¥= r')f A (r * s) A (t * q')] , 

G5: (r ± t) A ( r # q') A {(t = q') v [(s * t) A (t * t')]} , 

G6: (r * t) A (r ¥= q') A (f * q') A (qf * r ' ) A fo' =* t') , 

G7: ( r # t)*(r±q')*(t*q') . 
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s — r t = r 

(a) 

s = r t = r 

s = r t 

r r 

r r 

t t 

s = t t 

s = r t 

M + - 1 ; 

r r 

/ 

r t 

s = t t r 11 

/u + «- l 

S t S t 

*« + - i ; 

(b) 

r r 
J» P 

Gy 
• •• 

s t 

3-5: 
G2 

s t s t 

r n 

s t 
(c) 
Figure 3. The colouring rules for cells of type 4, 5, or 6. 
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r — fq = f 

s' - r t' ^ t r t 

r q 

s - t 

/ 

\ 

s 

s 

/ 

/ 
¥ 

£ 

r 

r' 

1' 

r 

/ 

/ 

r 

<7 

t 

/ 

V 
Q 

ju + ^ 1 

t = q s 

(a) 

G.. 

1 / : t 
6-9: * *:: 

> 

s / 

. 

s' 

s / 

: 

•'... 

r 

/ r 

r 
.t 

/ r' 

t / 

• 

t' 

t / 

r 
9 

'-/% 

t 

• 
/ q 

cN v: I....V 

JU + < - 1 ; 42 

s / ; tj 

r i /q 

(b) s t 
Figure 4. The colouring rules for cells of type 7, 
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q: current cell in threading pattern T 

yq: cell type of q 

Predicates 

F2 

F3 

F, 

Fs 

F6 

Fn 

F8 

F, 

F10 

Fn 

Fn 
F13 

Fl4 

1 < yq < 3 

^(fx > 0 ) ] v F 7 } 

4 < yq < 6 

Imn-q > p-fi 

P > M 
(xq = 7 - 1 ) A ( ^ = m-\) 

(yq = m - 1 ) A ( 2 g = n-\) 

(zq = n-\) *(xq = / - l ) 

{[F6A(/22g > 0 ) ] V F 6 } A { [ F 7 

A { [ F 8 A ^ > 0 ) ] v F 8 ] } 

(/" = t) v (r * 5) 
(r ^ t) A (5 =£ 0 
r=£ / 

(r = 0 v (r = ?') v [(r =£ r ') A ( f # j ) A ( / # </')] 

- „ . (r # 0 A (r # ?') A {(f = <?') v [(5 ^ / ) A ( ^ / ' )]} 

F1S : ( r ^ O M ^ ?') -A {t * q') A {q' * #•') A (<?' ̂  r') 

F 1 6 : ( ^ / ) A ( ^ ? ' ) A ( ^ ? ' ) 

Note: F denotes the complement of F. 

Pi'. Fi*FA 

P2: F , A F 5 

P 3 : F2 A F 4 A F 1 0 

14 : F 2 A F j A /*| j 

P 5 : F 2 A F 5 A F 1 2 

P 6 : F 3 A F 4 A F q A F 1 3 

F 7 : F 3 A F 4 A F 9 A F1 4 

P 8 : F 3 A F 4 A F9 A F1 5 

P 9 : F 3 A F5 A F1 6 

Assignations 

5X: 

S2: 

S3: 

(*„>o 
(xq = 0 

A, + - l 

Rules 

0: 0 — 

- 4 
=*** 

»*V 

1) v {yq > 0 => g, yq 

1 1 ; M - 1 

l ) v ( z q > 0 = > ^ - 1 ) 

6 - 9 : 

• / , , + <-i,s*+<-D 

1-2: 

3-5 

.•? 

£x 

/ r : : ' < 7 

Figure 5. The colouring grammar which generates all proper standard [p, 3]-rectangulations, for p 
fixed. 
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We still have a fair way to go. Rules 0 through 9 will only generate 3-rectangulations 
without any consideration as to whether the generated object is standard, trivalent, or 
has content p. Suppose we wish to generate standard [p, 3]-rectangulations, for p 
fixed. In such cases we must ensure that (a) JU never exceeds p and (b) each grid 
plane contains at least one face. This can be accomplished by incorporating Boolean 
expressions into the colouring rules. Let {fx}, {gy}, and {hz} be sets of integer variables 
that denote the absence or presence of a maximal plane in the corresponding grid 
planes. That is, fXo > 0 if there exists at least one face in the grid plane X = x0, and 
so on. Then the colouring grammar in figure 5 will generate, by unique sequences of 
rule applications, all proper standard [p, 3 ]-rectangulations, for p fixed. To ensure 
that the 3-rectangulations are always trivalent, rules 5 and 9 (in figure 5) must be 
replaced by rules 5' and 9' shown in figure 6. The colouring grammar in figure 5, 
modified by the rules in figure 6, will generate, again by unique sequences of rule 
applications, all proper standard trivalent [p, 3]-rectangulations, for p fixed. 

F„: (r = s) v (s = t) 

FIS: [(T = s) v (5 = 01 * [(* = t') v {t' 

A [(r = r') v (r' = q')] 

Ps-: F2 A F5 A Fn A F17 

Pa' I F3 A F5 A Fl6 A F 1 8 

= q')) 
7 /* + <-!; / / ; S, 

9': f S".::? i —*~ M + «-I ; f" 

s' t s t 

Figure 6. The modified rules 5 and 9 required to generate all proper standard trivalent [p, 3]-
rectangulations, for p fixed. 

Nonaligned 3-rectangulations 
The following procedure describes a sieve for detecting nonaligned 3-rectangulations. 
Let 6 denote any internal grid plane of a 3-rectangulation. For instance 5 may be 
identical to X = x G Zj1", or identical to Y = y E. Z^, or identical to Z = z G Z+. 
The maximal planes in 5 have a graph representation in which edges represent pairs of 
adjacent grid faces which are in the same maximal plane. (Two grid faces in a plane 
are adjacent if they share either a line or a point.) The resulting graph is termed the 
6-graph of the 3-rectangulation. A 3-rectangulation is nonaligned if and only if each 
of its 5-graphs is either null or connected. Algorithmically connectedness is an 
efficient graph property (Tarjan, 1972). Thus, given a family of 3-rectangulations, its 
subfamily of nonaligned 3-rectangulations may be easily determined. 

From a computational standpoint this two-step generate-and-test algorithm can 
be improved upon. The global criterion to decide on the nonalignment of a 
3-rectangulation may be incorporated into the colouring grammar for 3-rectangulations 
as sets of local rules in such a manner that the resulting colouring grammar will 
generate precisely the family of nonaligned 3-rectangulations. 

The local rules may be described by the following tagging procedure. A 'tag' is 
assigned to each grid face in every internal grid plane so that grid faces in the same 
maximal plane have the same tag. Distinct maximal planes in the same internal grid 
plane have distinct tags. By convention grid faces in no maximal plane have the 'null 
tag'. The tag associated with a grid plane is the largest tag, in the numerical sense, 
amongst those of all the maximal planes it contains. Clearly a 3-rectangulation is 
nonaligned if and only if the tag of each of its grid planes does not exceed unity. 
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In order that this tagging procedure may be successfully carried out, the tags must 
satisfy the following conditions. 

11. A map a: Z® -> Z® is a tag function if and only if each n E Z® satisfies the 
following: 
(a) ot{n) < n; 
(b) a(n > 0) > 0; 
(c) there exists a tn such that atnt(n) < a(ri) and atn + l(n) - atn{n). 
For each n E Z®, atn{n) = atn + l(n) = ... = a*{ri) is called the tag of n. (Z® is the 
set of nonnegative integers.) 
[The least tn will vary according to n, but there must exist an a*(n) for all n E Z®.] 

A general description of the tagging procedure is now presented. Let S5 denote 
the set of grid faces in the grid plane 5. To each o E Z6 may be assigned a label 
which is the T-number of the grid cell whose coordinates it shares. That is, if o has 
coordinate (xa9 yai za), o is assigned T(xCT, ya, za). For convenience let this number 
be referred to as T(a). Let A(o) denote the following adjacency set of o: 

Mo) = {p E 2 6 : p and o are adjacent and T(p) < T(a)} . 

Mark the numbers 1, 2,..., |2 f i | as 'untagged'. Set a(0) = 0. Select faces o E 2 6 in 
increasing order of their T-numbers and assign to each in turn the tag label j3(a). Two 
possible cases arise. 

Case 1: a is not contained in any maximal plane. 
Assign zero to j3(cr). 

Case 2: o is contained in some maximal plane. 
Let A'(o) = {p E A(o): |3(p) > 0}. Two cases arise. 
Case 2.1: A'(a) = 0 . 
Let u be the smallest untagged number. Assign u to j3(a). Tag u\ that is, set a(u) = u. 
Case 2.2: A'(o) ^ 0 . 
Let v denote the minimum a*[]3(p)] over all p E A'(a). Assign v to |3(a). Retag 
A'(o); that is, for each p E A'(o) set a[0(p)] = a2[/3(p)] = ... = a*[]3(p)] = u. 

Clearly a is a tag function, and (a:*[j3(a)]: a E S6} is the set of tags of the grid faces 
in 5. Moreover it is easy to show that in general 

max {a*[j3(a)]} > number of maximal planes in 5. 

Equality always holds whenever the number of maximal planes is either zero or one. 
A 3-rectangulation is nonaligned if and only if for each internal grid plane 6 

max {a* [/3(a)]} < 1 . 

The remainder of this section is devoted to describing the tagging rules that are 
incorporated into the colouring rules for 3-rectangulations in order that only nonaligned 
3-rectangulations are generated. Let / , g, and h be the prefix symbols for variables 
involving the constant-x, constant-^, and constant-z grid planes respectively. Let {fx}9 

{gy}, and {hz} denote the numbers of maximal planes on each grid plane, all initially 
set equal to zero. Let {f(3q}, {gPq}, and {hf$q} denote the /3-values of the grid faces, 
which are also initially set equal to zero. Let {fixx}, {gfJ-y}, and {h[iz} denote the 
current largest tagged numbers in the appropriate grid planes. Let {fax}, {gay}, and 
{haz} represent the tag functions. Initially f<xx(0) = 0 for all x E Z7

+, £0^(0) = 0 
for all y E Z ^ , and haz(0) = 0 for all z E Z j . Let q denote the current cell in T; 
q also denotes the current grid face to be tagged. Since a grid face is contained in a 
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maximal plane if and only if the grid cells that share the face are coloured differently, 
we need only consider those colouring rules in which cell q is coloured differently 
from at least one of its coloured neighbours. The following cases have to be considered. 

Case 1: Cell type = 1, 2, or 3. 
Here only rule 2 needs to be considered; that is, when ${q) + r. The grid face 
separating q and its coloured neighbour has no adjacent tagged faces. It is in fact the 
first face encountered in the appropriate grid plane. Consequently it is the first 
recorded instance of a maximal plane in that grid plane. Which grid plane is involved 
depends upon the cell type of q. The tagging rule takes the form 

Jwq +- j'Pq «" MWq +- J<xWqW <- 1 , 

where (/, w) stands for (/, x), (g,y), or (h, z) depending on whether the cell type is 1, 
2, or 3 respectively. 

Case 2: Cell type = 4, 5, or 6. 
Except when r = t each colouring rule requires at least one grid face to be tagged 
(see rules 3, 4, and 5). Let y denote the cell type and let (Ay, 5, j , w) represent the 
adjacency set of the grid face q in the grid plane 5 (/ and w have the same meaning 
as in case 1). Two cases have to be considered. 

Case 2.1: <j)(q) =£ r. 
Here 

f <{?-/}, X= xq,f,x) if 7 = 4 , 

(Ay, 6,/ , w) = < ({q-lm, q-lm + l}, X = xq,f,x) if 7 = 5 , 

[({q-lm, q-lm + \}, Y = yq,g, y) if 7 = 6 . 

For As and A6 the two grid cells either have the same tag, which may be zero, or one has 
a zero and the other a nonzero tag. This assertion may be verified when all the tagging 
rules have been developed. Let A\ = {o G A4: fPa > 0}, A's = {o G As: /|3a > 0}, 
and A'6 = {o G A6: g|3a > 0}. Two cases have to be considered. 
Case 2.1.1: Ay = 0 . 
In this case the grid face represents the first face in a possible new maximal plane in 
the grid plane 6. The tag of face q is set to the current smallest untagged number 
and the tag function for this tag is set to map onto itself. The tagging rule is 

/ % [/ft, «- (/Mw, + <-l)l. <- JPq • 

Case 2.1.2: A7 =£ 0. 
In this case face q is adjacent to a face which is tagged and therefore must be 
contained in the same maximal plane as its neighbour. Let a be a face in Ay. The 
tagging rule is 

iPq <" JPa • 

Case 2.2: (j>{q) =£ t. 
Here 

U{q-l}, Y = yq,g,y) if 7 = 4 , 

(Ayi 5 , / , w) = < ({q-1}, Z = zq,h,z) if 7 = 5 , 

{({q-l, q-l+1}, Z = zq,h,z) if 7 = 6 . 
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As in case 2.1, Ay may be defined for each y = 4, 5, and 6. The two resulting 
subcases, for Ay = 0 and A7 # 0 , may then be treated in the same manner as were 
the corresponding subcases of case 2.1. In each case the tagging rule takes the identical 
form as previously given. 

Case 3: Cell type = 7. 
Consider the grid plane X = xq separating the sets of cells {q, q — l, q- Im, q-lm-l} 
and {q-l, q — l-I, q-lm-l, q-lm-l-l} in the uncoloured shape in rules 6 
through 9. Suppose cell q is coloured differently from cell q— 1. In this situation 
grid face q in the plane X — xq has to be tagged. All the faces adjacent to q and 
which are already tagged are as follows. 

grid face q 

if yq = m -1 , 

otherwise, 

The letters a, b, c, and d refer to the tags of the neighbouring grid faces. They are 
given by 

0 

lfa*Xq(f($q_lm+l) 

c = fa^VPi-t) , 

d = fa^VP^-i) • 

There are two cases to be considered. 

Case 3.1: a =£ 0. 
In this case the tagging rule is simply 

ftq*-a. 

Case 3.2: a = 0. 
There are four subcases to be considered. 
Case 3.2.1: b = c = d = 0. 
As in case 2.1.1 a possible new maximal plane is introduced. The tagging rule is 

/*, + - ! > 
fi*XqlfPq<-(fnXq +<-!)]+•&„. 

Case 3.2.2: b = 0 and at least one of c and d is nonzero. 
Here face q is tagged with the same tag as either face q-l or face q — lm — L (If they 
are both tagged they must have the same tag.) Therefore the tagging rule is 

fpq +- max{c, d} 

Case 3.2.3: b # 0 and c = d = 0. 
This is similar to case 3.2.2 and the tagging rule is 

fPq^b. 

Case 3.2.4: b ¥= 0 and at least one of c and d is nonzero. 
Either b = max{c, d}, in which case the grid faces are in the same maximal plane and 
this situation may be treated as a special case of either cases 3.2.2 or 3.2.3, or 
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b + max{c, d}. In the latter situation the tagging of face q involves combining two 
distinct maximal planes into a single plane and retagging one of the planes. The 
tagging rule is 

fPq +- min | 6 , max{c, d }j , 

fotXq (maxjz?, max{c, d}}) +- fflq . 

The grid faces in the planes Y = yq and Z = zq are identically handled. So, to 
generate nonaligned 3-rectangulations, in the case of cells of type 7 the colouring 
rules must also be controlled by predicates which ensure that all the grid planes have 
no more than one maximal plane. Suppose face q in the plane X = xq has the 
coordinates (xq, ra- 1, n — 1). This face is the last face in X — xq to be tagged. 
Consequently the colouring rule for cell q +1 may be applied only if fx < 1. The 
rules are similarly controlled when the last face q in the Y — yq and Z = zq planes 
is encountered. 

Algorithms 
Three algorithms in ALGOL-like notation which form the nucleus of the enumeration 
algorithm are presented in this section. 

Algorithm 1 is a Boolean-valued procedure for determining whether the given 
3-rectangulation, R, is canonical in the sense of definition 10. Briefly the algorithm 
may be described as follows. The outer loop selects a r in T and proceeds to test 
whether <j)(R) < L <j>(rR) providing flag remains true. The variable flag signifies whether 
R is canonical with respect to the previous set of transformations that have been 
applied, and is initially true. The inner loop selects cells q in order and applies 
the rules for the construction of the permutation 7r. The loop is continued as long as 
<j)(R) and QirR) correspond term by term. The last statement in the outer loop is the 
actual test [when (j)(R) =£ (J)(TR)] which determines whether R is canonical with 
respect to r. The algorithm returns the value true if and only if R is canonical. 

Algorithm 2 gives the rules for tagging the grid faces after cell q has been coloured. 
This routine is performed in conjunction with the colouring rules (see algorithm 3), 
and consequently any changes to the grid variables must be recorded for purpose of 
backtracking. Three sets, Bqy Uq, and Vq, are employed for this reason. Bq contains 
elements of the form (/, w), which signify that at construction level q the variables j&q 

and jcLw HPq) have been introduced and the variables j w and JJJLW have been 
incremented by unity. In other words at level q a new maximal plane has been 

Algorithm CANONICAL^) 
f R and n are represented by the ordered set <0(1), 0(2), ..., (p(lmn)) and the array 7r[l, ...,p] 

respectively il 
flag +- true 
for r G T whUe flag do 

ffor / G <1, 2, ...,p> do 7r(/) <- 'undefined' 
unused number «- 0 

I for q G <1, 2,..., Imn) while flag do 

( if 7r[0(r_1(^))l is undefined 
then newcolour <- 7r[0(r_1(^))] *~ (unused number + *-\) 
else newcolour <- 7r[0(r-1(^))l 
flag ^- newcolour = (f>(q) 

[ if not flag then flag «- (f)(q) < newcolour 
return (flag) 

Algorithm 1. 
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Algorithm TAGRULE 
H For purposes of backtracking, changes to the grid planes, the tag functions, and the number of 

maximal planes are recorded in the sets BqyVq, and Uq respectively H 
Bq «- Vq «- Uq <- 0 
nonalignment <- true 
if q> 1 

f if" celltypeiq) < 3 
f (/»w) "*" case celltypeiq) in 

( = D ( / , * ) 
( = 2 ) f o , j 0 
(= 3) 0 , z) 

K^{( / ,W)} 
f if celltypeiq) < 6 

f <r, 5, t) +- case celltypeiq) in 
( = 4 ) f o - l , < f - / - l , < f - / > 
(= 5)(q-\,q-lm-\,q-lm) 
(= 6)(q-l,q-lm-l,q-lm) 

| for 0 G (r, f } do 
fif 0(<?) =£0(0) 

then 

then 

else< 

then 

else 

then 

</> w, 0) +• case celltypeiq) in 
(= 4) if 0 = r then </,x,/0f> else <g,j>,g0r> 
(= 5) if 0 = r then </,*, max{/0„/0 f + /}> else </z,z,/i0r> 
(= 6) if 0 = r then <g,j>, max{g0„ g0r+1}> else </i, z, max{/z0r, fc0r+1}) 

if 0=£ 0 

then /ft, «- 0 
7w, + «- 1 

else <( /a*Wa [/ft, <- (// i^ + <-1)] <-/ft. 

;g0q'>,<!*,z,(l',Wt)}*o 

-/> 

* , * - * , U{( / ,w)} 
(r,t,q')+- (q-\,q-l,q-lm) 
for < / , w , 0 , 0 > e { ( / , * , r , / / V > , <g,y,r,, 

f if (f>iq) * 0(0) 
if 0¥= 0 
then / 0 , «- 0 

<£>, c, d> «- case / in 
(= / ) <if yq = m " 1 then 0 else ftq-+h / 0 „ ftq> 
i= g) <if xq = / - 1 then 0 else g0„-+1, 
(= ft) <if xq = l-l then 0 else /20,+1,/i0r, /z0r_,> 

i f / 3 + c + d = 0 
f/w, + <-l 

then^/o^ [/0g *- (/M% + «"1)1 «" /ft, 
Bq*~Bq U{(/,vv)} 
if/> = 0 
then / 0 , +- max{c, d} 

if c+d= 0 
then /0 , «- b 

11 /«w ( ) m a v be regarded as the following procedure: 
let v be such that 
k = / < ( * ) > j*lqik) > ... > /< , , (* ) = / < « ( * ) ; 
set Ĵ , to contain the elements 
< / < ( £ ) , jcf+fik), (A vv)>, 0 < / < u; 
assign /o^, (/:) «- /G^, (/:), 1 < / < u; 
/<C, (*)=>„,(*) Hf 

b*-j**Wqib) 
C*~jOL*Wqic) 
d^ja*Wqid) 
if b = max{c, d} 
then /0g *«- 6 

70, +- min{6, maxic, d}} 
0' «- max{/>, maxfc, rf>} 

then 

else 

else 
else 

else 

else Vq*-VqU{{p,f,U,w))} 
jaWn(f)+-ffiq 

£ 4 < - ^ U { ( / , w ) } 
<7 

H test if the 3-rectangulation is nonahgned H 
nonalignment +- [if ixq = / - 1) A iyq = m-\) then hZq = 1 else true] and 

[if iyq = rn-\) A (zq = n-\) then fx = 1 else true] and 

return inonalignment) 
[if izq = / I - 1) A ( x , = / - 1 ) then gyq = 1 else true] 

Algorithm 2. 
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if 
else 4 

then< 

then 

else 

Algorithm 3-RECTANGULATION 
U Recursive procedure to generate various kinds of proper standard [p, 3]-rectangulations, p fixed, 

on the given (l,m,n) unit grid; 
essentially the procedure constructs 0(9 +1) given (0(1), 0(2),..., <f>(q)) by applying the colouring 
rules in figures 5 and 6 U 

if if nonalignment desired then TAGRULE else true 
[ if q = Imn 

then if CANONICAL (generated 3-rectangulation) then equivalence class + «- 1 
f U colour q + 1 with a 'new' colour if possible U 

| if P> M 
r if celltype(q+\) < 3 

then true 
f if" celltype(q+\) < 6 

f (r, s, t) <~ case celltype(q + 1) in 
( = 4 ) < 0 f a ) , 0 f a - / ) , 0 f a + l - / ) > 
(= 5) <0fa), 0fa - Im), 0fa + 1 - /wi)> 
(= 6) < 0 f a + l - / ) , 0 (9+1 -lm-l), 0fa + l -/m)> 

l r =£ J and [if trivalency desired then (r = 5) v (s = t) else true] 
[(r,s,t,q\r\t')^(<t>(q),<l>(q-l),<t>(q + \-l\<t>(q+\-lm),(t)(q-lm), 

0fa + l - / m - / ) > 

rif trivalency desired 
I and < then [(r = s) v (5 = 01 A [ ( ' = *') v C = 9')] A [( ' = '"') v (>"' = 9')] 

(else true 
if not nonalignment desired then fx > 0 + **~ 1, gy > 0 + "*" 1, h2 

0(9 + ^ 1 ) ^- Ox + ^-D 
3-RECTANGULATION 

\q-<-\ 

U - < - i 
[ if not nonalignment desired then fXq > 0

 - *~ 1, £>>, > 0 ~ "*" 1» ^2, 
I H colour q + 1 with the 'same' colour as one of its neighbours if possible H 
I if Imn - q > p- fji 

[ if nonalignment desired 
then true 

then^ I I I f if celltype(q+1) < 6 
I then true 

f H test if the current partial 3-rectangulation is standard 
else 

then< 

-1 

-1 

then 

if 

then 

else< 
e\se< 

m-\) then hz 

- n - 1) then fx 

l-\) then g ' 

> 0 else true] and 
> 0 else true] and 

> 0 else true] 

[if (xq+l = l-\) *(yq+1 

[if (yq+1 = w - 1 ) A ( Z 9 + 

[if (zq+l = n-\) A (x q + I 

H Sq+1 houses all the colour rules 11 

if celltype(q+\)< 3 
r.Sq+i <- Sq+1 U case celltype(q+\) in 

(= D(0(<7)} 
( = 2 ) ( 0 ( ^ + 1 - / ) } 
( = 3 ) { 0 f a + l - / m ) } 

if celltype(q+\) < 6 
<r, 5, t) +- case celltype(q + 1) in 

(=4)<0fa) , 0 ( 9 - 0 , 0(9+1 - 0 > 
(= 5) <0fa), 4>{q-lm), <f>(q+\-lm)) 
(= 6) <0(9 + 1 ~ / ) , 0(9 + 1 " lm -1), 0(9+ 1 

then^ 

else 

then 

else 

9 + < - l 

for cESq 

q + ^ \ 

-lm)) 
if (r = O v ( r # 5) then 5,+j • 

[if (r =£ 0 A (5^= r) then Sq+l 

°q+l U{r} 
U{r} 

<r, 5, f, r', /', 9') «- <0(9)s 0(9 " 0 , 0(9+ 1 ~ 0 , 0(9+ 1" 

if ( / •= / )> 
if (r*t)< 

ir = 9') 
(r * q) 

Im), (j)(q-lm), 
0 ( 9 + l - / m - / ) > 

' [(/• * 5) A (r * /•') A (f # 4')] then S,+ 1 «- Sq+1 U {r} 
> {(r = ?') v [(5 # 0 A (r =£ t')]} then 51.. U { / } 

[if (r * 0 A (r gfc <?') A (/ gfc <jf') A fa' # r ' ) A fa' # /') then 5 , + 1 «- 5,+, U { '̂} 

do 
f0fa) *- c 
13-RECTANGULATION 

Algor i thm 3 . 
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f backtrack f 
if nonalignment desired 

[H Bq, Vq, and Uq are defined in TAGRULE U 

then J f o r O - , w ) e ^ d o j / j S " . ^ * , 

for <fr, 0 2 , (/, w)> 6 Fg do /a 0 , ) «- & 
[for (/, w) G C/9 do /\V(i + <- 1 

return 
ĵ invoking main routine H 

equivalence class «- 0 
0(<7 «- 1) <- /x «- 1 
3-RECTANGULATION 
H equivalence class contains the number of 3-rectangulations % 

Algorithm 3 (continued). 

introduced in the grid plane W = wq. Uq also contains elements of the form (/, w), 
but in this case these elements signify that at level q two maximal planes in W = wq 

have been combined to form a single plane and consequently jw has been decremented 
by unity. Vq contains elements of the form <j31? |32, (/', w)>, which denote the fact 
that at level q the tag function has been modified; that is, jaw (/3X) is mapped to j32 

before the tagging rule is applied. At each level q the sets Bq, Uq, and Vq are initially 
set equal to 0 . The procedure is Boolean-valued in that it returns a value of true if 
the grid planes are nonaligned—that is, contain exactly one maximal plane. (This 
condition is tested for only when q is the last face of a grid plane.) 

Algorithm 3 gives the colouring grammars as a recursive backtrack procedure. There 
are two colouring steps in each stage q of the recursion. The first step describes the 
rules and conditions for assigning a 'new' colour to cell q. The second step describes 
the rules and conditions for assigning the 'same' colours as one of its neighbours to cell q. 
The rules are stored in a stack denoted by Sq. The procedure is a unification of the 
colouring grammars in that all possible combinations of trivalent, nonaligned, and 
general proper standard [p, 3]-rectangulations, for p fixed, on the given (/, m, n) unit 
grid may be generated. 

The enumeration algorithm presented here is efficient in the following sense: 
(1) each 3-rectangulation is uniquely constructed in a time step of 0[f(p)] , where f(p) 

is a polynomial in p; 
(2) 'isomorph rejection'—that is, determining whether the rectangulation is canonical— 

is time-bounded by 0[g(p)], where g(p) is a polynomial in p; 
(3) the algorithm has a storage bound of 0[h(p)] , where h(p) is a polynomial in p. 

The algorithm was implemented in ALGOL68C and run on the Cambridge Computer 
Laboratory's IBM370/165. The results of the enumeration for values of p up to 8 
are given in the appendix. The program also enumerates the improper 3-rectangulations 
and thus provides further corroboration of the results in Bloch and Krishnamurti (1978). 
Earl's (1978) proposition that an [l + m + n — 2, 3]-rectangulation is standard if and 
only if it is trivalent, nonaligned, and its graph contains no subgraphs isomorphic to 
the graph in figure 2 was computationally verified for values of p up to 8. 

cf-rectangulations 
The colouring method developed in the preceding sections may be extended to 
enumerate assemblies of ^-dimensional boxes into a ^-dimensional box, d > 4. 

A d-rectangulation is an arrangement of an (/1? l2,..., la) unit grid into nonoverlapping 
d-rectangles whose {d— l)-faces He on the grid (d- l)-planes. These faces are combined 
to form maximal (d-l)-planes, which are higher-dimensional analogues of maximal 
planes. A <2-rectangulation is proper if lt > 2 for all i\ standard if each grid hyperplane 
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contains at least one maximal (d- l)-plane; and nonaligned if each grid hyperplane 
contains at most one maximal (d- l)-plane. Let a cross section be a hyperplanar 
segment parallel to one of the grid hyperplanes and which does not contain any 
maximal (d- l)-planes. A d-rectangulation is trivalent if each of its cross sections is a 
trivalent {d- l)-rectangulation. A [p, d]-rectangulation is a d-rectangulation with 
content p\ that is, the number of component d-rectangulations is p. 

Two (i-rectangulations are equivalent if they are identical after a sequence of 'right-
handed' rotations or reflections. From symmetry considerations it may be assumed 
that /j > l2 > ... > Id- Consequently two (i-rectangulations are equivalent if they 
may be transformed into one another by a transformation that leaves the unit grid 
invariant in space. The group of rotations that leave the unit grid invariant in space 
is isomorphic to an even subgroup of Od, the orthogonal group of rotations of a 
(i-cube. Littlewood (1931) describes the generators of Od, and Krishnamurti and Roe 
(1979) present a method for representing the elements of Od as coordinate-coordinate 
mappings. 

The grid cells may be associated with integer coordinates (x1, x2, ..., xd) E XZ£ 

Each grid cell %q = (xq>xq> — >*£) may be uniquely labelled—called its T-number— 
by the mapping 

rcx,) = i + l ( n h, 

where 7 0 is assumed to be 1. Each Xq may be assigned a coordinate word 
% = *Pq^l — ^Pq radix 2, where \pq = 1 if xq > 0 and \\jq = 0 otherwise. Xi//^ is 

referred to as the weight, coq, of the word "$?q. There are f, J distinct words of 

weight k, each corresponding to a distinct cell type. Let A(q) = \ IT lt: \pq = 1 | 

denote the adjacency set of cell q. A{q) may be described by the ordered set 
&q = (Si, £2?..., ?OJ9>, where %( < £;- whenever / < /, and ^ E A(q) for all /. Eq has 
the following interpretation: if % E Zq then q— % is the T-number of an adjacent 
neighbour of q. Aq contains the list of all adjacent neighbours of q with lower 
r-numbers. 

A (i-rectangulation R may be represented by its 0-colouring, 

0(/*)= (0(1), 0(2), ..., 0 (n'«) 
defined in the usual manner. R is canonical—that is, the representative of its 
equivalence class under T, the group that leaves the unit grid invariant in space—if 
and only if 0CR) < L 0(ri?) for all r E T. 

The basic enumeration problem is to determine all proper standard nonequivalent 
[p, (i]-rectangulations, for p fixed. The enumeration may be described by the following 
recursive procedure. Construct all possible colourings <0(1), 0(2), ..., 0(#)> from the 
current colouring (0(1), 0(2),..., (j)(q- 1)> until q = FI/,-. Each stage of the recursion 

colours cell q. The colour rules may be of two kinds: rules that colour q differently 
from the previous q -1 cells and rules that colour q the same as one or more of the 
q — 1 cells. Clearly in the latter case q must be coloured the same as one of its 
neighbouring adjacent cells. 

Consider any stage of the recursion. Let it be q. Furthermore let the cells be 
coloured in order of their increasing r-numbers. Let ojq be the weight of ^q. Then 
there are ojq 4-1 possible colouring rules that apply. In general the colouring grammar 

for d-rectangulations may be described by .Z (/+1) = ( ~ j colouring rules, with 

k+ 1 rules for cells with weight k. Let Aq represent the adjacency set for q. 
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Rule 1: q is coloured differently from the previous q-\ cells 
Let ix be the maximum number of colours used so far. Clearly q may be assigned a 
new colour provided p > ju. Moreover q may be assigned a new colour provided the 
neighbourhood of colours around q does not force q to be coloured the same as one 
of its adjacent cells. Consider the set of predicates {i5}}, each of which is defined as 
follows: 

Ft = H Mq~ fe) # 0 f a - £/)] , for all i < co< . 
/ > i 

Also define 

Then g is given a new colour provided F holds: <j>{q) <- (/x + <- 1) if F is true. 
Suppose trivalent d-rectangulations are desired. In this case additional predicates 

have to be described. Let 

Qij = [007- fc) = <Kq-Zi - £/)] , ^y = 2,y U Q^ , 

Pi = P i î y , P = Pi P, • 
/ > i i < co. 

The satisfaction of P ensures that in each plane containing q, q — £,-, q — £;-, and 
q— %i~ £y, %u %j E S 9 , four colours do not meet at a point, which would violate the 
trivalency requirement. Hence for trivalent d-rectangulations q may be coloured by a 
new colour provided P holds (in addition to F). 

Rule 2: q is coloured the same as one of its adjacent neighbours 
In this case q has a choice of ojq colours corresponding to the ooq neighbours in Aq. 
There are two cases to consider. 
Case 2.1: F does not hold. That is, there are at least two neighbours q~%\ and 
q — £7- such that (j>(q — £,•) = <j>(q— £/). In this case q must be coloured the same as 
these two cells. 
Case 2.2: F holds. In this case q may be coloured the same as (f>(q - £,-) provided 
q — %i does not have the same colour as one of its neighbours in the plane containing q. 
Let G{ = O Qif, where Q denotes the complement of Q. The colouring rule states: 

q may be assigned the colour cj)(q - £f) provided Gt holds. 
Both cases may be considered only if there is a sufficient number of grid cells 
remaining to ensure that eventually p colours are used. That is, rule 2 applies 
provided n/ f -q> p-yt. 

i 

For the <i-rectangulations to be standard the last cell q on any grid hyperplane 
must be coloured in such a way that there is at least one (d -1 )-face in that 
plane. Let {f^x1 } denote the set of grid variables which indicate the absence or 
presence of a maximal {d — 1 )-plane in the grid plane Xj = xq. Every application of 
rule 1 introduces a face in the grid planes Xj = xq provided \jjJ

q = 1 in tyq. If 
Xq

 = (7i - 1, h ~ 1> - 5 lj-i~l,xq, J/+i ~ 1 , •••> h ~ 1), then before the application of 
rule 2 it must be ensured that fa ^ > 0. 

Algorithm 4 provides in ALGOL-like notation a translation of these rules for 
generating general and trivalent proper standard [p, <i]-rectangulations, for p fixed, on 
a given (/j, Z2,..., ld) unit grid. Nonaligned d-rectangulation may be obtained by 
defining local tagging rules for the grid faces in a manner similar to that done for 
3-rectangulations. 
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Algorithm d-RECTANGULATION 
11 Routine to generate general and trivalent standard [p,<2]-rectangulations, for p fixed, on the given 

( / i , / 2 , - > W unit grid U 
if q = Uli 

i 
then if CANONICAL (generated d-rectangulation) then equivalence class + <-\ 

11 Compute the predicates F, P, and {Gf; 1 < / < coq}, which are initially set to true; 
c* corresponds to the case when F does not hold, and consequently there are at least two 
neighbours q — & and q — £;- such that the colours of both are equal, in which case q is 
forced to take on the colour of c* U 

for i G < l , 2 , . . . ,w , 

<-0(<7-&) 

1) do 

f o r / G < i + l , . , uq) do 

•<Kq-tr '/ 
ril+-<Kq-it-il) 
i f P t h e n P ^ - f r , = rf/) v ( ^ = r,) 
if F then if not (F «- r, =£ ry) then c* +- rt 

if Gz- then Gt «- rt =£ rif 

if Gj then Gy <- rf ¥= rtj 

H <7 is assigned a new colour if possible H 
if p > M and F and (if trivalency required then P else true) 

' for / G <1, 2, ...,</> do if tfq = 1 then / / , ^ + <-l 

then<! d-RECTANGULATION 

for i G <1, 2, ...,d) do if ^ = 1 then fUx>q - « - l 
H # is assigned the same colour as one of its neighbours if possible U 
if n/,- - q> p- ii 

11 test if the d-rectangulation is standard H 
if coq =£ d 
then true 

if Yllf = q 

then H O ; y > 0) 

rif there exists a / such that x j < /y— 1 and, for all / ¥= /, x'q 

else < then fjtXi > Q 
I else true 

H stacA: contains the colour rules; and is initially empty; 
<= denotes a 'push' into stack; 
=> denotes a 'pop' from stack H 

if not F 
then stac/c <= c* 
else for / G (1, 2,. . . , oo^) do if G, then stack <= 0 ( # - £,) 

<4>(q) <- [sfacfc => 0(^)1 

then< 

if < 

else It" I 

then 

while stacA: is not empty do 1 d-RECTANGUL ATION 

q-<~l 
return 
H invoking routine H 
equivalence class «- 0 
(j>(q +• 1)<- M « " 1 
tf-RECTANGULATION 

Algorithm 4. 
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APPENDIX 

Table Al. The breakdown of standard 3-rectangulations, for contents up to and including p = 8, 
according to their unit grids. 

p Unit grid Number of 3-rectangulations 

general nonaligned trivalent fundamental 

improper 
(2,2,2) 
(3,2,2) 
all 

improper 
(2,2,2) 
(3,2,2) 
(4,2,2) 
(3,3,2) 
all 

improper 
(2,2,2) 
(3,2,2) 
(4,2,2) 
(5,2,2) 
(3,3,2) 
(4,3,2) 
(3,3,3) 
all 

improper 
(2,2,2) 
(3,2,2) 
(4,2,2) 
(5,2,2) 
(6,2,2) 
(3,3,2) 
(4,3,2) 
(5,3,2) 
(4,4,2) 
(3,3,3) 
(4,3,3) 
all 

24 
5 
22 
51 

126 
4 
70 
79 
159 
438 

815 
1 

118 
424 
276 
931 

1844 
548 

4957 

6465 
1 

123 
1194 
2211 
900 
3102 
17066 
9740 
8241 
5709 
13680 
68432 

23 
5 
22 
50 

119 
4 
38 
79 
159 
399 

735 
1 

72 
376 
276 
810 
1844 
548 

4662 

5527 
1 

114 
1032 
1907 
900 
2580 
14295 
9740 
8241 
4780 
13680 
62797 

22 
2 
22 
46 

108 
0 
27 
79 
159 
373 

668 
0 
12 
177 
276 
411 
1844 
548 

3936 

5026 
0 
0 

148 
924 
900 
449 
7934 
9740 
8241 
2621 
13680 
49663 

21 
2 
22 
45 

101 
0 
21 
79 
159 
360 

591 
0 
8 

129 
276 
290 
1844 
548 

3686 

4168 
0 
0 
84 
620 
900 
244 
5163 
9740 
8241 
1692 
13680 
44532 

p © 1979 a Pion publication printed in Great Britain 




