
Environment and Planning B, 1979, volume 6, pages 191 -260

On the generation and enumeration of tessellation designs

R Krishnamurti
Centre for Configurational Studies, The Open University, Milton Keynes MK7 6AA, England

P H O'N Roe
Department of Systems Design, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Received 11 May 1979

Abstract. Tessellation designs composed from tiles in periodic space fillings are considered. An
efficient algorithmic theory for the generation and enumeration of nonequivalent designs is
developed. It is shown that each design has a graphical representation as a labelled subgraph of
some graph whose vertices have associated integral coordinates. Detecting isomorphisms between
designs then reduces to determining permutations of the labels of the vertices of this graph and may
be performed in linear time. A proof of correctness for the algorithmic theory is provided. Nine
specific algorithms for various families of designs from the archimedean tessellations are presented.

Introduction
In recent years there has been striking evidence of the vital role played by certain
types of combinatorial configurations in the representation of various systems.
Indeed many problems in design and elsewhere are formulated in terms of spatial
structures which are subject to topological and geometrical constraints. For instance,
architectural plans have been represented as trivalent plane maps which have prescribed
geometric realizations (March and Earl, 1977). Other examples include such diverse
topics as bracing structures and adaptability patterns in buildings, both of which are
related to bipartite graphs without isolated vertices (Bolker and Crapo, 1977; Harary
et al, 1978); Palladian schemes are seen as line designs on an underlying grid structure
(Stiny and Mitchell, 1978); biological cell morphogenesis has been modelled as a
recursive aggregation of simple polygonal forms on two-dimensional lattices (Eden,
1958; 1960); the groupings called 'clusters' of sites and bonds from crystal lattices
describe the high- and low-temperature constants of Ising models in statistical
mechanics (Sykes et al, 1972a; 1972b; Martin, 1974; Martin and Watts, 1971); and
crystal properties are intimately related to the topology of polyhedral configurations
embedded in periodic two- and three-dimensional nets (Wells, 1977). This list is by
no means complete. But it does serve to emphasize the following point: in each of
these examples the typical combinatorial property sought is—how many distinct
configurations are there of a given kind?

The usual method in tackling such problems is to determine a formula such as a
recurrence relation, a generating polynomial, or sometimes even a constructive
procedure. Unfortunately in many instances the counting problem for spatial
configurations is of such difficulty that no general analytical procedure has been
devised (Harary and Palmer, 1973, chapter 10). In fact for the problems considered
in this paper the question of determining counting polynomials remains open. Our
only recourse therefore is to resort to computer methods.

Access to computers creates its own special problems, which almost all enumeration
algorithms encounter. There are two main sources of difficulty. The first is due to
combinatorial explosion—namely, the number of distinct configurations increases
exponentially or worse with the order of the configurations. Computationally there
is no way of avoiding this. The second arises from the fact that spatial configurations

192 R Krishnamurti, P H O'N Roe

often correspond to one another through a set of spatial transformations. Two such
spatially related configurations—referred to as isomorphs—cannot be regarded as
distinct objects. They are instead two separate spatial manifestations of the same object.
Consequently the elimination of isomorphic duplicates, termed isomorph rejection, is
a matter that requires careful consideration. The importance of isomorph rejection in
constructive enumeration is due to the fact that perhaps every possible permutation
of the orientation in the space of the elements in the configurations may have to
be examined. [The interested reader is referred to Corneil and Mathon (1978),
Read (1978), Fillmore and Williamson (1974), and Williamson (1973) for an expose
of isomorph rejection for various species of combinatorial configurations.] The
combined effect of these two difficulties is perhaps best captured by the following
quote (Golomb and Baumert, 1965, page 524): "... most combinatorial problems
grow to such an extent that there is at most one additional case beyond hand
computation that can be handled by our present day high speed digital computer".
Clearly in order to utilize the tremendous speed of digital computers the design of
efficient enumeration algorithms is of paramount importance.

The efficiency of an algorithm is measured in terms of the total number of
computational steps required and the amount of storage needed to house all the
relevant information. These two quantities, referred to as the time complexity and
space complexity respectively (Aho et al, 1974, pages 12-14), are expressed as order
functionals, 0[t(p)] and 0[s(p)], where t(p) and s(p) are expressions in p, the
problem size. An algorithm is generally deemed efficient if t(p) is algebraic in p.
For constructive enumeration algorithms we may adopt the definition that such an
algorithm is efficient if and only if the following conditions are satisfied, where p
denotes the problem size—in our case the order of the configurations.

Condition 1: Every configuration is uniquely generated in a time step bounded by a
polynomial in p.

Condition 2: Isomorph rejection is performed in a time step bounded by a polynomial
in p.

Condition 3: Storage required is bounded by a polynomial in p.

It is instructive to reflect upon these conditions. They are not necessarily
independent or exclusive. Often it is the case that conditions 1 and 2 imply
condition 3. Nevertheless it is worthwhile to include it separately. Furthermore
conditions 1 and 2 are related by the fact that if condition 2 is satisfied then there
must exist a 'coding mechanism' which allocates distinct codes to each isomorph of
an object, which in turn influences the lexicographical order in which the objects are
generated, and consequently reduces the size of the search tree (this is explained in
section 3). Thus if we can satisfy condition 2 condition 1 follows more easily.

Let Np denote the number of distinct configurations of order p. Then an
efficient algorithm has time and space complexities of orders 0[t(p)Np] and 0[s(p)]
respectively, where t{p) and s(p) are polynomials in p. An efficient algorithm is a good
characterization of a family of combinatorial configurations (Edmonds, 1965).

The main goal of this paper is to present a general algorithmic framework for
constructing families of spatial patterns that are based on periodic tessellations.
The theory developed is applied to design efficient algorithms for patterns on the
archimedean tessellations. The paper consists of two basic parts. The first part,
comprising sections 1 through 5, introduces the relevant terms and presents the
computational theory. The second part, formed by sections 6 through 13, describes
the algorithms for the illustrative examples, starting with the patterns constructed on

On the generation and enumeration of tessellation designs 193

the regular tessellations and followed by five classes of patterns on the semiregular
tessellations.

Note: All algorithms in this paper assume the standard model of computation,
namely a random access machine with a sufficiently large but finite memory and a
limited instruction set (Aho et al, 1974; Horowitz and Sahni, 1976; Reingold et al,
1977). The algorithmic notation is adopted from Reingold et al (1977) and complexity
is based on uniform cost. The graph theory terminology corresponds to Harary (1969)
and Bondy and Murty (1976). Every effort has been made to keep the presentation
simple yet mathematically precise.

1 Tessellations
A plane tessellation is a collection of objects called tiles or cells that cover the plane
without gaps or overlap. A tessellation is also known in the literature as a tiling,
paving, or mosaic. A pair of adjacent tiles share a common edge, and a collection of
tiles meet at a point. Figure 1 presents examples of plane tessellations. In a similar
fashion the solid and hypersolid tessellations covering A-space, n > 3, may be defined.
For the sake of visual simplicity we restrict the discussion mainly to the planar case
and merely state that the relevant theory developed herein also applies to the higher-
dimensional situation.

Graphically a plane tessellation may be regarded as a planar map with locally finite
vertices. Consequently the combinatorial dual map represents a dual tessellation. It
is important not to confuse a tessellation with its map since the former is a geometric
realization of the latter. Each map may have several distinct realizations, each with
distinct symmetry properties. Figure 2 shows a pair of dual maps with some
representative geometric tessellations. Hence it is the geometry of the tiles superimposed
on an underlying topology that essentially characterizes the tessellation.

Figure 1.

194 R Krishnamurti, P H O'N Roe

A tessellation is archimedean if (1) every tile is a regular polygon (or polyhedron)
and (2) the tiles meet at each point in the same cyclic order. There are eleven plane
archimedean tessellations, and these are shown in figure 3. Observe that figures 3(a),
3(b), and 3(c) each consist of exactly one type of tile, namely the square, hexagon,
and triangle respectively. These three are the regular tessellations, and the remaining
eight are referred to as the semiregular tessellations. Since the polygons meet at
every point in the same cyclic order, the archimedean tessellations may be conveniently
designated by the ordered list of numbers (n1.n2. ...>, where nt is the number of sides

Figure 2.

On the generation and enumeration of tessellation designs 195

of the z'th polygon in the list around the cycle starting with the T^-gon. Often this is
abbreviated to the form (g^.g* • —) *n the obvious way. The geometric dual tessellations
are the Laves nets shown in figure 4. The nets are tagged by the same symbols that

Figure 3.

196 R Krishnamurti, P H O'N Roe

identify the corresponding archimedean tessellations.
The only solid and hypersolid tessellations that are archimedean are the space

coverings by the w-cube, n > 3; hence they are also regular.

(4.4.4.4)
(a)

(3.3.3.4.4)
(d)

(3.3.3.3.3.3)
(c)

^

u
(3.6.3.6)

(g)
(3.3.3.3.6)

(h)
(3.12.12)

(0

Figure 4.

(3.4.6.4)
(k)

On the generation and enumeration of tessellation designs 197

2 Tessellation designs
A design on a tessellation is a finite configuration, composed of tiles of the tessellation,
which can be embedded in the tessellation. Of the possible designs the most interesting
class is the family of connected designs. A design is connected if every tile is adjacent to
at least one other tile in a smaller connected design. A single tile is always connected.
A design may be represented pictorially in essentially two ways: either as a two-
colouring of the tessellation in which the tiles in the design are coloured differently,
or as a spatial pattern composed of polygons. The two representations are illustrated
in figure 5.

The designs on the regular tessellations, namely those made up of squares, hexagons,
triangles, and w-cubes, n > 3, are more familiarly known as polyominoes, polyhexes,
polyiamonds, and poly n-cubes respectively. The semiregular designs will be referred
to as (n1.n2....)'Patterns, where (nl.n2....) identifies the tessellation.

The content (or order) of a design is the number of tiles it contains. A connected
design with content p is a p-figuration. (Henceforth the terms design and configuration
will be used interchangeably.) A p-figuration may be recursively defined as follows:
a (p + 1)-figuration results whenever a new tile is adjoined adjacently to a tile in a
p-figuration. A single tile is a 1-figuration. Since configurations are embeddings in a
tessellation, equivalent configurations can be defined in the following manner: two
configurations are equivalent if they are identical embeddings after a combination of
translation, rotation, and reflection. The equivalence classes under translations are
fixed. In addition the equivalence classes of the fixed classes under a sequence of
rotation and reflection are free. Our aim is the enumeration of the nonequivalent
configurations via the counting of the representatives (called canonical configurations)
of the free equivalence classes.

Figure 5.

2.1 Review of the literature
Previous attempts at enumerating the free equivalence classes of the tessellation
designs have been directed towards the regular tessellations. Golomb (1954; 1961a;
1961b; 1961c; 1962; 1965) initiated the study by extensive analysis of polyomino
properties. Kelly (1966) provided an algebraic descriptor for polyominoes and was
able to demonstrate the existence of solutions for certain packing and covering
problems. Eden (1960) and Klarner (1965; 1967; 1969; and with Rivest, 1973)
applied highly rigorous combinatorial arguments to arrive at good upper and lower
bounds for the number of p-ominoes as p approached asymptotically large values.
Let Sp, Hp, and Tp respectively denote the number of p-ominoes, p-hexes, and
p-iamonds. Set S, S, and T to the limits defined by

F = Urn =-*- ,
p -»• oo rp _ i

198 R Krishnamurti, P H O'N Roe

where F stands for S, H, or T as appropriate. It has been shown that F exists in all
three cases and that

3-72 < £ < 4-65 , 4 < i ? < 6 - 7 5 , and 2-13 < T < 4 .

These bounds are currently the best possible known.
Other approaches include Read's (1962) computational scheme to count poly-

ominoes ('animals' as he calls them!) via bounding rectangles. The method is elegant
in that one can obtain the counting polyomials for the p-ominoes in their boundary
rectangle, but suffers from excessive time and space requirements even for small ps.
Parkin et al (1967) and Lunnon (1969; 1971) reported results based on computer-
implemented strategies. Their approach is essentially a restricted type of brute-force
enumeration similar to the choice enumeration developed in this paper. In fact many
of Lunnon's ideas have been freely borrowed.

At around about the same time Sykes and his collaborators (see, for example,
Sykes et al, 1972a; 1972b; 1972c), working in statistical mechanics, employed
computer methods to enumerate the number of distinct p-clusters of sites on various
lattices. A cluster is an analogue of a polyomino and corresponds to a high-temperature
lattice constant. Martin (1974) presents a survey of their computational methods.
After literally hundreds of hours of computing, Sykes and Glen (1976) report on
asymptotical results based on a Pade extrapolation technique (Gaunt and Guttman,
1974) to obtain the limits for S, H, and f, namely

£ = 4-06±0-02 , 77= 5-19±0-03 , and f = 3 - 0 4 ± 0 - 0 2 .

These results seem to match those of Lunnon (1972) who used a logarithmic
extrapolation technique.

Tilley (1970), in his MA thesis, presents efficient and attractive coding schemes
which form the basis for algorithms to enumerate classes of tessellation designs called
filaments (which are topologically equivalent to paths). His coding scheme also
provides a method for defining a recurrence relation for the upper bounds on the
number of filaments which gives results very close to actual counts for small ps.
Lunnon (1975) extends his approach to the higher-dimensional forms and presents
counts for poly n-cubes, 3 < n < 7.

There have been attempts to find the counting polynomial for tessellation designs
directly. Harary and Read (1970) obtained a counting polynomial for tree-like
polyhexes with no 'periconnections'. Palmer (1972) used their approach to lay the
foundations for a graph-enumerative technique by obtaining the counting polynomial
for a variant of the polyomino counting problem. (The variant he considered was a
relaxation of the valency restriction on the points of the square tiles—not necessarily
limited to four—in the configuration.) Later Harary et al (1975), using both
approaches, obtained the counting polynomials for the counting problem for arbitrary
polygonal tiles under this relaxation. The problem of finding counting polynomials
for the tessellation designs remains open.

3 An algorithmic technique
We now review atechnique— backtrack programming—which is the most widely used
search strategy for the constructive enumeration of combinatorial configurations. The
term backtrack programming was first coined by Lehmer in the 1950s (see his survey
article in 1964) and later formalized by Walker (1960) and Golomb and Baumert
(1965), and more recently by Bitner and Reingold (1975). One of the earliest uses
of backtracking was Tarry's (1895) maze-threading algorithm. Briefly backtracking
may be described as a search for a solution (configuration) by continually extending
partial solutions. At each stage of the search, if an extension of the current partial

On the generation and enumeration of tessellation designs 199

solution is not possible the algorithm backtracks to an earlier stage (that is, to a
smaller partial solution) and tries again.

Formally backtracking assumes that a configuration can be expressed as a p-tuple,
(al9 a2,..., ap), where the at are members of linearly ordered lists Af. Each p-tuple
satisfies predetermined constraints. Every configuration therefore is a member of a
subspace of the direct product AP = i j x i 2 x ... x Ap of p selection spaces. For
k < p, let fk stand for the function fk(a1, a2,..., ak) from Ak to {0, 1} such that

/ * = 1 = > / , < * = 1 .

The counting problem is to determine all nonequivalent (a l 5 a2,..., ap) such that
fp = 1. The search procedure is given in ALGOL-like notation in algorithm 1.

The algorithm may be described as follows. Initially choose the null vector (), as
the starting solution. Using the constraints determine which members of. Ax are
candidates for ax\ let this subset be Cx. Choose a least element of Cx as au and now
we have a partial solution, (ax). In general the various constraints determine which
subset Ck of Ak provides possible candidates for the extension of the partial solution
(au a2, ..., tffc-i) to (fll5 a2, ..., ak). They are precisely all as that satisfy ak = a and
fk = 1. If the partial solution admits no possibility for ak then Ck = 0 , so we
backtrack and make a new choice for ak-u ak-2, and so on. It is helpful to picture
this as a tree traversal. The subsets of Ak, k = 0, 1, 2, ..., are represented as a rooted

Algorithm BACKTRACK
f iterative procedure for backtrack programming |̂
Cl<-Al

while k > 0 do
fwhile Ck^ 0 do

f ak+- least element in Ck

\Ck^Ck-{ak}
J if k = p
]] then {aua2, -,ap) is a solution

else P + *"1

Algorithm 1.

root

choices for Cj

choices for ca given ax

choices for a3 given aXi a2

choices for a4 given ax, a2, a3 > . J T X -t

Figure 6.

200 R Krishnamurti, P H O'N Roe

tree as follows. The root of the tree, at the Oth level, is the null vector. Its sons are
nodes representing the choices for a-\. In general at the fcth level the nodes represent
choices for ak given their ancestors a1,a2, ..., cik-i- The search tree assumes the form
shown in figure 6. In this tree the dotted lines indicate the order in which the nodes
are traversed. Since the traversal proceeds as deep as possible before backtracking it
is often referred to as depth-first search (Tarjan, 1972).

A recursive description of backtracking is given in algorithm 2.
The simplicity of depth-first search permits an elegant proof of correctness for the

algorithm. The following results are easily shown.

Lemma 1: The search is finite.

Proof: Since the search tree is finite and every node is traversed exactly once.

Lemma 2: All p-tuples (al,a2, ..., ap) are uniquely generated.

Proof: By induction. Clearly all 1-tuples are uniquely generated. Suppose this is
true for all fc-tuples. All (k+ l)-tuples may be constructed in the following manner.
For each fc-tuple append an ak+1 from the selection space Ak+1. For each pair of
(A:+l)-tuples either they differ in the last place or in the first k places.

An immediate corollary is the following lemma.

Lemma 3: If the sequence (/i,/2> •••> fp) is well-defined then the algorithm is correct,
where by well-defined is meant that

/ * = 1 =* • / /<*= 1 and fk= 0 => fl>k = 0 .

Proof: Obvious.

Remark: One must be careful when applying these lemmas directly to a particular
application. It is possible to apply backtracking strategies to generate unordered
p-tuples that represent configurations. In such cases two distinct ordered versions
may represent identical configurations and not isomorphic variations. However, with
a bit of manipulation in the way the fk are defined, the problem of producing
duplicates may be overcome. This is demonstrated for the tessellation designs.

A few comments on the efficiency of backtracking are in order. The efficiency is
due to the fact that if fk = 0 then f > k = 0, no matter what choices are made for
the remaining p — k components. Clearly the efficiency increases if, for many
solutions (al,a2,..., ap) for which fp = 0, fk = 0 for small values of k.

Another way of increasing the efficiency is to avoid and reject partial isomorphic
solutions. The rejection process employs the fact that the configurations are generated
in lexicographical order. This permits us to merge several branches of the search tree

Algorithm DFS(fc)
51 recursive depth-first search %
if k> p
then (ai, a2,..., ap) is a solution
else

i
for a E Ak do

if faiflu a-i ,....,<*) = 1
f ak*-a

01611 { DFS(fc+l)
return
f invoking routine 51
DFS(l)

Algorithm 2.

On the generation and enumeration of tessellation designs 201

associated with nodes corresponding to partial isomorphic solutions. Again this is
very effective for small values of k as this causes very large subtrees to be eliminated.

Furthermore when searching for solutions it is efficient to arrange the selection
spaces Ak in increasing order of cardinality. It has been observed statistically that
backtracking due to Ck = 0 occurs at fixed levels and such an ordering of the As
results in fewer nodes being searched. For further pruning methods the reader is
referred to Bitner and Reingold (1975).

We conclude this section by noting that backtracking is an algorithmic statement of
the familiar inclusion-exclusion principle in combinatorics.

4 Representation of tessellation designs
4.1 Graphs
The graph of a tessellation is constructed in the following manner. Assign a vertex to
each tile in the tessellation. Join by an edge pairs of vertices corresponding to adjacent
tiles. It is easy to see that in the planar case this graph is the dual map, although in
ft-space, n > 3, it has sometimes been referred to as a dual tessellation. Clearly any
p-figuration corresponds to a connected subgraph on p vertices of the tessellation
graph. For the plane archimedean tessellations the graphs are the Laves nets (figure 4).
The graph contains all the structural information necessary to specify the tessellation.
For instance, in the planar case the degree of a vertex describes its corresponding tile
type; if the degree is ra, the tile is an ra-gon. The length of the smallest cycles in the
graph is the number of tiles that meet at a point. The degree sequence in these cycles
provides the identification tag for the tessellation.

4.2 Coordinate representation
Since the crucial consideration in any spatial algorithm, especially of the kinds
considered in this paper, is the elimination of isomorphs (equivalent configurations), it
follows that an adequate mechanism for coding configurations is essential. Moreover
it would improve the efficiency with respect both to space and time if these codes
were unique and took on integral values (usually in the form of ra-tuples, m < p).
The first step in devising such a code depends upon our ability to assign integral
'coordinates' to the vertices of the tessellation graph. For the square and ft-cube
tessellations these coordinates are relatively simple to obtain. They are in fact simply
the integral Cartesian coordinates. That is, every vertex is assigned coordinates
(x1,x2, ..., xn). The adjacent vertices have coordinates (x l5 x2, ..., Vi, —, xn), where
r\t = xt ± 1 for all possible /.

For the hexagonal and triangular tessellations [figures 3(b) and 3(c)] the problem is
not so straightforward. Instead we need to go through a subterfuge. Consider an
arrangement of cubes in 3-space whose centers have integral coordinates (x,y,z)
satisfying x + y + z = 0. Take a simple 45° isometric projection onto the plane as
shown in figure 7(a). The result is the rhombic tessellation. Simultaneously removing
all trivalent points and their associated edges gives the desired hexagonal tessellation
shown in figure 7(b), in which each tile is associated with integral coordinates (x,y, z)
such that x + y + z = 0 [see figure 7(c), where x denotes —x]. Alternatively Lunnon
(1972) suggests the following construction. Consider a cube with center at the
origin, (0, 0, 0). Pass the plane x + y + z = 0 through this cube, as in figure 7(d).
Extending this construction to the cubic tessellation and taking the projection of this
plane gives the (3.6.3.6) tessellation. Coalescing the triangle in the manner shown in
figure 7(e) by the superimposed dotted hexagon gives the desired hexagon and same
coordinate system as previously obtained, but in a different orientation [figure 7(f)].
The latter orientation will be used in this paper. Also, it is interesting to note that
figures 7(a) and 7(e) are geometric dual tessellations.

202 R Krishnamurti, P H O'N Roe

The coordinates of the adjacent vertices of vertex (x, y, z) are given by the
six-element set

{{x,y± 1, z + 1), (x + 1, y, z ±1), (pc±l,y*l, z)} .

Notice that the hexagons can be coloured in a natural way by use of three colours
according to whether x — y = 0,l,2 mod 3. Now let us obliterate the tiles of a
particular colour by contracting them to a point. The result is the triangular tessellation,
shown in figure 8 in one of the three possible combinations of two colours. From
this it is evident that a triangular tessellation corresponds to a hexagonal tessellation
on two colours—that is, the set of polyiamonds is a subset of the set of two-
colourable polyhexes.

(a) (b) (c)

(d) (e) (f)

Figure 7.

Figure 8.

On the generation and enumeration of tessellation designs 203

Each triangular tile is either of type 'IT or of type 'D' depending on whether it
points up or down respectively. The neighbours of vertex (x, y, z) are given by

'D': {(* , j / - l ,z+l) , (x+l,y,z-l)A*-hy+hz)}

'IT: {x,y + l,z-l),(x-l9y,z+l)Ax+l9y-l,z)}.

For convenience a triangular tessellation will be regarded as a hexagonal tessellation
with forbidden 'tiles'.

The integral coordinates for the semiregular patterns are taken up in the examples.

4.3 Bounding regions
The bounding region for a p-figuration is a smallest region that encloses it. The
region is chosen so that it possesses certain symmetry properties that facilitate
computation. For instance, every polyomino can be encased within a rectangle, every
poly hex inside a hexagon, and every poly ft-cube inside an n-rectangle (see figure 9).
Clearly the outline of a tessellation design is the smallest polygon. However, from a
computational viewpoint the bounding region is so chosen that it enables certain
properties to be conveniently extracted, such as symmetry transformations and the
coding of configurations. This is probably better illustrated when considering the
specific examples.

Every p-figuration must touch all sides of its bounding region; for example, the
defining lines of the rectangle or hexagon and the defining faces of an n-rectangle. In
other words, a p-figuration spans its bounding region. Furthermore it can be shown
that, under the given conditions, every p-figuration has a unique bounding region. An
added bonus from considering bounding regions is that, for any p, the set of bounding
regions is finite and can be calculated fairly easily.

A bounding region may also be regarded as an ra-figuration, m> p, which contains
as subconfigurations its spanning p-figurations. The graph of the bounding region,
referred to as a trellis, is a subgraph of the tessellation graph. A p-figuration corresponds
to a connected spanning subgraph on p vertices of its trellis.

rn prn

i

Figure 9.

4.4 Symmetry transformations
A symmetry transformation is a spatial operation that maps a configuration either
onto itself or onto an isomorph. These transformations form a group which is usually
the symmetry group of the dominating tile type. For the square tessellation, the
symmetry group is the dihedral group D4; for the hexagonal tessellation it is the
group D6; and for the rc-cube tessellation it is the orthogonal group of rotations On.

Since each configuration has a unique bounding region, we need only consider the
symmetry transformations that leave the bounding region invariant—usually these are
small-order subgroups of the group of symmetries of the dominating tessellation tile.

204 R Krishnamurti, P H O'N Roe

Since the tiles have integral coordinates, the symmetry transformations reduce to
coordinate-coordinate mappings. This can be improved upon. If we label the vertices
of the trellis then a symmetry transformation is simply a permutation of the labels.

4.5 Coding of configurations
We can associate with every trellis a word which is a polynomial of the form

where m is the number of vertices in the trellis and xt is a formal mark representing
vertex vt. Since a p-figuration is a subgraph of its trellis, it has associated with it a
word of the form

P l * l + P 2 * 2 + ." + Pm*m ,

where p,- G Z2 = {0, 1} for all possible /; pt. = 1 if and only if vertex vt is in the
graph of the configuration. Clearly for a p-figuration Zpz- = p. This gives a unique

code for the configuration within its trellis. Let r denote a permutation of the
vertices onto themselves. Then an isomorphic configuration has the word

P I * T (1) + P 2 * T (2) + - +PmXT(m) ,

or equivalently

P T _ 1 (1) * 1 + PT~1(2)X2 + ••• + Pr-X{m)xm >

where r _ 1 is the inverse mapping, r is an element of Tt, the group of symmetries
that leave the trellis t invariant.

Since the polynomial is linear in Z2 , we can represent it as a binary number. Hence
every p-figuration corresponds to a pair (t, b), where t identifies the trellis and b is
the binary representation of the configuration word {b = pxp2 ... pm radix 2).

A canonical code for the representative of each free equivalence class of
configurations may now be derived. Since a bounding region may be placed any where
in the space under consideration, we need to fix the orientation of the bounding
regions. We do this by defining an order relation on the defining lines of the region.
This has the effect that no two bounding regions for p-figurations, with p fixed,
correspond to one another through a combination of rotations and reflections. Let Tt

be the group of symmetry transformations that leave the bounding region t invariant
in the space. Consider a configuration b. Let r(b) represent the transformed
configuration under r, where r G Tt. Define the sets Tt' and Tt" as follows:

Tt = {r G Tt: r(b) spans t) ,

Tt" = {r G Tt: r(b) spans a smaller bounding region} .

Let ^ be an order relation defined on binary numbers. Then a configuration b is the
representative of a free equivalence class of configurations if and only if (1) T" = 0
and (2) b ^ r{b) for all r G Tt'. Here we have (without ambiguity) allowed r(b) to
represent the binary number of the transformed configuration. Any configuration
that satisfies these two conditions is called the canonical configuration of its free
equivalence class and b is the canonical code. In general Tt" = 0 and Tt' = Tt. In
the examples considered the only configurations for which this does not hold are the
<3.3.3.4.4) patterns.

Often b is unwieldy to use directly in moderately sized computers in the manner
presented here. Instead we split it into smaller numbers. The code for a configuration
becomes a prefixed fc-tuple of the form (t; bl9b2, ..., bk). Usually the prefix t is
dropped from the code when the trellis under consideration is unambiguously known.

On the generation and enumeration of tessellation designs 205

5 Computational details
5.1 A graph problem
The following problem plays an important role in generating the archimedean patterns
with respect to their bounding regions. Suppose we are given a graph G = (V,E),
where V is the set of vertices of the graph and E the set of edges, and a finite collection
of subsets of the vertices, S* = {SUS2,...}, where Sg Q V for all S{ G S\ We are
required to find:
(a) a connected labelled subgraph P = (VP,EP), with \VP\ = p < \V\, such that

Vp n S =£ 0 for all S G S*; and
(b) all possible connected labelled subgraphs that satisfy (a).

5.1.1 Distance measures on graphs. Let 2V denote the power set (the set of all
subsets) of V and let Z denote the integers. Then define the distance measure
d: 2V x2v ->Z by

d(u, v) = the length of the shortest path between vertices u and v;

d(S, v) = the length of the shortest path between set S and vertex v

= min{d(u, v): u G S} .

Let 4- be an operation on sets such that

d(S+ T, v) = the length of the shortest tree linking vertex v and sets S and T.

That is, + joins S and T via a shortest tree through vertex v. Clearly we have
d(S+ T, v) < d(S, v) + d(T, v), with equality if and only if v joins sets S and T by a
pair of edge-disjoint paths.

The distance measure may be extended to subgraphs. Suppose G' = (V, E') is a
connected subgraph of G = (V, E). Let d(Gr,v) and d{G\ S) denote the distances
d(V\ v) and d(V\ S), where

d(V\ S) = the length of the shortest path between a vertex in V' and a vertex in S

= mm{d(S, v): v G V'} .

The measure d(G', S+T) may be similarly defined. Again clearly we have
d(G', S+T) < d(G\ S) +d(G\ T), with equality if and only if G' is connected to
sets S and T by edge-disjoint shortest paths.

If G' is the required graph P satisfying problem 5.1(a) then (1) d(P, S) — 0 for all
S G S* and (2) d(P, ±S) = 0, where ±S = Sx 4- S2 + S3 4-..., summed over all % G S*.

Furthermore if G' = (V',E') and G" = (V",E") are two graphs satisfying

V = V" U {v} and E' = E" U {(u, x) G E: x G V"}

then the following recurrence relations must hold:

d(G\ z) = min{d(G", z), d(v, z)} , for all z G K ,

d(G', 5) = min{d(G", 5), d(5, i;)}, for all S G S* ,

d(G\ S+ T) = mm{d(G'\ S+ T\ d(G", S) + d(T, v), d(G", T) + d(S, v), d(S+ T,v)} .

These formulae give the requisite background for developing a backtracking strategy
to find the required graphs.

5.2 Description of the algorithm
The main idea is recursively to construct a connected partial graph Gq on q vertices
from a connected partial graph Gq-l on q — 1 vertices until q = p.

206 R Krishnamurti, P H O'N Roe

Let v1,v2, ..., vq-x denote the vertices chosen in that order to generate the sequence
of graphs Gl9 G2, ..., Gq^x. The qth vertex, vq, is chosen from the list of 'available'
and/or 'free' vertices (explained at the end of this section), each of which must be
adjacent to some vertex in Gq-X. This ensures the connectedness of the partial graph Gq.

To ensure that eventually Gp is the required subgraph P, it must be assured that

d(Gq,iS)<p-q .

In other words, the total length of the shortest forest from Gq to the sets in S* must
not exceed the number of additional vertices required to complete the construction
from Gq to Gp = P.

Suppose there is a graph Gq but no vertex vq+1 that satisfies these conditions. The
search backtracks to vq-x, 'forbids' the current vertex chosen as vq, and the search
restarted with a new possible candidate for vq. When all possible choices for vq have
been exhausted, the search backtracks from search level q -1 to search level q - 2,
releasing all vertices forbidden for level q. The most recent candidate for vq-X is
forbidden. A hew candidate for vq-x is chosen and the search proceeds until either a
graph Gp = P is found or eventually the search backtracks to the initial vertex. The
initial vertices are chosen from the elements of a subset, say 5 l 5 in S*.

Notice any vertex chosen as vr is forbidden whenever all possible candidates for
vr+i have been exhausted. Consequently any vertex u in V chosen as vr can never be
chosen as vq,q > r. Furthermore any vertex that does not satisfy the distance
condition at search level r cannot possibly satisfy it at search level q,q > r; hence it
may also be forbidden from further consideration. Suppose this were not so. Then
at some level r

d(Gr,tS)> p-r

and at level r+ 1

d(Gr+1,±S)<p-r-l .

Clearly the shortest forest must contain a path from vr+1 to the sets in S*. Since vr+1

is adjacent to a vertex in Gr, d(Gr, tS) = d(G r+1, i>£)+1, which implies that
d(Gr, SS) < p — r, a contradiction. Whence the following result holds.

Lemma 4: d(Gr, tS) > p-r =* d{Gq > r, tS) > p-q .

The vertices of the graph by this search procedure are always forbidden at the
earliest possible level. Suppose u and v are vertices that are in the same choice s e t -
that is, are possible candidates for vq for some q. Let the algorithm choose vq = u
and vr > q = v. By the forbidding mechanism, whenever vq = v there is no r > q
such that vr = u. Since this is always true for every pair of vertices in every choice
set at every level q, and from the fact that every connected graph can be built from
a smaller connected graph, the following lemma holds.

Lemma 5: Every subgraph is uniquely generated by the algorithm.

L e t ^ be a Boolean function defined as follows:

fq = 1 if and only if Gq is connected and d(Gq, tS) < p-q .

Immediately as a corollary of lemma 4 we have the following.

Lemma 6: The sequence of functions (/ i ,^ , . . .) is well-defined—that is,

fi=l ** /*<i = 1 and fi= 0 => fk>l = 0 .

Lemmas 3, 4, 5, and 6 result in the following theorem.

On the generation and enumeration of tessellation designs 207

Theorem 1: The algorithm is correct and generates every configuration exactly once.

A vertex is 'available' if it is not currently in Gq but is adjacent to some vertex
(=£ vq) in Gq. When it is adjacent to vq and no other vertex in Gq it is 'free'.

5.3 Data structure
In order to implement the search scheme described in section 5.2, the use of an
efficient data structure is necessary.

The graph is represented by a set of adjacency lists, one for each vertex in the
graph. The adjacency list for a vertex v is a linked list containing all vertices adjacent
to it, listed in random order, and is denoted by A(v). The adjacency structure for a
graph comprises all its adjacency lists and is represented by two arrays, link and
head, as shown in figure 10. The order of the vertices in these arrays is again
random. Adjacency lists involve only memory fetches for finding a neighbour and
operate in 0(1) time per neighbour. The adjacency structure requires 0(\E |) space to
store the graph.

A(v)

1:

2:

3:

4*

5:

6:

7:

8:

2

6

1

3

7

1

8

3

*

*
* •

*

*

*

*

3

7

4

1

8

7

6

5

*"

*

*

*

*

*

4

1

8

2

3

2

5

_7_j

*

6

4

5

5

4

8

2

6

link 1
2
3
4
5
6
7

head

8
2
3
6
1
3
3
8
7
2
4

__L.
7
6
7
1
4
8
2
8
1
5
6
5_ j
5
3
7
2
6

±
5
4
8

H-

H

1-

1-

H

H
H
h-

^

—J

**—J

•

*—'
^ I

Figure 10.

208 R Krishnamurti, P H O'N Roe

21

16

11

22 23 14

17

Y 12

1 ' 7

13

18

8

19 \ j

14 1

9 ^4

25

20

15

10

• vertex in partial graph

A vertex currently forbidden

o vertex currently available

(a)

20

24

(b)

*

Bn
10

*5

B6

—*

14

19

18
Z

s-

13 —. .

B<
8

12

B,

v indicates vertex v
currently forbidden

LS[u) n in n Inn nn h h u = vq 0 1 6 7 2 12 8 13 9 3 18 19 14 15 10 5 24 20

(c)

3 4 7 5

Figure 11.

On the generation and enumeration of tesselation designs 209

A picture of the current description of the vertices is stored in an array, picture,
which takes on values

1 0 if i; is free,
- 1 if v is forbidden,
+ 1 if v is available.

The current subgraph, Gq say, is represented by an array, vertex, where

vertex[q] = the vertex in Gq chosen as the vertex to construct Gq from Gq-X.

Once the subset vertex[\, ..., q] is given, the edge set Eq can be easily constructed
from the adjacency structure of G. Figure 11(a) presents one such Gq.

Since any candidate available at level r is also available as a candidate at level q,
q > r, the list of candidates at level q contain as sublists lists of candidates for each
level r, r < q. Let Cx = {uj G ^ E S*}. Clearly the selection space for vertex v2 is
given by C2 = [Cl U Aiv^]. In general Cq = [Cq-X U A(vq.x)]. Hence

Cp 2 Cp_! 2 Cp-2 2 . . . 2 Cj.

To avoid maintaining duplicate lists, a linked stack is employed. Essentially a
linked stack is a linked list in which each node is a stack. The stacks may be defined
as follows:

B2 = {v G A{vx)\ picture[v] = 0}

Bq = {v G AiVg-i): picture[v] = 0} .

Clearly Cx = Bl9 C2 = Bx U B2, C3 = Bx U B2 U B3, etc, where the Bs are disjoint
sets. Each set Bt resembles a stack and contains a pointer to a stack at a previous
level. This is illustrated in figure 11(b).

This linked stack can be simulated by use of an array LS: if u is an unoccupied
vertex adjacent to some vertex in the current subgraph Gq, LS[u] is the 'next'
candidate for vertex vq. By 'next' is meant next in order of consideration as the
qth vertex. The data structure for the linked stack LS is shown in figure 11(c).

The array LS is manipulated as follows. Suppose u is the current vertex chosen as vq.
We examine the adjacency list of u, A(u), and disregard all vertices which are either
forbidden {picture = —1) or are in LS and are available (picture = +1) and link the
rest to the end of LS and set their picture values to 4-1. The last vertex added to LS
is selected as the (q+ l)th vertex vq+l. Its picture value is set to —1 and the search
proceeds recursively forward. When the search backtracks, all possible G^+1s obtainable
from the current Gq have been explored, and we select the next choice for vq stored
in LS[u] and set its picture value to —1. The process is repeated.

Eventually either a graph Gp = P is found or vq becomes null—that is, all possible
choices for vq have been exhausted. All vertices forbidden at level q are released to
their original description and the search backtracks to the predecessor vertex, vq _ i.

5.4 Algorithms
The algorithms for problems 5.1(a) and 5.1(b) may be housed in the same algorithm.
An ALGOL-like description is provided in algorithm 3. For problem 5.1(a) a halting
condition is introduced after the first instance of Gp = P, indicated by the statement
labelled Al. Certain observations can be made.

First, the procedure constructs all labelled graphs. To find the unlabelled graphs
(those equivalent to the free equivalence class) we need to test whether the graph is
canonical in the manner defined in section 4.5. This is included in statement A2,

210 R Krishnamurti, P H O'N Roe

else

where CANONICAL is a Boolean-valued procedure which returns a true or false value
depending on whether the graph is canonical or not. A crude form of canonical
testing using the word description of a configuration is shown in algorithm 4. This is
improved on as we consider the individual examples.

Algorithm GRAPHfa)
U construct graph Gq+i from current partial graph Gq = (Vq,Eq) %
if q =p

Gp is a desired graph P %
then { Al: if problem 5.1(a) then halt

A2: if CANONICAL(Gp) then Gp is an unlabelled representative of its equivalence class
Bl: ^ navail indicates the number of unforbidden vertices in G %

if navail > p-q
K construct the stack Bq+i;

save and nl are locally declared variables ^
B 2 : . H / < - 0
bot^LS[veitex[q)]
for w GA(vertex[q]) do

if picture [w] = 0
' % link w to bottom of LS;

bot points to current bottom of LS %
then { LS[w]+-bot

bot^w
~picture[w]<-\

5| select the next candidate for vq+l %
save <- bot
while bot i=- null do

then < fB3: navail -<-1
nl+<-l
d(VqU{bot}, iS) < p-q-I

i vertex [q+1]*- bot
D:
GRAPHS 4-1)
E:

bot ^-LS [bot]
% restore all picture values to their original description f
while save =£ LS [vertex [q]] do

f picture [save] +- 0
\ save <-LS [save]

B4: navail+ <-nl
bot*-vertex[q]

return^
% invoking routine;

let G = (V,E) denote the graph;
vertex vx is selected from some set, say 5 l 5 in S* H

B5: navail *-\V\
for v E Si while navail > p do

if picture [v] = 0
' bot^vertex [\]<-v
LS[v]<-null

| picture [v] <-1
B6: navail-^1
GRAPH(l)
f the following statements are included if unlabelled representatives are required;

71(G) is the group of symmetries for G f
F: for T € T(G) do

if picture [T(V)] = 0

m e n JB7: navail-^-1

if C:

then

then

Algorithm 3.

On the generation and enumeration of tessellation designs 211

Second, notice we need only consider a two-valued description for the picture values:

. . r ! J 1 if v is available or forbidden, picture[v] = <
10 otherwise.

In other words, we need only recognize those 'free' vertices adjacent to vertex vq at
each search level q.

Third, the search tree may be further pruned. Let navail denote the number of
unforbidden vertices—that is, the number of vertices that may be possible candidates
for selection. Initially navail is set to the number of vertices in G, namely \V\. At
each stage q the search can continue if and only if navail > p-q. Furthermore
suppose we are interested in the free configurations. Let the vertices in Sx E S*
be labelled from 1 to \SX\ inclusive. Under this condition, after every choice for vx

has been made and all graphs Gp have been constructed from the current G1? we can
forbid all the symmetry transforms of vx. The manipulation of navail is indicated in
statements prefixed by the label B.

Statement C indicates the distance criterion that must be satisfied in order that the
search may continue.

Statements D and E are dummies included for the various coding schemes developed
in the individual examples.

Algorithm CANONICAL(G)
f bin is an array that stores successive powers of 2 %
flag <- true
fl construct code for G ^
code <- 0
for / G {1,..., p } do code + «- bin [vertex [i] -1]
% test isomorphic codes |̂
for r G 7\G) while flag do

'isomorph^O
for / E {1,..., p } do isomorph + «-bin [r(yertex [i]) - 1]
]̂ < is an order relation (see section 4.5) [̂

[flag<-code ^ isomorph
return (flag)
Algorithm 4.

In the discussion to follow we demonstrate how some of the archimedean
configurations reduce to being solutions of appropriate graph problems of the type
just explained.

6 Polyominoes
6.1 Bounding regions
Recall from section 4.3 that every p-omino is uniquely enclosed within a smallest
rectangle. For a fixed p we may determine the set and number of bounding
rectangles to house the family of p-ominoes. Let (Zr, l2) denote the lengths of the
sides of a rectangle measured along the x- and ^-directions respectively. In order that
Zx and l2 define a bounding rectangle for p-ominoes, p fixed, they must satisfy

/i + / 2 < P + l > (1)

hh>P, (2)

h > h • (3)

212 R Krishnamurti, P H O'N Roe

Condition (1) is a restatement of the maximally stretched condition. Maximally
stretched configurations are graphically equivalent to trees (see figure 12). Condition (2)
states that if the bounding rectangle is pictured as a rectangular array of square
cells then it must contain a sufficient number of such cells to house a p-omino.
Condition (3) fixes the orientation in space of the bounding rectangle. Every (/2, /i)
rectangle is a %TC rotation in the plane of an {lu I2) rectangle. In other words every
p-omino in an (/l512) rectangle corresponds to an isomorph in an (/2, / t) rectangle.

These conditions are plotted in figure 13. Based on this diagram the following can be
shown.

6.1.1. The set of bounding regions for p-ominoes, p fixed, is given by

A* = {(/i,/2): K f c < | Y | , max {fc, [jr] } < h <P+ 1-fc} ,

where, for any real number r, |>1 denotes the least integer greater than or equal to r.

6.1.2. The cardinality of Ap is given by

where, for any real number r, [r\ denotes the greatest integer less than or equal to r.

6.1.1. defines the algorithm for generating the bounding rectangles.
Suppose (/l5/2) £ Ap. Let lx = lx - 1 and ly = l^ - 1. The trellis of this bounding

rectangle is drawn in the plane with the vertices associated with integral coordinates
(x, y), 0 < x < lXi 0 < y < ly (see figure 14). Label the vertices from left to right,
bottom to top, in that order. That is, the label of the vertex (x, y) is given by
/j7 + x + 1 . Define the sets of labelled points

Sx = {1,2 , . . . , / !} , 53 = {/1 ,2/1 ,3/1 , . . .},

Si = { 1 , / 1 + 1 , 2 / 1 + 1 , . . . } , S4 = {/1/2-/1 + l , / 1 / 2 - / 1 + 2 , . . . } .

Denote the collection of these sets by 5*.

integral points in this
region correspond to the
bounding rectangles for
p-ominoes, p-fixed

'i + 'a = P + 1

Figure 12. Figure 13.

On the generation and enumeration of tessellation designs 213

It follows that the p-omino enumeration problem reduces to finding all unlabelled
connected subgraphs on p vertices of the trellis such that each connected graph has a
vertex in common with 5 l 5 S2, S3, and S4. Let (ux, uy) denote the coordinates of
vertex u. Here

d(u, v) = taxicab distance between two vertices u and v = \ux ~vx\ 4- \uy — vy\ .

The other distance measures (see section 5.1.1) are given by

d(Su u) = uy , d(S3, u) = lx~ux ,

d{S2 ,u) = ux, d(S4, u) = ly - uy ,

and

d(Gq, ±S) = Y.d{Gq, St) = I m i n W G , - ! , St), d(Si9 u)} ,

where Vq = Vq-X U {u} .

y

zsx
:JLL

"XD
" i t t

(oi, L L C
LLC

(0, 0) (1, 0)

Figure 14.

4—M
I I 1 Ux< 1)

</*. 0)

6.2 Symmetries
The symmetry transformations under consideration are those that leave the trellis
invariant in the plane. These transformations are isomorphic to the elements of D4,
the dihedral group of order eight. For a trellis defined by the lines x = 0, x = lx,
y = 0, and y = ly, the coordinate-coordinate map representation of the
transformations are presented in table 1. The last four entries may be applied only if
lx = ly. Since the label of a vertex (x,y) is given by lxy + x+\, the mappings are
easily reduced to label-label maps. Computationally this allows us to define a table
look-up for the symmetry transformations rather than have them computed each time
a configuration is generated.

Alternatively we may use this coordinate map representation of the transformations
to introduce the mechanism of synonym identification.

6.3 Synonym identification
The synonyms of a word are the words of its isomorphs. Let a word w be

Pi^i + P2^2 + ..- + P/1/2^/1/2 •

Under a transformation r the synonym wr is

Pl*r(l) + P2*T(2) + — + P/1Z2-x:r(/1/2) J

214 R Krishnamurti, P H O'N Roe

or equivalently

PT- , (l)^l + Pr-1(2)^2 + -+Pr- 1 (/ 1 / 2) : X : / 1 / 2 >

where r"1 is the inverse mapping. For convenience w and wr are usually represented
by binary strings of length lx l2.

Imagine listing all words of length / ^ and content p. A word is canonical if it has
no 'prior' synonym. By prior is meant lexicographically earlier., A p-omino is
canonical if and only if its word is canonical. .

As an example consider the 7-omino 110001100111 in a (4, 3) bounding rectangle
[see figure 15(a)]. Applying the transformations i, v, h, and IT we have the synonyms
as shown.

The rules for synonym identification are easily derived. A word is partitioned into
l2 sub words each of length lx:

(P1P2 .. .p^Xp^+i -P2/ ,) . . . (//l/a-../1+i - P / ^) •

When lx # ly synonyms are produced by

6.3.1. (a) reversing the sequence of terms in each subword,
(b) reversing the sequence of subwords,
(c) by both (a) and (b) together.

ly, in There are at most four synonyms when lx ¥= ly. Similar rules apply when /:
which case there are at most eight synonyms per word. The production of synonyms
for the 7-omino of figure 15(a) is illustrated in figure 15(b).

Table 1.

Group element Symbol Coordinate-coordinate map:

1 Identity

2 Reflection about y = \ly

3 Reflection about x = \lx

4 Rotation through IT

5 Rotation through \-n
6 Rotation through -\ii

1 Reflection about x — y
8 Reflection about x = -y

i

h
V

77

k
k
R
r

(*,y)
(x, ly-y)
Qx-x,y)
(lx-x,ly-y)

(ly-y9x)
CM*-*)
(y,x)
(iy-yJx-x)j

these apply only
when lx = ly

1100 0110

\
0011 f 0110

Figure 15.

(a) (b)

On the generation and enumeration of tessellation designs 215

6.4 Canonical word
In this section we expand the idea of synonym identification. Let the current word
be partitioned as before. Each subword is the word of a row of the bounding
rectangle. Each subword is an /j-bit expansion of a positive integer. Thus every
configuration is associated with an /2-tuple of positive integers (yx, y2, ..., 7/2) and
uniquely by the (/24- l)-tuple (/j, yl9 y2,..., 7/2). However, when the trellis is
unambiguously known the prefix lx may be dropped. As an example consider the
4-omino 111010 in a (3, 2) rectangle. It has the 2-tuple code (7, 2).

Let T denote the current word,

r = (7 i , 7 2 , - , 7/2) •

We have two cases to consider.

Case 1: lt =£ l2

Applying rule 6.3.1(b) we get the /2-tuple

Th = (7 / 2 , 7 / 2 - i , - ,7 i) •

This corresponds to reflecting the p-omino about a horizontal axis (y
rule is illustrated as follows.

hly). The

p-omino

7/2

7 i 7/,

horizontally reflected p-omino

Applying rule 6.3.1(a) we get the /2-tuple

Tv = (7 i ,7 2 , ->7/ 2) ,

where yt is the integer representation of the binary sequence for yt read in reverse.
Finally rule 6.3.1(c) gives

rw = (7/2, 7z 2 - i>- ,7i) •

Tv and r^ represent a reflection about a vertical axis (x = \lx) and a rotation through IT
respectively.

Case 2: lx = l2

In addition to the preceding rules we do the following. Transpose the bounding
region to obtain the word

P1P2 «. Pij2 •

Here the word w' is formed by reading the columns of the original bounding region
from bottom to top, left to right, in that order. Partition this word as before to
obtain the /2-tuple

TR = (71 ,72 , - , 7/2) •

TR represents a reflection about the principal diagonal (x = y). Applying rules
6.3.1(a), 6.3.1(b), and 6.3.1(c) we get respectively the /2-tuples

r i i r = (7;2,7z'2-i,...,7'i),

r R = (7 i ,7 2 , . . . ,7 ; 2) ,

and

r = (7/2 , 7 / , - i , . . . , 7 i) ,

216 R Krishnamurti, PHO'N.Roe

where the subscripts of T indicate the transformations involved, namely a rotation
through \it, a rotation through -\it, and a reflection about x = —y respectively.

6.4.1. The relations <, =, and < on any two fc-tuples A = (al9a2,..., ak) and
B = {bu b2,..., bk) are defined as follows:
(a) A < B if and only if there exists a / < k such that af < bf and, for all / < /,

at = bi\
(b) A = B if and only if, for all i < ft, a,- = 6 f ;
(c) A<B if A<B ox A = B.

6.4.2. A word T is canonical if and only if it has the 'highest' code among all its
synonyms:

T > TT , r G {h, v, TT} , if /i ¥= /2 ;

T > r T , rG{h,v,7r,i7r, f i , R , r } , if /2 = 4 .

6.5 Algorithm
The algorithm is essentially the same as algorithm 3 with the following modifications.
Statements Al, A2, D, and E are replaced by:

A: % Let p-omino denote the number of free equivalence classes of polyominoes
with content p %

if CANONICAL then p-omino + «- 1

H Let vq+l denote vertex[q+\] %

if /» = /„

if 7, = /y

then J ^ ^ «] " - 2 ^ K - 1

CANONICAL is a Boolean-valued procedure that tests whether or not the generated
p-omino is the representative of its free equivalence class. The routine is similar to
algorithm 4 except it is based on the ideas in section 6.4. D is a coding statement
executed once for each addition of a vertex to the current graph. E is a decoding
statement executed once after each backtrack. The arrays x and y house the
coordinates for the vertices. It is clear that every configuration is generated in O(p)
time and that the trellis dominates storage with 0(p2) space. It should be noticed
that for computational convenience T is represented by the U-tuple (Y 0 , 7 I , 7 V , ..., y,).

7 Polyhexes and polyiamonds I
7.1 Bounding regions
Since polyiamonds are a two-colourable subset of polyhexes it is convenient to
consider only the polyhexes. Lunnon (1972) has shown that every polyhex is
contained in a bounding hexagon defined by the lines x = a, x = a', y = b, y = b\
z = c, and z = c\ where a > a, b' > b, and cf > c. Observe that this bounding
hexagon is defined on its trellis drawn in the plane, with the vertices associated with
the appropriate integral coordinate system (see section 4.2). A polyhex and its
bounding hexagon are shown in figure 16.

On the generation and enumeration of tessellation designs 217

The bounding hexagon can be described by four parameters— diameters lx, ly, lz

and skew x-defined as follows. lx = a-a, ly = b'-b, and lz = c -c. Let la, la',
etc denote the lengths of the sides of the hexagon lying on the lines x = a, x = a', etc.
From figure 16 and by use of the fact that the points on and inside the hexagon must
satisfy x + y + z = 0, it can be shown that

la~la'
 = h~~h' = lc~h' = a + a'+b + b'+c+c' = a constant ,

which is referred to as the skew, x- It should be noticed that these parameters are
integral.

Any bounding hexagon may be oriented in space in such a way that lx> ly> lz.
Moreover, since the lengths of the sides of the hexagon are always nonnegative,
Ixl ^ h> It is also possible to arrange the bounding hexagon in space such that x is
always greater than or equal to zero. In other words, the orientation of a bounding
hexagon may be so fixed that

h > ly > h > X > 0 .

We may determine other relationships involving the parameters lx, ly, lz, and X-
For instance it is easy to show that

lx + ly + lz + X= 2(a'+b' + c') = Omod 2 .

Since x ^ 0 it follows that la > la', lb > lb', and lc > lc>. The lengths of the sides
may be expressed in the following terms:

o<ia' = i(-x-/* + /y + W =* / y +/* -x> /* . (4)

0<h> = i (-X + t - / y + W =* Ix + h~X>ly . (5)

0 < / c ' = i (-X + k + / y - / z) =* lx + ly-X>h • (6)

Conditions (5) and (6) are not independent of the fixing condition for the bounding
hexagon.

Consider an open region in the plane defined by the lines x = 0 and y = 0 such
that every point in this region has x, y < 0. Clearly z > 0 in this region. Place a
bounding hexagon inside this region. By moving this hexagon towards (0, 0, 0) it is
possible to align the hexagon such that a = b' = 0. These are the spanning conditions.

To sum up, every set of integral parameters lx, iy, /z, and x such that

ly + h~X> lx> ly> h > X> 0 ,

with

(x + /y+/z + X = Omod 2 ,

Figure 16.

218 R Krishnamurti, P H O'N Roe

uniquely determines a fixed bounding hexagon defined by the lines x = 0, x = -lx,
y = 0, y = ~ly, z = c, and z = c\ where c = i (^ + ^ + ẑ + X) and c = c~lz.

We now consider the bounding hexagons for the population of poly hexes with
content p. Since the maximally stretched p-hex is the linear polyhex [figure 17(a)]
it follows that lx < p- 1. From the maximal-stretching condition [see figure 17(b)]
it can be shown that

lx + ly + h + X< 2 (p - l) .

Since every bounding hexagon must contain at least p vertices, we have

P - 1 <-\U2 + ll + ll + X2-2(lxly + lylz+lzlx + lx + ly + lz)] .

We may also show that

k = 0 => lx = ly = p-\ ,

lx = p-\ => ly + lz = p-\ ,

o < x < (p - D - / x •
Finally, since lx < p—\, every fixed bounding hexagon may be enclosed within
the triangular region which satisfies —p < x, y < 0 and 0 < z < p (figure 18). This
triangular region plays an important role in developing our enumeration algorithms.

(a)
Figure 17.

z = p - 1

x = - p + 1

Figure 18.
y = 0

On the generation and enumeration of tessellation designs 219

P + l as shown
7.2 Coding scheme
Consider the triangular region with vertices labelled from 1 to i ~

in figure 19. Here every vertex (x,y,z) satisfies x + y + z = 0 together with
-p < x, y < 0 and 0 < z < p. This region may be described by the word

x1 + x2 + ...+x /p+l\ .

Every configuration in this region has a word of the form

Pl*l + P2*2 + -.. + P/p+lWp+A •

where pt E {0, 1} for all /. This is more conveniently expressed as the binary string

P1P2 -PfP+i\ •

Partition this into subwords of the form

(Pi)(P2p3)(P4P5P6) .» [Pfp+i) _ p + 1 - P(p+iy

Each subword may be expressed as a positive integer. Thus every configuration is
associated with a p-tuple

A = (6 - p + 1 , 5_p + 2 , ..., 60) < (1, 3, 7,..., 2 * - 1) ,

where 5/ corresponds to the contributions of the vertices on the line x = i. Clearly
6 / < 2 P - / - 1 .

Every bounding hexagon is a subword of the word of the triangular region of the
form

A = (0,0, . . . ,0,6-/, , . . . ,60) ,

which can be pared down to a (Zx+ l)-tuple in the obvious way.
A p-hex is a linear polynomial over Z2 with content p of the word of its bounding

hexagon. Each p-hex has a word of the form

T = (y-ix, 7 - / x +i , - , To) •

Each vertex (x, y, 2) in the polyhex contributes

2-y to yx .

l 2 K (PVY

«0

0k4

5 - P + I

Figure 19.

220 R Krishnamurti, P H O'N Roe

A p-hex is a representative of its free equivalence class if and only if

r > r T , T 6 ! 1 ,
where Th is the group of symmetries that leave the bounding hexagon h invariant in
the plane and Tr is the code of the isomorph under r.

This coding scheme applies equally to the polyiamonds.

7.3 Symmetries
The symmetry transformations that leave a given bounding hexagon invariant in the
plane are isomorphic to the elements of D6, the dihedral group of order twelve. The
symmetry motions for a regular hexagon are as follows:
dx identity
d2 rotation through 7r,
d3 vertical reflection about x-axis,
d4 vertical reflection about y-axis,
ds vertical reflection about z-axis,
d6 horizontal reflection about x-axis,
dn horizontal reflection about .y-axis,
ds horizontal reflection about z-axis,
d9 rotation through §7r,
d10 rotation through % IT,
dn rotation through %TT,
d12 rotation through §7r.
All axes of rotation and reflection pass through the centre and are illustrated in
figure 20. For a bounding hexagon defined by the lines x = 0, x = a, y = 0,
y = b, z = c, and z = c' we need only consider certain subgroups of D6. The
following possibilities arise.

7.3.1.(a) lx±ly*lx, X* 0 .
In this case the bounding hexagon possesses only the identity symmetry. That is, all
polyhexes are canonically generated within this type of bounding hexagon.

7.3.1.(b) lx±ly*h, x = O.­
Here la = la\ lb = lb', and lc = lc'. In this case a rotation through 7r (d2) also leaves
the hexagon invariant in the plane.

7.3.2.(a) lx = ly, x ^ 0 .
Here la = lbi la> = lb', and a = b. The hexagon remains invariant under a vertical
reflection about the z-axis (ds). Of course the hexagon is invariant under identity (dx).

Figure 20.

On the generation and enumeration of tessellation designs 221

7.3.2.(b) lx = ly,x = 0.
Here la = lb = la> = lh>, a = b, and lc = lc>. Reflection about the z-axis such that
sides lc and lc' are interchanged gives the transformation ds. It is also invariant under
dx, d2, and d5.

In a similar fashion the remaining cases can be completed. We will be content to
state the properties of the bounding hexagon and the elements that leave the
bounding hexagon invariant.

7.3.3.(a) /„ = lz, X ^ 0 .

h = h> h' = h'> a n d b = c—c'; dx and d3.

7.3.3.(b) ly = lz, X= 0.
h = h' = h = h', b = c-c\ a n d h h'\ du di> d3, and d6.

7.3.4.(a) lx = lz, X * 0.
h ~ h>h' ~ h'> a n d a = c—c'; d1 and d4.

7.3.4.(b) /, = /ZJ X = 0.
*« = h' = h = h', a = c-c\ and lb = lb>;

7.3.5.(a) lx = ly = lz,x*0m

h = h = h, h' = h' = h', a = b = c-c;

7.3.5.(b) lx = ly = lz, x = 0.
h = h = h = h = h' = h\ a = b = c-

dl9 d2, d4, and dn.

di,d3, d4, ds, d9, and <210.

c'; all elements of D6. lb ~ Lc ~ ld ~ lb lc 3 u —" u — c c > a 1 1 ciciiiciiis ui x>̂ 6.

The symmetry elements may be described as coordinate-coordinate mappings. The
preceding list of transformations is summarized in tables 2 and 3. Table 2 gives the
coordinate map representation for the elements of D6. Table 3 gives the subgroups
of D6 that apply depending upon the conditions that are imposed on a fixed
bounding hexagon.

In the case of polyiamonds the transformations apply only if 'colouring' is preserved;
that is, the transformations must imply an isomorphism of the three colours (given by
x — y mod 3) onto themselves. Since vertex adjacency is preserved by any symmetry

Table 2.

Group element Symbol Coordinate-coordinate map:
(x,y,z)^

1 Identity

2 Rotation through IT

Vertical reflection about
the axis that bisects:

3 the x lines
4 the y lines
5 the z lines

Horizontal reflection about:
6 x = -c
1 y = -c
8 z = -a = -b

9 Rotation through §7r
10 Rotation through -§7r

11 Rotation through %TT
12 Rotation through -\-n

i

IT

v*
VV

vz

h*
h ,
hz

l7 1"
h
in
in

(x,y,z)

(a~x, b-y, c+c'-z)

(x, -c'+z, c'+y)
(-c+z,y, c'+x)
O, *, z)

{a-x, c-z,c-y)
(c'+a-z, b-y, c'+a-x)
(b-y, a-x, c+c'-z)

(-c'+z,x, c'+y)
(y, -c'+z, c'+x)

(b-y, c-z, c'+a-x)
(c' + a-z, b-x, c-y)

222 R Krishnamurti, P H O'N Roe

motion that leaves a bounding hexagon invariant, this will always hold. Consequently
this enables any two-colourable polyhex to be transformed into an equivalent two-
colourable polyhex—or, a polyiamond into an equivalent polyiamond.

It is interesting to note that we need only consider the x and y coordinates of the
transformations for coding purposes. For instance, if (x,y, z) is a vertex in a polyhex
and if Ti^, the isomorphic polyhex under the transformation %TT (see table 2), is
represented by the (lx+ l)-tuple (7^ , 7'-/ + 1 ,.••> 7o)> then the vertex contributes

2Z~C = 2~x-y-c to y'b_y .

Table 3.

Conditions on lx, ly, lz x > 0 X = 0

lx>ly>lz i i, 7r
lx>ly= lz i,v* i, TT, v^h*
lx=ly>lz i, vz _ i, 7T, vz,h2

lx = ly=lz i, vx, Vy, VZ,1TT, ITT all

7.4 Algorithms
There are essentially two possible approaches to enumerating polyhexes. Both employ
the same method, namely determining the connected subgraphs of order p of the
graph (trellis) of the bounding hexagon. The first approach applies algorithm 3, and
it is left as an exercise to the reader to determine the appropriate distance condition
to be applied at statement C. It must be noticed that moving along an edge in any
direction changes two of the three coordinates; consequently, if u = (ux, uy, uz)
and v = (vx,vy, vz) are two vertices,

d(u,v) = h(\ux-vx\ + \uy-Vy\ + \uz-vg\) .

The second approach views this enumeration problem in another light. Let us
regard the triangular region as a 'super trellis', and the problem reduces to finding a
connected graph on p vertices and the corresponding trellis this graph spans. The
same algorithm, namely algorithm 3, is applicable with the following modifications.
The search is always started by selecting as the initial vertex a vertex whose x-coordinate
is 0. From section 7.1 there is only one p-hex which contains the vertex
(0, - p + 1, p- 1). (Since y — 0 must be a line of the fixed bounding hexagon,
ly — p-\ m this case.) Consequently we need only start the search with vertices
whose z-coordinate is less than p -1 and whose x-coordinate equals 0. We can forbid
(0, —p+ 1, p - 1) from further consideration.

The distance conditions must be so chosen that eventually the bounding hexagon
satisfies all the orientation conditions described earlier. It can be shown that the
following three conditions are required. Let 1%, 1$, I?, Xq, etc denote the diameters
and skew etc at the gth recursion level. Let x, x, y, y, z, and 2 denote the minimums
and maximums of the corresponding coordinates of the current configuration
depending on whether the coordinate is capped by a v or a ~ respectively. Then

IS = -min{*(<Vi)>*(y«)} = -*(G«) >

l§. = [HGq) = m a x (K ^ - i) , y(vq)}] - [y(Gq) = ndn{p(Gq^)9 y(vq)}] ,

I? = [y(Gq) = maxIzOVi) , z(vq)}] - [I(Gq) = mm{z{Gq-i), z(Pq)}] ,

and

X* = Z(Gq)+XGq)+HGq) + I{Gq)+Wq) .

On the generation and enumeration of tessellation designs 223

Statement C in algorithm 3 is replaced by

max{0,l«-m-KGq)<p-q , (7)

which will eventually ensure that lx > ly and y = 0 is a line of the bounding hexagon,

max{0,/«-/5} + m a x { 0 , / / - / « + j > (G g) } < p - « , (8)

which together with condition (1) will eventually ensure that ly > lz, and

max{0,max{/^^}-/J?} + m a x { 0 , - x 9 } < p - ^ , (9)

which together with conditions (7) and (8) will eventually ensure that ly + lz — x ^ lx

and x ^ 0. If conditions (7), (8), and (9) are satisfied, vq is in Gq and the search
may proceed recursively forward.

For polyiamonds the colours of the first two vertices selected are noted and the
remaining vertices are chosen from these two colours. If the colour of vx is cx and that
of v2 is c2 then the third or forbidden colour is -{cx + c2) mod 3. Colour c2 must be
different from cx since v2 is adjacent to vt.

8 Poly /i-cubes
Poly n-cubes, n > 3, are the last examples of configurations on the regular tessellations
considered in this paper. The enumeration of poly w-cubes follows in exactly the
same fashion as the enumeration of polyominoes. We outline briefly the steps involved.

8.1 Bounding regions
For poly H-cubes the bounding region is a ^-rectangle of dimensions lu Z2,..., ln. The
necessary and sufficient conditions for any ^-rectangle defined by the w-tuple
(7i> h> —J ln) to be a bounding region for the population of p-H-cubes are:

£ li < p + n — 1 maximal-stretching condition; (10)

X\li > p sufficiency of unit n-cubes; (11)
i

lx> l2> ... > ln> \ fixing the orientation of the bounding region. (12)

These can be solved in the same manner as was done for polyominoes. For example,
it can be shown that

'. < m
Consider the case when n = 3; then

1 < h < ! m A diagram similar to figure 13 is drawn in figure 21. It describes the conditions when Z3

is equal to a fixed value, say k. From this diagram the following can be demonstrated.

8.1.1. The set of triples (Zl5 Z2, Z3) which correspond to the bounding regions for
p-cubes, p fixed, is given by

A£ = | (/i, h,hY l < h < | _ ^ J > h < h < [P + l h\,

max<

224 R Krishnamurti, P H O'N Roe

8.1.2. The cardinality of Ap is

7 = 1

l(p + 2)/3j I (p + 4 - 3 /) 2 I

/ = I P ^ J + I L 4 - I '

The extension to arbitrary rc-space is obvious. To see why just fix /„ at some
value, say k. Substituting this in conditions (10) through (12) reduces it to finding
an (ft-l)-tuple of integers (/l5 ..., ln-\) with /„_j > k. This process may be repeated
inductively to obtain the set A£ given as follows.

8.1.3. The set of w-tuples (/l5 /2, ...,/„) which correspond to the bounding regions for
p - n-cubes, p fixed, is given by

A" = (lu 4 , . ..,/„): ! < / „ <
• + w - l | p + n-\-ln I

» - l J '

/ > 3

integral coordinates in this
region define the bounding
3-rectangles represented by
the triples (/:, l2, k)

L = k

integral coordinates in this
region define the bounding
3-rectangles represented by
the triples (/j, l2, k)

h = h

k< [P
Vi\

\

Figure 21.

8.2 Coding scheme
The bounding region for p-cubes is drawn in figure 22 as a trellis with vertices
associated with integral coordinates. Recall that each vertex corresponds to a unit
cube. Also lx = / j - 1 , ly = / 2 - l , a n d h = ^ ~ 1 -

The word representing this region can be partitioned into a /2/3-tuple of integers as
follows:

k = 0 k = 1 k = lz

r = (/ = 0,..., / = ly) U = 0,..., 7 = ly) (7 = 0, ..., / = ly)

x = 0

x = 1

On the generation and enumeration of tessellation designs 225

This may be written as

T = (Too, 7oi, .», To/,-* ..•> 7zy, ..-, 7/zo, -., 7iziy) ,

where each yzy represents a column of the previous expression and

0 < yzy < 2 ^ - 1 , 0 < z < lz , 0 < j ; < 7y .

The coding operator is defined as follows: each vertex (x,y, z) in the connected
subgraph of the trellis representing a p-cube contributes

2 ' * - * to 7 z y •

Clearly the l2 /3-tuple representation of a p-cube is unique, and from it the p-eube is
uniquely decipherable or reconstructible.

The 7s may be represented by the array code[l,..., / 2 / 3] . Define the array
loc[0, ..., lz] as follows:

loc[l] = 1 ,

loc[z] = !oc[z-l] + l2 z > 2 .

Then the computational step required to code a vertex (x, y, z) is given by

code[loc[z] + y]+ <- 2^" x .

Figure 22.

8.3 Canonical word and symmetries
A word is canonical if and only if T > FT, r G 7J, where !Tf is a group of symmetries
that leave the bounding region invariant. Tt is usually a small-order subgroup of the
even subgroup of On, the orthogonal group of rotations of order 2n(n\). For n = 3
consider the cube in figure 23, wherein the various axes of rotations are indicated.
The even elements of 03 are given in table 4. The minimum conditions which must
be satisfied in order that an element may be applied are also presented.

226 R Krishnamurti, P H O'N Roe

For n > 3 the group elements no longer correspond to simple axial rotations. Instead
they are rotations about planes. As shown by Littlewood (1931), the group of rotations,
On, for the n-dimensional hypercuboid can be obtained from the following generators.

x = -y = z

x = y — z

x = y = -z

-x=y-

Figure 23.

Table 4.

Group element Symbol Coordinate-coordinate map: (x,y,z)-

1 Identity
Rotation through n about:

2 the x-axis
3 the j;-axis
4 the z-axis

Rotation through ±\n about:

5l

(x, ly-y,lz-z)
(lx-x,yjz-z)
(lx-x,ly-y,z)

6
7
8
9

10

the x-axis

the >>-axis

the z-axis

Compositions of the above:

11 (^x>z = fax)*y
12 (bQiiy = (iff*)^
13 (i ^ ,) ^ = foy)irz

14 (jiry)irz = (biry)irx

15 (i7lfc)7rj,= (Uz)7lx

16 (i7T2)7Tx = faulty

Rotations through ±\n about:

*x

2*y

IK

cxy
cxz

CyZ

cyx
czx

C

}
.lx-x)\

v,lx-x,z))
y-y,x,z)]

(x, z, ly -y)
(xrlz-z,y)
(z,y
Q*-z

0y

/» = /«

l7_ ly

_ *v

} ly = lz

> the x = y = z diagonal

Y the -x—y — z diagonal

211
> the x — -y = z diagonal

> the x = j> = - z diagonal

z>>

'xyz
rxyz

'xyz
rxyz

Qx-x,lz-zJy-y)
(lx-x9z,y)
(z9ly-y9x) 1 / = /

{lz-zjy-yjx-x)\ z x

Qy-yJx-x, h-z)
(y,x,lz-z) } t = /v

23
24

'xyz

(z,*,.V)

(lz-zjx-x,y)
Qy-y>lz-Z>x)
(z,lx-x,ly-y)
{yjz-zjx-x)
{lz-z9x,ly-y)

'x ly *z

On the generation and enumeration of tessellation designs 227

.3 .1 . Axial inversion:

R,:

* 1

x2

* i

xn

->

* 1

x2

lxt~Xi

8.3.2. Axial interchange:

Qa-

* 1

x2

x,

xi

xn

->

* 1

x2

xf

x(

*n

An element is even if and only if the number of axial inversions and interchanges is
even. The Rt form a group, R*n, of order 2". The Qf/ form a group, Q*, which is
isomorphic to the symmetric group of order n\, Sn, the group of the permutations of

Table 5.

Group element Symbol Coordinate-coordinate map:
(x,y,z,w)-»

Parity
(0 = even, 1 = odd)

1

2
3
4
5

6
7

Identity

Axial inversion along:
the x-axis
the j>-axis
the z-axis
the w-axis

Two axial inversions in:
the jey-plane
the xz-plane

8 the xw-plane
9 the j>z-plane

10 the j>w-plane
11 the zw-plane

Three axial inversions in
12 the constant-w plane
13 the constant-z plane
14 the constant-^ plane
15 the constant-jc plane

16 Complete axial
inversion of the
4-rectangle

(pc,y,z,w) 0

Rx

Ry

Rz

Rw

Rxy
Rxz
"xw
Ryz
Kyw
RZ\V

(lx-x,y,z,w)
(x, ly-y,z,w)
(x,y,lx-x,w)
(x,y,z,lw-w)

(fx-x,ly-y,z,W) *\
(Jx-x,y,lz-z,W)
Qx-x,y,z,lw-w) 1
(x,ly-y,l2-z,w)
(x,ly-y,z,lw~w)
(x,y,lz-z,lw-\ v) J

Rxyz (fx-X, ly ~yJz~Z, w)
Rxyw (Jx -X, ly ~y, Z, lw - W)
Rxzw Qx ~x,y, lz -z, lw-w)
Ryzw (x,ly-y,Iz-z,lw-w)

Rxyzw (!x -X, ly ~y, lz~Z, 1W~W)

228 R Krishnamurti, P H O'N Roe

n elements. To find the elements of On, take the product of JR* and Q*n under group
composition. The even elements correspond to products of elements of the same
parity (that is either both even or both odd). It can be shown that the following are
satisfied:

Rf = Qfj = identity,

RiRj = RjRi ,

Qtj = Qn ,

QijQjk = QikQa = QjkQik ,

RiQtj = Qy'Rj>

RjQij - QijRi J

RiQjk= QjkRi , i*i, i * k .

For n — 4 the groups R\ and Q\ are presented in tables 5 and 6 respectively. The
elements of Rl are designated by the combination of axial inversions involved. For
instance Rijk is equivalent to R(RjRk. The elements of Q% are designated by the
cyclic notation for the corresponding permutations of the numbers 1, 2, 3, and 4.

Table 6.

Group element Symbol

1 Identity i

Axial interchange
2 Qxy

3 Qxz

4 Qxw

5 Qyz
6 QyW

7 Qzw

Pairs of axial interchanges
8 fixj>z

9 Gxzy

10 Qxyw

1 1 v£x:w}>

1 ̂ Csxzw

13 e*Wz
14 Qyzw

1 J Csyvvz

16 G(*>;)(zw)
1 7 G(xz)(>>w)
1 8 Q(xw)(yz)

Three axial interchanges

1" Qxyzw

^v Qxzyw

^1 Qxxvyz

^^ Qxywz

2 3 Gxzwy

^ 4 Gxwzy

Coordinate - coordinate
map: (x9y9z,w)->

(x9y9z9W)

0 , x9 z, w)
(z9y9x9w)
(w9y9z9x)
(x9z9y9w)
(x9w9z9y)
(x9y9w9z)

(z9x9y9w) |
(y9z9x9w)]
(w9x9z9y) |
(y, w9 z9 x))
(w9y9x9z) |
(z9y9w9x) J
(x9w9y9z)-)
(x9z9w9y)\
0,x,w,z)
(z9w9x9y)
(w9z9y9x)

^
(w9x9y,z)
(w9z9x,y)
(z9w9y9x)
(z9x9w9y)
0 , w, x9 z)
(y,z9w9x)

•

Conditions under
which they apply

~
lx=h
lx=lz

*x ~ * w

(y = * «

y = w
'z == 'w

•

/* = />. = /«

7 - 7 - 7
*x ly l\v

*x ~ 'z — *vv

*y ~ / z — / w

& = /y) A (fz = U
& = « A (/y = W
(/*=/wWy = « .

/ - J - J - 1
lx ly lZ lw

Parity
(0 = even,
1 = o d d)

0

1

- 0

1

On the generation and enumeration of tessellation designs 229

8.4 Algorithm
The graph problem may be formulated as was done for the polyominoes. For n = 3
the spanning sets are given by

Si = {(x9y,z): z = 0 } , S3 = {(x,y,z): y = 0} , Ss = {{x9y,z): x = 0} ,

S2 = {(*, y, z): z = lz} , S4 = {(x, y9 z): y = ly} , S6 = {(x, y, z): x = lx} .

Let u = (ux,uy, uz) and v — (vx,vy, vz) be two vertices. The distance measures are
given by

d(u,v) = \ux-vx\ + \uy-vy\ + \uz-vz\

and

d(Suu) = uz ,

^ 2 ,U) = lz~Uz ,

dCSa 9u)= uy ,

d(S4,U) = ly-Uy ,

d(Ss ,u)= ux ,

d(S6,u) = lx-u.

d(Gq, ±S) = Y.d(Gq,S) , for any Gq .

The algorithm is then the same as algorithm 3, but with the appropriate modifications.
For n > 3 the distance measures are similarly defined.

We conclude by observing that every poly n-cube in an (ll9 ^, . . . , lk, 1, 1,..., 1)
bounding ^-rectangle corresponds to a poly /:-cube in the bounding /^-rectangle
(/j, l2,..., lk). Thus, for instance, if we have the list of polyominoes, we need only
augment this list by determining those poly cubes in (/l5 ^ , h ^ 2) bounding regions
to obtain the total set of polycubes.

9 <4.8.8>-patterns
Consider the square tessellation. Apply the following exchange operation in the
manner indicated in figure 24:

~i v
The result is the (4.8.8>-tessellation with associated integral coordinates—namely the
integral Cartesian coordinates in the plane. Observe that every diagonal consists of
exactly one kind of tile: either all octagons or all squares. This can be further
strengthened. Designate any tile in the tessellation as the origin. Then the octagons
have coordinates (x, y) such that either all have x + y even or all have x + y odd. For
a given parity of the octagons, the squares have the opposite parity.

Figure 24.

230 R Krishnamurti, P H O'N Roe

9.1 Bounding regions
Every <4.8.8>-pattern can be encased in a rectangle. Let (/l912) denote the sides of the
rectangle. Set the tile at the bottom left-hand corner as the origin. The vertices of
the corresponding trellis have coordinates that satisfy 0<x<lx = l1-\ and
0 < y < ly — l2 - 1. There are two types of bounding regions depending on which
type of tile is associated with the origin (see figure 25). Fixing lt > l2 defines an
initial orientation for the bounding rectangles. Moreover, in order to obtain distinct
bounding rectangles—that is, so that no type 1 rectangle transforms into a corresponding
type 2 rectangle or vice versa—it must be ensured that, if the bounding rectangles of
one type are permitted all combinations for the parity of lx and l2, then the rectangles
of the other type must have lx and ^ odd. Let (lx,l2,t) denote a bounding rectangle
of type t. Then the following can be shown.

9.1.1. The set of bounding rectangles for the <4.8.8>-patterns with content p is given by

{["£!•*} ^ < ^P = i (A, h)- l<k<P, max<j | 7 | , i2 f ^ ix ^ p

2^P = {(!uh,Z)' Huh)^ 1>p-{(P,P)h luh odd}

Type 1 Type 2

' i H /,.

Figure 25.

9.2 Trellis
The trellises for the bounding rectangles of both types are shown in figure 26, with
the vertices associated with the integral coordinates. Let (x, y) denote a vertex.

Type 1 Type 2

W, ly)

(0,1)

K
/

V.

V
i\
Z
IZ

*.,

/

^idxJy) (0, ly)

(0,1)

!\IZIX-
Z!\!/

SiZi!"

ZN
?yzi
:zi\i
SiZi

dX,ly)

(0, 0) (1, 0)

Figure 26.

(/*,0) (0, 0) (1, 0) (/.,0)

On the generation and enumeration of tessellation designs 231

Define sets Nx and N2 as follows:

Nt(x,y) = {(x+l,jO, (x-l,y), (x,y-l), (x,y+l)} ,

N2(x,y) = { (x + l , j / + l) , (x+l,y-l), (x - l , j / + l) , (x - l , j / - l) } .

If (x, y) represents an octagon, the adjacent vertices have coordinates given by
Ni(x>y) u N2(>;, JO, where the vertices in Nx represent squares and those in N2

represent octagons. If (x,y) represents a square its neighbouring vertices are given
by Nt, which represents only octagons.

9.3 Symmetries
The symmetry transformations that apply correspond to the elements of D4, the
dihedral group of order eight, described as coordinate-coordinate maps in table 1.
Table 7 describes the elements that apply for the different conditions on the
bounding rectangles.

Table 7.

Parity Elements of D4 which apply
(0 = even, 1 = odd)

h h

0 0 i , 77

0 1 i , h
1 0 i, v

f i, h, v, 7T if /1 > l2

I all if h = l2

9.4 Algorithm
It should be apparent how the <4.8.8>-patterns of content p reduce to a graph
problem of type 5.1(b). The set S* is defined in the same manner as was done for
the polyominoes. The chief difficulty is in calculating d(Gq, t,S) at each stage q.

If the initial vertex is always chosen from set Sx, then d\Gq ,2 S) < .2 d{GqiSt).

We have

d(Gq,S2 + S4) = mini d(Gq-l9 S2 +5 4) , max{^ , ly -uy},

d(Gq-uS2) + ly-uy,d{Gq-uS4) + ux}y

d(Gq,S3+S4) = mm{d(Gq-i9 S3+S4), max{7y -uy, lx~ux},

diG^^SJ + ly-UytdiGq-uSJ + lx-Ux} ,
and

d(Gq, ±S) = mm{d(Gq-l9 ±S), d(Gq,S3+S4) + d(Gq,S2),

d(Gq, S2 + S4) + d(Gq, S3), I d(Gq, St)} .

For all / > 2, d(St, vq) and d(Gq, St) are defined in the.same way as was done for the
polyominoes. For q = 1

d(Gq, tS) = minjmaxl/y, lx ~ux} + ux, max{ly, ux} + lx ~ux\ ,

where vx = u = (ux,uy).

232 R Krishnamurti, P H O'N Roe

The distance criterion in the statement labelled C in algorithm 3 is replaced by the
formulae given here. The search can be reduced by noting that whenever lx l2 — p
there is only one, obvious, pattern, and when h = h = P then again there is only
one, obvious, pattern for type 1 rectangles. Otherwise the algorithm is identical to
that for polyomino enumerations.

10 <3.3.4.4>-patterns
We may regard the <3.3.3.4.4>-tessellation as alternating strips of squares and triangles
as shown in figure 27. Suppose the strips containing the triangles are uniformly
distorted by the simultaneous application of one of the following exchange operations:

A7
or

V\
The result is a tessellation consisting of alternating strips of squares and divided
squares. In other words the exchange operations map the <3.3.3.4.4>-tessellation onto
the square grid. Clearly there are several possible ways to define this mapping, each
depending upon the orientation of the tessellation and the square grid. For convenience
we will assume the mapping and the orientation shown in figure 28. For the remainder
of the discussion the triangles will assume the orientation indicated.

Since every square, simple or divided, occupies a square in the grid, we may associate
integer Cartesian coordinates with each. To distinguish between the tile types—that is,
between the squares and oriented triangles—we introduce a third coordinate referred to
as a tile designator. The tile designator o for the three types of tiles are as follows:

tile

designator o
D \\ ^

0 1 - 1

Thus every tile in the <3.3.3.4.4>-tessellation may be associated with integral coordinates
(x,y, a), where (x,y) G Z2 and o € Z3 .

\
\
\
\
\
\
\

k \
\
\

\
\
\
\

, \
\
\
\

\
\
\ 1

, \
\
\
\

N
N
N \

/
\
\
\
\
\
\

k

Figure 27. Figure 28.

On the generation and enumeration of tessellation designs 233

or

The neighbours TV of a given tile (x,y, o) are given by

N(x9y90) = {Oc+l,y, 1), (x - 1, y, -1) , (x , j / - l , 0), (x,;;+ 1, 0)} ,

N(x,y,o ¥= 0) = { (x - a , 3^,0), (x,j>,-a), (x, y-o,-o)} .

Furthermore if we select any square, simple or divided, as the origin (0, 0, a), the
triangular tiles have x-coordinates that are either all even or all odd.

10.1 Bounding regions
The bounding regions for <3.3.3.4.4>-patterns with the given integraLcoordinate system
may be chosen as a rectangles. Let lx and l2 respectively denote the sides of the
rectangle along the x- and ^-directions. The graph (trellis) of the bounding region
may be drawn in the plane with the vertices associated with their respective
coordinates as shown in figure 29.

Typel

i
\ • •

i \
I i *

(/ , , / v . O)

(0,/y,0)

(/*,0,0)

Type 2

r~
. n

- i
U 1
• L _

t *

i

, ,i
f »

(/,,/v,-D

r
j

f t

I I

(/,,o, i)

(0, 0, 0) (0, 0, 0)

Type 3

r
t t

t

i t

I I

j
(/x,0, 1)

(0, 0, 1)

Figure 29.

234 R Krishnamurti, P H O'N Roe

Let lx = lx — 1 and ly ~ l2 — 1. Let the vertices of the trellis take on coordinates
in the positive quadrant, with a vertex chosen as the origin. Then every configuration
is a subgraph of its trellis which it spans if and only if there is a vertex in the lines
x = 0, x-lX9 y = 0, and y = ly.

There are two trivial configurations for any content p. These are shown in figure 30.
Every other pattern must contain at least one square tile and one triangular tile.
These patterns must span one of three types of bounding regions.

Type 1: lx is odd and a simple square is chosen as the origin.
Type 2: lx is even and a simple square is chosen as the origin.
Type 3: lx is odd and a divided square is chosen as the origin.

The three types of bounding rectangles are shown in figure 31, and their corresponding
trellises in figure 29.

Let (/l5l2, t) denote a bounding rectangle of sides lx and l2 and type t. When
l2 = 1 there are two trivial bounding rectangles, each of which contributes towards a
single pattern. There is a trivial type 1 bounding rectangle of size (§ [p - 1]+ 1, 1) if
p = 1 mod 3, a trivial type 2 bounding rectangle of size (2\?p], 1) if p = 0, 2 mod 3,
and a trivial type 3 bounding rectangle of size (2 |^p]+ 1, 1) for all p. Consequently
we may assume that l2 > 2. For a fixed p we may determine the set of bounding
rectangles that house all the nontrivial (3.3.3.4.4>-patterns of content p.

Figure 30.

Type 1 Type 2 Type 3

1

I

\

r

2

f

s \
\
\
\
\

\
\
\
\
\
^

\
\
\
\
\
^

T

h

\
\
\
\
\

\
\
\
\
\

\
\
\
\
\

\

\

\
\
\

\
\
\
\

\
H ',

\

\
\
\

\

\
\

\

"
Figure 31.

10.1.1. Type 1.
Let /i = 2/J + l > 3. Then lx and /2 must satisfy:

/2 + 2/; + l < p + l

/2(3/J + l) > p

2 < / 2 <p-2 J

maximal-stretching condition;

sufficiency of tiles;

conditions on lx and l2.

On the generation and enumeration of tessellation designs 235

L e t j u = 3 / (+ l. Rewriting the conditions we have

/ 2 + $ (/ * - D < P ,

/2M > P,

2<l2<p-2 ,

4 < fx<p-l ,

jjL— 1 = 0 mod 3 .

Solving these inequalities gives the sets

i*p=j(M,fe): 2 < t < p - 2 , m a x | [^] , 4 j < i L t < l f (p- / 2)J + 1, H = 1 mod 3 |

and

The set 2 *//p defines the algorithm for generating type 1 rectangles.

10.2.1. Type 2.
Let /j = 21[> 2. Again we have

l2 + 2l[<p+\ ,

l2(3l[)>p,

2<l2<p-\ ,

, P + l
1 < / { < V -

Solving these inequalities we get the sets

and

rp=\(fji,l2): 2 < 4 < p - l , m a x j ^] , 3 J < M < [UP + 1 ~k)l, V = 0 mod 3

2^P = | (/ i , / 2 , 2) : (/ i , / 2) ^ 2 ^ , / i = x } *

10.1.3. Type 3.
Let /j = 2/J + l > 3. The necessary and sufficient conditions on lx and l2 are

/2 + 2/; + l < p + l ,

/2(3/; + 2) > p ,

2 < / 2 < p - 2 ,

From which we get the sets

j Gx.fc): 2 < / 2 < p - 2 , max{| j r] , 5 J < /x < L | (p - ^) J + 2 , M= 2 mpd 3 > 3 ^ ; =

and

236 R Krishnamurti, P H O'N Roe

As an example let p = 5. Then the nontrivial bounding rectangles are given by

!*p = {(3,2,1), (3, 3,1)},

2^p = {(2, 2, 2), (4, 2, 2), (2, 3, 2), (2, 4, 2)} ,

3^/p = {(3, 2, 3), (3, 3, 3)} .

It is possible to combine the definition of the three sets by a single algorithm.
This is left as an exercise to the reader.

10.2 Coding
We may represent any pattern within its bounding rectangle (Jx ,l2,t) by the word

p1X1 + p2X2 + ... + pmXm ,

where m = l2\\ /i + i O - 2)] and each pt takes on a value in {0, 1}. The subscripts
refer to the tile number within its bounding region, labelled with increasing values
from left to right, bottom to top, in that order. Any tile (x,y, o) has the label

^[f/i + i a - 2)] + l + f f (x - a) l + a .

As in the case of polyominoes the word may be partitioned into l2 sub words, each
subword representing a row of the bounding rectangle. That is, every pattern
corresponds to an l2-tuple V = (70 , 7i, —, 7/)> where each tile (x,y, o) in the pattern
contributes

2 i / * + i (' + 1) - [l + [!(*-tf)l+a] to 7

10.3 Symmetries
We may employ the preceding vector description to define a canonical pattern—that
is, the pattern that represents its free equivalence class. However, the choice of a
rectangle as the bounding region, together with the asymmetry due to distortion of
the triangles, poses certain difficulties. To appreciate this point it is perhaps best to
see what the bounding rectangle looks like in the original <3.3.3.4.4>-tessellation. The
actual arrangements of the tiles which correspond to the various types of bounding
rectangles are shown in figure 32.

A symmetry transformation is one that leaves the bounding region invariant in the
space. One may observe from figure 32 that a rotation through 7r leaves the arrangement
of tiles corresponding to rectangles of types 1 and 3 invariant in the plane. Consequently
a IT rotation of the bounding region may describe an isomorph of the current spanning
pattern.

Other symmetry transformations do apply. Consider, as an example, the subpatterns
of a type 1 rectangle indicated by the unshaded sections of figures 33(a) and 33(b). i

Type 1 Type 2 Type 3

Figure 32.

On the generation and enumeration of tessellation designs 237

Suppose there is a pattern which spans the bounding rectangle as well as the unshaded
region, and also does not contain any tile belonging to the shaded section. Clearly
this region is invariant under a horizontal reflection about the line y = \ly. Moreover
there are other types of horizontal reflections that may apply depending upon the
subregion under consideration. Each type of horizontal reflection leaves one of the
columns of simple squares invariant in the plane, with the exception of two special
cases in the cases of bounding rectangles of types 2 and 3 (see figure 34). For
example, let h0 and I15 respectively denote the horizontal reflections that leave the
regions in figures 33(a) and 33(b) invariant in the plane. Notice that h0 leaves the
first column of simple squares invariant in the plane, and HQ leaves the last column of
simple squares invariant in the plane. For particular bounding rectangles of types 1,
2, and 3, the various regions that remain invariant under such horizontal reflections
are shown in figure 34.

Further, in the cases of rectangles of types 1 and 3, we may compose these
horizontal reflections with the symmetry transformation IT. Let fg denote the
composition f{g{)). Then, for example, for the reflections h0 and ho of figure 33,
we have v0 = h07r = 7rho and VQ = ho7r = 7rh0. They are labelled by the letter v
since they may have the effect of a reflection about the line x = \lx, a vertical
reflection.

In general let c be the x-coordinate of a column of simple squares. The coordinate-
map transformation of the horizontal reflection, hc, that leaves this column invariant
in the plane is given by:

K- (x,y, o) -> (x, ly -y-\\{x- c~ a)J, a) .

For rectangles of types 1 and 3 the corresponding reflection about the line x = \lx is
given by:

vc = hcir: (x,y,o)-+ {lx -x,y- [\{lx - x ~ c + a) J , - a) .

Furthermore, for rectangles of types 1 and 3, for any hc there exists an h^ such that
hc = 7rĥ 7r and h^ = 7rhc7r. If c is the x-coordinate of the ;th column from the left
then c is the x-coordinate of the ;th column from the right.

In the cases of rectangles of types 2 and 3 there are subregions which remain
invariant in the plane under horizontal reflection yet do not preserve any column of
simple squares. They correspond to the diagrams marked with asterisks in figure 34.
Notice that these regions either preserve the first column of triangular tiles (with the
exception of the topmost o = -1 tile) or the last column of triangular tiles (with
the exception of the bottommost o = 1 tile). We will denote the horizontal
reflection of these two kinds of regions respectively by hj and h§. The coordinate-
map transformations for hj and I15 may be determined from the coordinate-map

Figure 33.
(a) (b)

238 R Krishnamurti, P H O'N Roe

transformation for hc. They are given by:

h j : (x,y,o) -> (x,ly - j / - l - ' l i (x - l - a) J , a)

and

hg: (x, * , (*) - • (x , / y - ; y + l - L i (x - / x + l - a)] , a) •

For type 2 rectangles only hg applies. In the case of type 3 rectangles we have the

Type 1

K-

(h0 = h6, h* = h4, h* = h2 , hg = h0)

Type 2

K~

h2-

V

h2-

M-

<

Figure 34.

On the generation and enumeration of tessellation designs 239

additional transformations vj and vg given by:

vS = hjTr: (x,y,a)^ Qx-x, y- 1 -L£(k - x - l + a)], - a) ,

and

vg = hg7r: (x,y, o) -• (/* - x , ;> + l -L£(-x + l + a)J, - a) .

All the symmetry transformations, represented as coordinate-coordinate maps, are
shown in table 8.

Rather than ask the question whether or not the pattern may have a horizontally
reflected isomorph by examining the subregion it spans, it is convenient to apply the
transformation directly to the bounding rectangle. Since the transformation leaves
the subregion invariant in the plane, it has the effect of mapping the shaded tiles to
positions in the plane whose ^-coordinates are either less than 0 or greater than ly.
Thus, if a pattern has a tile which is mapped to a position outside the bounding
rectangle, it cannot possibly possess a horizontally reflected isomorph.

On the other hand we may have a pattern that spans the subregion yet under a
horizontal reflection spans a smaller bounding rectangle. Examples of such patterns
are shown in figure 35. In figure 35(a) the isomorphic pattern does not contain a
tile which has a y-coordinate equal to ly, and in figure 35(b) the isomorphic pattern
does not contain a tile which has a ^-coordinate equal to 0.

Type 3

h$,-

*

V

*

(hr = h 5 , h 5 E=h 3 , h5 = hj)

Figure 34 (continued).

240 R Krishnamurti, P H O'N Roe

Table 8.

Group element Symbol Coordinate-coordinate map:
(x,y,o)-*

Types of rectangle

1 Rotation through n it

Reflection about the horizontal:
2 hc

3 K
4 ha

Compositions of the above:
5 vc

6 vS
7 V6

{lx-x,ly-y, -o)

(xjy-y-^ix-c-o)]^)
(xJy-y-l-Ux-l-a)]^)
(x,ly-y + l-[k(x-lx + l-o)\9o)

Qx-x,\
Qx-x

y-ti(lx-x-c+o)\,-o)
y-i-[iQx-x-i+o)\,-o)
.y + l - lK-x + l + a)],-a)

1,3

1,2,3
3
2,3

1,3
3
3

(a)

•^

Figure 35.

r0

On the generation and enumeration of tessellation designs 241

Let r = (70, 7i, ...,7/) and Tr = (70, 7i , ..., 7)), where r is an element of the
group of symmetry transformations Tt for a rectangle t. Suppose

Tf = {T E Tt: the pattern under r has a tile lying outside the bounding rectangle}

and

T" = {r e Tt: the pattern under r has 70 = 0 or y\ = 0} .

Then any word T is canonical if and only if

T" = 0 and r > TT , r G r t - Tt .

10.4 Algorithm
It is easily seen that the nontrivial <3.3.3.4.4>-pattern enumeration problem reduces to
the graph problem 5.1(b). Let S* = {Sx,S2,S3,S4}, where

Sx = { (x ,0 ,a)} , S2 = {(x,ly,o)}, S3 = {(0,y, a)}, 6*4 = {{lX9y, a)} .

Let £ denote the type of the bounding rectangle and let u = (ux, uy, ua) be a vertex
in the corresponding trellis. Then the following distance measures may be defined.

10.4.1. ua = 0 .

d(Su u) = uy ,

d(S2 ,U) = ly-Uy,

\\ux

^ > ") = j f (^ - i) + i

,,„ x f f (^ - ^)

if t = 1,2
if f = 3 ,

if f = 1 ,
d(S4,u) =

l ! (^ - ^ - l) + l if / = 2,3 . ,

10.4.2. ua = ±1 .

d{Su u) = minjmax{2w>. - ? (1 + w a X w>>}> w^ + 1 + A:x j ,

d(S2,u) = min\max{2(ly -uy) + %(ua-l), ly-Uy}, ly-Uy + \ + k2? ,

$ (" * - " a) + "a if r = 1,2 ,

max{fw^-j(l + wa), w^} if r = 3 ,

l (^ " " x + " a) ~ " a if f = 1 ,

t (t - « J + 4("a-D if r = 2,3 ,

d(S3,«) =

^(^4, U)

where

kx =

and

k2 =

1 if ux — lx and ua = —1

0 otherwise,

1 if ux = 0 and wa = 1 ,

0 otherwise.

We also need the following distance measures:

diSi + S,-,**) = mm{d(Si9u) + d(Sh-u), d(St n Sf, u)}

for (/,/)G {(1,3), (1,4), (2, 3), (2, 4)}.

242 R Krishnamur^i, P H O'N Roe

Let Gi, G2,..., Gq-{ be the sequence of graphs constructed. Let vq be the current
candidate. Then vq is in Gq if and only if

d(Gq> tS) = min{d(G,-i, ±S), d(Gq, S1 + 54) + d(Gff, S2 + S3),

where the d(Gq,St + Sj) are calculated according to the recurrence formulae in
section 5.1.1. This is the distance criterion that must be satisfied to generate all
<3.3.3.4.4>-patterns with content p.

11 <3.3.4.3.4>-patterns
The <3.3.4.3.4>-tessellation may be seen as a bidirectional arrangement of strips in
which each strip consists of alternating squares and pairs of triangles as shown in
figure 36. We may regard this tessellation as being composed of elastic bands which
when perturbed may take on the appearance of the tessellation consisting of squares
and right-angled isosceles triangles depicted in figure 37. In other words the <3.3.4.3.4>-
tessellation may be mapped onto the square grid, with the triangles oriented in the
manner shown in figure 37. Notice that the triangles manifest themselves in one of
four distinct orientations which occur as two separate pairs, each of which forms a
divided square. This allows us to define an integral coordinate system for the
<3.3.4.3.4>-tessellation.

Each square, simple or divided, in the grid is allocated integer Cartesian coordinates
(x, y) of the plane. To this is added a third coordinate, ox, which distinguishes
between the orientations associated with the squares, and a further fourth coordinate,
a2 r which distinguishes between the triangles that form a divided square. The pair
(ol9 o2) may be regarded as the tile designator. That is, every tile is associated with
four integral quantities, (x,y, ol9 o2), where (x,y) G Z2 and (a l 5 o2) G (Z3)2. The
values Oi, o2 taken on for each type of tile are as follows:

tile • t\ ^ V A
tile designator <̂

[o2

0

0

- 1 - 1

- 1

\
/

/

/

/

/

\

\

\

/

/

/

\

\

\

\

/

/

\

\

\

V

/

/

/

/

\

\

\

/
\

\

/

/

/

/

/

Figure 36. Figure 37.

On the generation and enumeration of tessellation designs 243

The neighbours TV of any tile (x, y, a1? o2) are given by
r{(x,y + l, 1, l),(x,y-l, l , - l) , (x + l , j > , - l , 1) , (X - 1 , J > , - 1 , - 1) }

or

{(x,y + l,-l,-l)9(x,y-l,-l, lUx+l,y, 1, l) , (x - l , j v i , 7 l) }

N(x,y, 0,0)

and

N(x,y,o1 =£ 0, o2 =£ 0) = {(x- o2, y, 0, 0), (x,y- olo2, 0, 0), (x, j / , a^-ffa)} •

By assigning the origin to any tile, we may observe that the triangular tiles have
(x,y) coordinates such that either all of them have x + y odd or all of them have
x + y even. Moreover any diagonal consisting of divided squares consists of oppositely
oriented squares in an alternating fashion.

11.1 Bounding regions
Every <3.3.4.3.4>-pattern may be encased within a rectangle. There are two types of
bounding rectangles: one which has a simple square associated with the origin and
whose immediate x-neighbour is a ox = - 1 divided square, and the other has a
ox = 1 divided square as the origin. Let lx and l2 denote the sides of the rectangles
along the x- and ^-directions respectively. For both types of rectangles l2 < lx, and
in addition for the type 2 rectangle lx and 4 must be odd. It may be easily verified
that, for any other choice both for origin and orientation, the resulting rectangle can
be mapped into one of these two types of rectangles through a symmetry motion in
the plane. In short these two types characterize the fixing of the bounding regions
in the plane. The two types of bounding rectangles and the arrangement of tiles in
the <3.3.4.3.4>-tessellation to which they correspond are shown in figure 38.

We may derive the explicit algorithms for the set of bounding regions that house
the population of <3.3.4.3.4)-patterns with content p. As usual let a bounding
rectangle be denoted by the triple (/l9 4 , 0, where t refers to the type of the rectangle.

Type 1 / 2

\

\

/

/

/

\

\

/

/

/

\

\

Type 2 '.

\

\

\

/

/

\

\

\

/

/

\

\

\
h /, H

Figure 38.

244 R Krishnamurti, P H O'N Roe

11.1.1. Type 1.
It can be easily demonstrated that the following conditions on lx and l2 must be
satisfied:

h + h ^ P +1 maximal-stretching condition;

hh ^ %V sufficiency of tiles;

1 < l2 < l\ orientation of rectangle.

Solving these inequalities gives the set

i^={(|~^y],l,l)} u VhA2AY 2</2<[^-1J,

max"

11.1.2. Type 2.
Let od be the odd ceiling function

odOO = x+(\-x mod 2) .

In this case lx and ^ must satisfy

k + k < p + l ,

i < /2 < / , ,

/ j , l2 odd .

From which we get the set

2*P= {(2^J + 1, 1,2^ U j ft, 6,2): fc€= {3, 5, . . . ,od([^J)} ,

maxjfc, o d (p | ^ |) j < /i < od(p-fc)

At this stage we may remark that* for a fixed p, each of the two trivial bounding
rectangles—that is, with l2 = 1—contributes towards a single pattern. We may
therefore disregard these rectangles and from now on assume that l2 > 2.

11.2 Coding
The trellis of a bounding rectangle (/1? ^ , t) is constructed in the usual manner. Let
h — h ~ 1 a n d ^ = h ~~ !•• We may then associate with the vertices of the trellis
coordinates (x, y, au o2), where 0 < x < lx and 0 < }> < ly. We may also assign
labels to the vertices in the following manner. Let loc be the function defined as
follows:

loc(O) = 0 ,

loc(l) = /x+ri/xl + f ,

1OC(J0 = locO>-2) + 3/» + 3 , y> 2 .

Then a vertex (x, j>, a1? a2) has the label

locO0 + [f (x - a a) l + (l + a a) .

On the generation and enumeration of tessellation designs 245

A <3.3.4.3.4>-pattern may be associated with a word defined in the usual manner.
As in the case of polyominoes and <3.3.3.4.4>-patterns this word may be partitioned
into l2 subwords, where each subword represents an integral quantity. In other
words every (3.3.4.3.4>-pattern in an (/l5 l2, t) rectangle is associated with an /2-tuple
r = (To, T I , ..., 7/)• Each vertex (x, y, ol9 o2) in a pattern contributes to yy

2'* + r*/*l + f-r4(*-aa)i-(i + aa) if y = 0 mod 2

or

2'x + li/xJ + 3 - f - r l (x - a 3) l - (l + a a) {f y = 1 m o d 2 .

11.3 Symmetries
If we examine the arrangements of tiles in the <3.3.4.3.4>-tessellation that correspond
to the boundary rectangles defined on the square grid, we observe that the bidirectional
distortion of the triangular tiles essentially hides the asymmetric nature of the
arrangements. Figure 39 illustrates examples of arrangements that correspond to the
different conditions imposed on lx and l2. From figure 39 it may be seen that only
when both lx and l2 are odd do the arrangements of the tiles possess any kind of
symmetry. In short when either lx or ^ is even the <3.3.4.3.4>-patterns are uniquely
generated within their bounding regions. That is, every pattern in these bounding
rectangles is the representative of its free equivalence class.

Let us consider the situation when both lx and l2 are odd. Two cases arise:
(1) l2 < lx and (2) lx = l2. When /̂ < h there is only one symmetry motion in the
plane which leaves the bounding rectangle invariant. This is a rotation through 7r
about the centre. Notice that this movement, although preserving the simple squares
(which in any event it must), does interchange the orientation of the triangular tiles
within a divided square. That is a o2 = 1 tile transforms into a o2 = — 1 tile and
vice versa. Consequently we may describe a IT rotation by the following coordinate
mapping:

TT: (x9y9ol9o2)-* (Ix-x9ly-y9 ol9-o2) .

When lx = l2 other symmetry motions also leave the bounding rectangle invariant.
For instance a \it or a -£TT rotation about the centre leaves a type 1 rectangle
invariant in the plane. However, these motions interchange a ox = 1 square into a
Qj = - 1 square and vice versa. The coordinate-map forms of the two symmetry
transformations are:

\it\ (x,y, ol9o2) -> (!y-y9x9-ol9-o1o2)

and

i?r: (x9 y9 ax, a2) -> O , lx - x9 -ox, tfi a2) •

In the case of type 2 rectangles, two different symmetry transformations need to be
considered. They are the reflections about the lines x = y and x = —y respectively.
In coordinate form they may be described as

R: (x9y9ol9o2)-+ (y,x,ou oxo2)

and

r: (x9y9ol9o2)-+ (!y-y,lx-x9 au-axa2) .

The symmetry elements are summarized in table 9, which includes a pictorial
illustration of the effect of the mappings on the orientations of the triangular tiles in
the square grid.

246 R Krishnamurti, P H O'N Roe

Canonical patterns are defined in the usual manner. That is, a pattern is the
representative of its free equivalence class if and only if

r > rT, rert,
where FT, r, and Tt have their usual meaning.

L = L . /, * U

Type 1 lx, l2 even

/15/2 odd

lx even, l2 odd

/. odd, /, even

Type 2
/ j , / 2 o d d

Figure 39.

On the generation and enumeration of tessellation designs 247

Table 9.

Group element Symbol Coordinate-coordinate Permutation of triangular
map: (x, y, ox, o2)~* tiles under mapping

£ V
1 Rotation through 7r TT (lx-x, ly~y, ai9 -o2) \\ [I

^ A

2 Rotation through \ir \TI Qy-y,x,-Oi,-OI02) X

_ k — V
3 Rotation through -\TI \it (y, lx-x, -ox, Oi02) ^

4 Reflection about the
x = y diagonal

5 Reflection about the
x — -y diagonal

R

r

0 , x, ot, aj o2)

(ly-y,lx-x, al9 -Oi02)

^ — /l

Q v
n (1

^ ; A
k \P
(1 ^

11.4 Algorithm
We have again reduced our pattern enumeration problem to problem 5.1(b). Let
S* = {^i,S2, S3,S4} be defined as in section 10.4, except that o is replaced by au o2.
The same distance criterion as in section 10.4 must be satisfied. The distance
measures for the <3.3.4.3.4>-patterns are defined as follows. Let u = (ux, uy, u0i, ua^)
be a vertex in the trellis of type t. Then

d(Sx, u) = \l(uy - uaiu02)] + uau02 - (t+ ux - 1) mod 2 ,

d(S2, u) — \\{ly - uy + u0u02)} - uaua2 ~(t + ly + ux - 1) mod 2 ,

d(S3,u) = \%(ux -wCT2)l + ua2 ~(t+ uy - 1) mod 2 ,

d(S4, u) = [§(/* -ux + ua2] ~u02 -(t+lx + Uy - 1) mod 2 .

12 <3.6.3.6>-patterns
Recall that the hexagonal tessellation can be associated with an integral coordinate
system. Each tile is given the coordinates (x, y, z) such that x + y + z = 0. Moreover
the tessellation may be coloured in a natural way using three colours according to
whether (x — y) mod 3 = 0, 1, or 2. Suppose that the tiles of a particular colour are
designated as 'unmarked'. Suppose further that the tiles of the other two colours are
subjected to the following marking operation

with the stipulation that every 'marked' tile is adjacent to its unmarked neighbours
through unmarked edges. The application of this marking operation is illustrated in
figure 40(b). Let us now contract all the marked edges to a point; that is, apply the
following reduction operation:

O — A

248 R Krishnamurti, P H O'N Roe

The result is the <3.6.3.6>-tessellation shown in figure 40(c). By means of these two
operations we have successfully established an integral coordinate system for the
<3.6.3.6>-tessellation. More importantly we have shown that each <3.6.3.6>-p at t e r n -
connected or otherwise—is derivable from some polyhex. We may therefore employ
the polyhex enumeration to generate the <3.6.3.6>-patterns.

It is instructive to reflect upon the implications of the marking and reduction
processes. First,.we may notice from figure 40(b) that every marked tile is adjacent
to its marked neighbours through a marked edge. Furthermore, on applying the
reduction operation these tiles become triangles that share only a common point.
Second, marking imposes an orientation on the hexagonal tiles in such a manner that
all marked tiles of one colour reduce to an upwards triangle (A) and those of the
other colour reduce to a downwards triangle (V). The unmarked tiles remain
unaltered. Thus marking is equivalent to defining a marking function which maps the
colours of the hexagonal tiles to the tile types in the <3.6.3.6>-tessellation. Finally,
marking the hexagonal tessellation results in a reduction of the adjacencies of the
marked tiles by an additive factor of three. Which three of the original neighbours
remain depends on the orientation of the marked tile.

We stated earlier that a (3.6.3.6>-pattern corresponds to a marked polyhex. However,
marking a polyhex does not necessarily yield a connected <3.6.3.6>-pattern, for precisely
the reason that marking engenders a reduction in tile adjacencies. This requires us to
modify the polyhex enumeration to ensure that only those polyhexes which are
'markable' are generated.

There is another difficulty introduced by marking. This is due to the fact that
marking may be carried out in three possible ways, each dependent on the colour of
the hexagonal tile that is preserved as a hexagon after marking. Where M denotes a
marking function, the three possible ways are listed as follows as mappings between
colour and tile type:

(x-y) mod 3 M0 Mx M2

O V A
A O V
V A O

This listing may be explained as follows. Suppose tiles of colour c are preserved.
The marking function is then Mc, and Mc[(c+ 1) mod 3] is an upwards triangle and
Mc[(c+ 2) mod 3] is a downwards triangle.

(a) (b) (c)

Figure 40.

On the generation and enumeration of tessellation designs 249

For computational reasons it is convenient to represent the tile types of the
<3.6.3.6>-tessellation by numerical values. A possible choice for the tags is as follows:

tile type Q ^ \J

tag 0 1 2

This choice for the tags allows us to define the marking functions as simple mappings
from Z3 to Z 3 :

Miic) = (c-i) mod 3 , z = 0 , 1 , 2 .

The preceding discussion provides the requisite background to develop the (3.6.3.6)-
pattern enumeration algorithm. One final comment is necessary. Let i indicate the
marking function. Let TV denote the neighbours of any tile (x, y, z). Then the
neighbours are given as follows.

12.0.1. Mt [(x-y) mod 3)] = 1 .

N(x,y,z) = {(x,y+l9z-l),0c-l,y,z+l), (x+l,y-l,z)} .

12.0.2. M{[(x-y) mod 3] = 2 .

N(x,y,z) = {(x,y-l,z+l),(x+l,y9z-l)Ax-l,y+l,z)}.

12.0.3. Mi[(x-y) mod 3] = 0 .

N(x,y,z) = {(x,y±l,z*l), (x+1,y, z±\\ (x±\,y + \,z)} .

12.1 Generating the (3.6.3.6)-patterns from the polyhex
We have just seen how the <3.6.3.6>-pattern enumeration may be treated as a special
case of the polyhex enumeration problem—though with a difference. Essentially the
idea is to generate the polyhexes and apply in turn the three marking functions which

(a) (b) (c)

Figure 41.

250 R Krishnamurti, P H O'ty Roe

yield one of the following cases:
(a) the patterns are unconnected;
(b) the patterns are isomorphic under a symmetry motion;
(c) the patterns are distinct;
(d) some combination of these three—that is, one pattern may be unconnected and

the other two isomorphic, and so on.
A few examples illustrating this point are shown in figure 41.

How can we refine this process to ensure that only markable polyhexes are
generated? If we recall that a polyhex is a connected subgraph of its bounding
hexagon, which in turn is embedded within a triangular region (see section 7.1), then
it represents a <3.6.3.6>-pattern provided that its graph remains connected after the
adjacencies of the triangular region have been altered by the marking function.
Consider the triangular region ('super trellis') for the population of 6-hexes shown in
figure 42(a). The vertices are labelled by their colours. The effect of the marking
functions M0,MX, and M2 are respectively illustrated in figures 42(b), 42(c), and 42(d).
Here the vertices are labelled by the tags of the tile type they represent in the
(3.6.3.6>-tessellation. To generate the <3.6.3.6>-patterns with content p, we generate
the p-hexes in each of the three marked trellises by use of one of the techniques
discussed in section 7.4. Therefore the <3.6.3.6>-pattern enumeration requires
performing the polyhex enumeration thrice!

Figure 42.

>0

(d)

12.2 Symmetries
Since we are dealing basically with polyhexes, we need only consider those symmetry
motions that leave a bounding hexagon invariant in the plane. There is a problem
however. The symmetry motions which preserve adjacencies of the tiles do not
always preserve the colours of the tiles. They only preserve isomorphisms of the tile

On the generation and enumeration of tessellation designs 251

colours onto themselves. That is, a tile of colour cx may be mapped onto a tile of
colour c2 . Consequently a symmetry motion may map a polyhex marked under Mt

onto a polyhex marked under Mj, / =£ j . Since every hexagon in the pattern is always
mapped onto a hexagon, all we need to know is the colour of the hexagonal tile after
the symmetry motion has been applied, and from which the new marking function is
easily determined. In other words, in addition to the list of symmetry elements
summarized in tables 2 and 3, we need a list of the effect of the symmetry
transformations on the indicators of the marking functions.

12.3 Coding
Figure 43 shows another peculiar phenomenon which may be attributed to the
marking function. Notice that these are two isomorphic patterns that correspond to
the same graph, the difference being the application of different marking functions.
Hence we cannot use the standard binary representation to describe the pattern. We
must be able to distinguish between the marking functions that apply. A radix 4
scheme solves this problem entirely.

Every <3.6.3.6>-pattern may be uniquely represented by a (lx+ l)-tuple of integers,
T = (y~ix, 7-ix+i 5 •••> 7o)> where lx denotes the x-diameter of the bounding hexagon.
Let c denote the current marking indicator. Then every vertex (x, y, z) of the trellis
in the pattern contributes

{3-Mc[(x-y) mod 3] } 4 ^ to yx .

A pattern is canonical—that is, the representative of its free equivalence class—if
and only if

r > rT , r e Th,
where r denotes the symmetry motion and Th is the group of symmetries of the
bounding hexagon, h. TT = (yLj , y'-lx+1,..., 70) may be easily computed as follows.
Let T(C) denote the colour of the tile that represents the hexagon after the application
of r. Then every tile (x, y, z) in the original pattern contributes

(3-MT{c){[T(x)-r(y)] mod 3]}>4"^> to yT{x) .

nac\ XJGO
Figure 43.

12.4 Algorithms
The algorithm is the same as the polyhex enumeration but with the following
modifications. The initial vertex as before is chosen from the line x = 0. This
defines the root of the search. We select in turn the marking-function indicator for
this root and keep it fixed for the remainder of the search. The set of valid
neighbours of any vertex used to augment the current partial graph is dictated by the
sets in 12.0.1 through 12.0.3 depending upon the tag of the vertex. The pattern is
coded according to section 12.3. The first occurrence of the vertex which represents
the hexagon in the corresponding <3.6.3.6>-pattern is recorded to facilitate the
symmetry transformation for canonical testing. This vertex must be either the root
of the search or the second vertex chosen in the construction of the graph.

252 R Krishnamurti, P H O'N Roe

13 <3.12.12>-patterns
Consider the <3.12.12>-tessellation, shown in figure 44(a). Suppose we coalesce the
triangles to a point. The result is the hexagonal tessellation. For ease of explanation
we will emphasize the points in the manner shown in figure 44(b). The hexagons in
the latter tessellation represent the dodecagons and the points correspond to the
triangles. In a similar fashion every <3.12.12>-pattern corresponds to some polyhex
with certain points distinguished or 'marked'. Examples of <3.12.12>-patterns and the
corresponding marked polyhexes are shown in figure 45.

Therefore the <3.12.12>-pattern enumeration problem may be solved by the
following two-stage process. First let us construct in toto the list of connected
patterns consisting of n dodecagons, for all n< p. Then for each pattern in this list
insert, if possible, the requisite number (p - n) of triangles at the appropriate places.
This procedure is equivalent to marking p — n points on each rc-hex from the list of
rc-hexes for all n < p. At this stage it should be remarked that any symmetry
transformation that applies to the polyhexes also applies to the <3.12.12)-patterns,
whence only the list of representative or canonical polyhexes need be considered.
From section 7 we have an algorithm that generates polyhexes canonically within
their bounding hexagons, which are in turn embedded within a triangular region
(figure 18). The remainder of this section is devoted to the description of how the
polyhexes may be marked. We will assume that n < p, for otherwise there is
precisely one (3.12.12>-pattern with content p that corresponds to a p-hex, and this
pattern consists of only dodecagons.

(a) (b)
Figure 44.

Figure 45.

Figure 46..

On the generation and enumeration of tessellation designs 253

The point-marking problem is not the straightforward combinatorial exercise it may
appear at first—namely selecting /? — n points from the list of points on the polyhex
to be marked. Consider the two point-marked versions of the same polyhex shown in
figure 46. The two <3.12.12>-patterns represented by these marked polyhexes are in
fact isomorphic. This may be attributed to the fact that the points map onto one
another under an element of the symmetry group that leaves the polyhex invariant in
the plane. We may therefore say that the two sets of points are 'indistinguishable'
or are in the same block of the automorphism partition of the points under the
symmetries that leave the polyhex invariant in the plane. Therefore, in order to generate
the representative or canonical <3.12.12>-patterns, a description for the sets of
indistinguishable points for each polyhex is necessary.

13.1 Representation of the points on the polyhex
Recall that every polyhex with content less than or equal to p may be embedded
within a graph represented by a triangular region whose vertices have integral
coordinates (x,y, z) with x + y + z = 0, where —p < x, y < 0 and 0 < z < p. This
graph consists of triangular faces. Suppose we insert a vertex in each face, and adjoin
these vertices by edges to the vertices at the corners of their faces. We obtain a
subgraph of the graph of the <3.12.12>-tessellation. Each vertex in the triangular faces
represents a triangle of the tessellation. Every other vertex represents a dodecagon.
Effectively we may regard the original triangular graph with its vertices as the
framework for describing the <3.12.12>-patterns. Rather than employ the vertex and
edge insertion operation just described, we may allow each triangular face to stand
for a triangle of the tessellation. Since every dodecagon is surrounded by six triangles
we must add triangular faces along the perimeter of the triangular region to account
for all possible <3.12.12>-patterns with content p. The result is the hexagonal region
shown in figure 47(a). The trellis which houses the graphs of all possible (3.12.12>-
patterns with content p is shown in figure 47(b).

The triangular faces may be assigned integral coordinates. For this we must first
fix the relative order of the faces around a vertex. We adopt the convention indicated
in figure 48. This convention may be explained as follows. Every vertex (x, y, z) has
six neighbouring triangular faces designated as Nf(x,y, z), 1 < / < 6. Nj(x9 y, z)
contains the coordinates of the triangular face in the /th position according to the

(a) (b)
Figure 47.

254 R Krishnamurti, P H O'N Roe

relative order specified in figure 48. The coordinates of the faces around a vertex
(x, y, z) are then given by:

N1(x,y,z) = (z,x-y) ,

N2(x,y,z) = (z,x-y-\) ,

N3(x9y9z) = (z + l , * - j > - l) s

Let loc be the function

loc(O) = 1 ,

loc(z) = loc(z - l) + 2z + l ,

N4(x,y,z) = (z+l,x-y) ,

Ns(x,y,z) = (z+l,x-y+l)

N6(x,y,z) = (z,x-y+l) .

z > 1 .

Then every triangular face (x,y) in the hexagonal region [figure 47(a)] may be
uniquely numbered in the range 1 through p2 4- 4p -f 1 by the quantity

loc(x) + x + y+\ .

Hence, given any vertex (x, y, z), the six triangular faces surrounding it may be
described by their face numbers calculated according to this formula. Conversely an
inverse mapping for the triangular faces may be defined which uniquely describes
each face's position in the hexagonal region. To each face (x,y) we may assign a
pair (/, (x\ y\ z'>), which states that the face (x,y) is the /th neighbour surrounding
the vertex (x\ y\ zf) according to the convention in figure 48.

Figure 48.

13.2 Coding the triangles of a <3.12 A2)-pattern
Suppose we are given a canonical rc-hex defined within its bounding hexagon. Let the
z-diameter lz = z — z. Then it is clear that the triangular faces that border this
poly hex have coordinates (x9y) where x must lie in the range z through z + 1. Since
every pattern derived from this polyhex is a (p-^-combination of triangular faces,
we must be able to represent this combination uniquely. Two methods suggest
themselves: (a) a lexicographical ordering of the face numbers in the combination, or
(2) an (/z+ l)-tuple of integers E = (e$, e$+1 , . . . , e^+j). In the second method each
face (x, y) in the combination of p - n points contributes

2*-y+i to e* .

13.3 Automorphism partition of the points and the generation of (3A2A2)~patterns
We have just seen how the points of a polyhex may be uniquely described as a set of
face numbers calculated with respect to the hexagonal region shown in figure 47(a).
We may recall from section 7.2 that a polyhex is represented by an (/*+ l)-tuple of
integers F and that the polyhex is canonical if and only if

r > r T , TGTH9

where TT represents the word of the isomorph under r, which is an element of Th,
the group of symmetries that leave the bounding hexagon invariant in the plane (see
tables 2 and 3).

On the generation and enumeration of tessellation designs 255

Suppose we have just generated a n-hex with m points. Let C — {r: Y = YT}.
Four cases arise.

13.3.1. Case 1: m < p — n.
In this case no <3.12.12>-pattern with content p may be derived from the polyhex.
For instance a single hexagon cannot contribute to the <3.12.12>-patterns with
content 8. All patterns with content 8 must contain at least two dodecagons.

13.3.2. Case 2: m = p — n.
In this case there is exactly one <3.12.12>-pattern that corresponds to the fl-hex.
Every point in the polyhex is marked.

13.3.3. Case 3: nt> p — n and C — {i}.
In this case the polyhex has no symmetries (other than identity, of course) and
therefore every point in the polyhex is distinguishable. Each combination of p — n
points from the m points of the n-hex when marked yields a distinct <3.12.12>-pattern

(m \
_ I <3.12.12>-patterns with content p that correspond

to the asymmetric «-hex.

13.3.4. Case 4: m < p-n and Ci= 0 , {i}.
Here the polyhex remains invariant for every T £ C. Consider the effect of one such r
on the vertices of the graph of the polyhex. Under r, a vertex v is permuted to
occupy the position occupied by T(V). At the same time it changes the relative order
of the triangular faces that surround it. For instance the ;th neighbour Nj(v) of
vertex v may become its kth neighbour Nk[r(v)], k =£ /, when v moves into the
position denoted by T(V). In short r defines a permutation of the triangular faces in
which Nj(v) maps into Nk[T(v)]—or, Nf(v) and Nk[r(v)] are in the same block of the
automorphism partition and therefore are indistinguishable. The permutations of the
relative order of the triangular faces around a vertex under the symmetry motions
isomorphic to the elements of D6 are listed in table 10.

Table 10.

Group element Symbol Permutation of the relative order of the triangular faces
surrounding a vertex

5 , 6 ^ 6 1

2

3
4
5

6
7
8

9

10

11
12

Identity

Rotation through -n

i

7T

1 -• 1,2 -+ 2, 3 ^ 3 , 4 ^ 4 ,

1 ^ 4 , 2 ^ 5 , 3 ^ 6

Vertical reflection about the axis that bisects:
the x lines
the y lines
the z lines

v*
V>>
Vz

Horizontal reflection about:
the x lines
the y lines
the z lines

Rotation through \-n

Rotation through —\n

Rotation through \-n
Rotation through -\n

h*
hv

K
h

h

J*
i*

1 «> 5, 2 < > 4 , 3 ^ 3 , 6 -> 6
1 <» 3,4 o 6, 2 ^ 2 , 5 ^ 5
2<»6, 3+>5, 1 -+ 1,4-* 4

1 o 2, 3 <* 6, 4 o 5
1 ^ 6 , 2 ^ 5 , 3 <»4
1 «* 4, 2 o 3, 5 <» 6

1 - * 3 - > 5 - M
2 - * 4 - * 6 ^ 2
1 ^ 5 - > 3 ^ 1
2 ^ 6 - > 4 - > 2

1 ^ 2 - + 3 ^ 4 ^ 5 - > 6 - * l
1 ^ 6 -> 5 ->4 - * 3 - * 2 - * 1

256 R Krishnamurti, P H O'N Roe

Table 10 may be read as follows. Consider the symmetry motion IT. Its
permutation is described as 1 <> 4, 2 o 5, and 3 <> 6. That is, N^v) and N4[ir(v)]
are indistinguishable, N^(v) and Nxlirfju)] are indistinguishable, N2(v) and A/S[TT((;)] are
indistinguishable, and so on. Another example is the \-n rotation, whose permutation is
described as l - > 2 - > 3 - > 4 - > 5 - ^ 6 - * l . Here Nx(v) and N2[%ir(v)] are in the same
block, N2(v) and N3[%ir(v)] are in the same block, and so on. Table 10 forms the
basis for constructing a description of the automorphism partition of the points in
the polyhex.

The computational steps that have to be employed to generate the (3.12.12)-
patterns from the given polyhex are now briefly described. Initially let FUF2,..., Fm

be one-element sets containing the face numbers of the triangles bordering the polyhex.
Suppose vq is the gth vertex chosen in the search procedure (algorithm 3). We
examine each triangular neighbour of vq, and if it is has not been examined before
we perform the following operations. Let / be the neighbour examined. Let m
denote the current number of triangular faces that border the partial graph Gq.

Step 1: Mark Nj(vq) as examined.
Step 2: Fm+ <-!<- {N,(vq)} .
Step 3: Define the inverse mapping IN.(u } <- (/, vq).

For the purpose of backtracking every 'new' neighbour examined must be recorded.
Consider a r £ C For each face / in the list, examine the inverse mapping

If = (/, v). That is, / = Nj(v). From table 10 suppose Nj(y) maps into Nk[r(v)]. We
have the permutation / - » Nk[r(v)]. Let / be in set Fa and Nk[r(v)] in set Fp. Two
cases arise

13.3.4.1. a = p. Do nothing.

13.3.4.2. a j=]3. Perform the following set manipulations:

Fa <- Fa U F^ and Fp «- 0 .

That is, merge the sets Fa and Fp into a single set. It should be clear that if an
element in Fa is indistinguishable from an element in Fp then all elements in both sets
are indistinguishable.

This process is repeated for every r ^ C. Let the resulting sets be renamed from 1
through mb such that only the nonnull sets are considered. Moreover let them be
arranged in order of decreasing cardinalities. That is, we have the collection
{Fl9F2,...9Fmb}, where \FX\> \F2\ > ... > | F m J . Each Fj is a block of the
automorphism partition of the points.

Suppose n = p~\. Then clearly there are mb distinct patterns with content p that
may be derived from the given polyhex.

On the other hand when n < p -1 we have to generate the combinations of p - n
points from the m points which are coded according to the method suggested in
section 13.2. A <3.12.12>-pattern is canonical if and only if

E > ET , r G C ,

where ET represents the combination under r and is computed in the usual manner.
The combinations may be generated using a backtrack search strategy similar to

that adopted in algorithm 3. The root of each search is a face from each set Fj,
1 < / < mb. Once a search has been carried out with this root, all faces in the same
block of the automorphism partition of the points can be forbidden for searches with
different roots. From coding considerations it increases the efficiency if the faces in
each Ff are ordered according to decreasing x- and increasing ^-coordinates. We can

On the generation and enumeration of tessellation designs 257

employ the same type of forbidding mechanism as described in section 5. At any
search level k, once a face has been forbidden it remains forbidden for all other search
levels / > k. Moreover we can search for further combinations from a given level k if
and only if the number of unforbidden faces is not less than p — n—k.

From a computational viewpoint the sets Fa refer to the names of the sets and are
distinct from the elements they contain. Therefore any of the UNION-FIND
algorithms for set representation may be used to perform some of the manipulations
described in this section [see, for example, Aho et al (1974), Tarjan (1975), or Horowitz
and Sahni (1976) for details regarding possible computational implementations].

14 Conclusions
In this paper we have presented the following.

14.1 A computational theory for constructing spatial patterns composed of elements
of tessellations
This theory incorporates the topological and geometrical nature of these tessellations.
The topology is described through graphs. The geometry is reflected within the
integral coordinate systems associated with the tiles of the tessellation. In certain
cases additional coordinates such as the tile designator are introduced to account for
the spatial orientations of the individual tiles in the tessellation. Properties of
tessellations and their imbedded patterns may then be expressed in terms of simple
graphical properties. For instance, distances between tiles are simple graph distances
which have simple integral formulae. In fact the integral coordinate system is
necessary from a computational viewpoint since the use of traditional coordinates for
these tessellations will result in expressions that may require transcendental quantities,
which can only be approximated by sequences of rationals to within some topological
radius of convergence on the real line defined by the word size of computer memory.
This highlights the following point: to use the computer effectively one may sometimes
have to distort the space in which the patterns are defined in order to represent them.

A pattern is defined within a finite section of the tessellation, termed the bounding
region, as a labelled subgraph of the graph or trellis of this region. An algorithm that
generates labelled subgraphs of a graph is presented in section 5. This forms the
general framework for enumerating tessellation designs. Spatial transformations are
expressed in terms of integral arithmetic, which in turn may be reduced to permutations
of the labels of the vertices of the trellis.

14.2 An implicit description for spatial patterns by means of data structures
Each pattern corresponds to a data structure. The pattern properties are
computationally equivalent to algebraic-type operations on these data structures. The
enumeration algorithm essentially generates a set of data structures represented by
vectors of numbers. In other words the computational theory provides the basis for
nonnumerical descriptions for spatial patterns.

14.3 Algorithms for patterns from the archimedean tessellations
Many of the algorithms have been implemented—some in ALGOLW on the IBM
370/158 computer at the University of Waterloo and the rest in ALGOL68 on the
IBM 370/165 computer at the University of Cambridge. The results for the regular
tessellations (which are not given here) agree with those published elsewhere (Lunnon,
1971; 1972; 1975). In the case of the polycubes our results were broken down
according to the bounding regions, as opposed to Lunnon's total counts. The
implemented programs minimize computation by performing almost all the arithmetic
calculations exactly once, and during the actual enumeration phase the computations
essentially involve table look-ups (or simply memory fetches).

258 R Krishnamurti, P H O'N Roe

Each example considered in this paper attempts to illustrate slightly different
aspects of spatial enumerations.
(a) The polyomino routine describes how patterns may be represented by words over

Z2 and how these may be reduced to vectors of length O(p). Moreover each vector
requires O(p) time to construct. Therefore the worst case complexity occurs when
each pattern requires a separate path in the search tree (which is normally not the
case) and is 0(pNp), where Np is the number of distinct patterns.

(b) The routines for polyiamonds, (3.6.3.6)-patterns, and <3.12.12>-patterns demonstrate
that, by suitable operations on the hexagonal tessellations, these patterns may be
derived from the polyhexes. Moreover the polyhex routine shows that by an
appropriate manipulation of the distance criteria the need to define explicitly the
individual bounding regions may be eliminated. This is also true for the other
patterns considered in this paper. (Essentially the modified distance criteria
include the fixing conditions on the orientations of the bounding regions.)

(c) The polycube and poly rc-cube, n > 4, routines illustrate the extension of the
theory to higher-dimensional patterns. The algorithms are defined in exactly the
same manner as was done for the planar patterns.

(d) The <3.3.3.4.4>- and (3.3.4.3.4>-patterns indicate the utility of tile designators in
devising integral coordinates. Moreover they emphasize the point made earlier that
to simplify computation one may sometimes have to distort the space in which the
patterns are embedded.

(e) The section on <4.8.8>-patterns highlights the complexity of the graph structure of
the tessellation graph. It also demonstrates the need for the careful construction
of the graph-distance criterion used in algorithm 3. It is interesting to note that
some of the <4.8.8>-patterns may be obtained by point marking polyominoes in a
manner similar to that for the <3.12.12>-patterns.

(f) Though the 0.3.3.3.6)-, (3.4.6.4)-, and (4.6.12)-patterns have not been explicitly
considered in this paper, these may be derived from the polyhexes by suitable
point and line marking operations in a manner similar to that for the (3.12.12)-
patterns. Indeed the (3.3.3.3.6)-patterns are a special class of the (3.4.6.4)-patterns,
which in turn are a special class of the (4.6.12)-patterns.

4.4 Algorithms which satisfy the definition for efficient algorithms stated in the
introduction
By theorem 1 each labelled subgraph is uniquely generated. Isomorphisms are tested
for by a lexicographical comparison of two vectors of length 0(p). The order of
groups involved is 0(n), where n denotes the size of the largest polygonal tile. Hence
isomorphism requires at worst 0{np) time, where n < 12. Moreover there is a unique
lexicographical ordering of the patterns in each free equivalence class. The storage is
dominated by the memory required to house the trellis, which is 0(p2).

The algorithms presented in this paper may be easily modified to generate patterns
in which the tiles are not necessarily regular polygons, though the tessellations satisfy
the valency requirement. In these cases only the group of symmetry motions that
apply changes.

Acknowledgements. We thank Barbara Jones for typing the manuscript, Sally Boyle for drawing
the figures, and Roger Lowry of Pion Limited for many helpful comments. This work has been
carried out within the context of research programmes supported by the Open University Research
Fund, the Science Research Council, and the Department of Systems Design at the University of
Waterloo.

On the generation and enumeration of tessellation designs 259

References
Aho A V, Hopcroft J E, Ullman J D, 1974 The Design and Analysis of Computer Algorithms

(Addison-Wesley, Reading, Mass)
Bitner J R, Reingold EM, 1975 "Backtrack programming techniques" Communications of the ACM

18 651-656
Bolker E D, Crapo H, 1977 "How to brace a one-story building" Environment and Planning B 4

125-152
Bondy J A, Murty U S R, 1976 Graph Theory and Its Application (Macmillan, London)
CorneilDG, Mathon R A, 1978 "Algorithmic techniques for the generation and analysis of strongly

regular graphs and other combinatorial configurations" Annals of Discrete Mathematics 2 1-32
EdenM, 1958 "A probabilistic model for morphogenesis" in Symposium on Information Theory in

Biology Eds H P Yockey and others (Pergamon Press, New York) pp 359-370
Eden M, 1960 "A two-dimensional growth process" Proceedings of the Berkeley Symposium on

Mathematical Statistics and Probability 4 223-239
Edmonds J, 1965 "Paths, trees, and flowers" Canadian Journal of Mathematics 17 449-467
Fillmore J P, Williamson S G, 1974 "On backtracking: a combinatorial description of the algorithm"

SI AM Journal on Computing 3 41-55
Gaunt D S, Guttman A J, 1974 "Asymptotic analysis of coefficients" in Phase Transitions and

Critical Phenomena, Volume 3 Eds C Domb, M S Green (Academic Press, London) pp 181-243
Golomb S W, 1954 "Checkerboard and polyominoes" American Mathematical Monthly 61 672-682
Golomb S W, 1961a "The general theory of polyominoes, part 1, dominoes, pentominoes and

checkerboards" Recreational Mathematics Magazine A2>-Yl
Golomb S W, 1961b "The general theory of polyominoes, part 2, patterns and polyominoes"

Recreational Mathematics Magazine 5 3-12
Golomb S W, 1961c "The general theory of polyominoes, part 3, pentomino exclusion by

monominoes" Recreational Mathematics Magazine 6 3-20
Golomb SW, 1962 "The general theory of polyominoes, part 4, extensions of polyominoes"

Recreational Mathematics Magazine 8 7-16
Golomb S W, 1965 Polyominoes (Scribner, New York)
Golomb S W, Baumert L D, 1965 "Backtrack programming" Journal of the ACM 12 516-524
Harary F, 1969 Graph Theory (Addison-Wesley, Reading, Mass)
Harary F, March L, Robinson R W, 1978 "On enumerating certain design problems in terms of

bicoloured graphs with no isolates" Environment and Planning B 5 31-43
Harary F, Palmer EM, 1973 Graphical Enumeration (Academic Press, New York)
Harary F, Palmer E M, Read R C, 1975 "The cell growth problem for arbitrary polygons" Discrete

Mathematics 11 371-389
Harary F, Read R C, 1970 "The enumeration of tree-like polyhexes" Proceedings of the Edinburgh

Mathematical Society 17 1-13
Horowitz E, Sahni S, 1976 Fundamentals of Data Structures (Computer Science Press, Woodland Hills,,

Calif.)
Kelly J B, 1966 "Polynomials and polyominoes" American Mathematical Monthly 73 464-471
Klarner D, 1965 "Some results concerning polyominoes" Fibonacci Quarterly 3 9-20
Klarner D, 1967 "Cell growth problems" Canadian Journal of Mathematics 19 851-863
Klarner D, 1969 "Methods for the general cell growth problem" in Combinatorial Theory and Its

Application III Eds P Erdos, A Renyi, V T S6s (North-Holland, Amsterdam)
Klarner D, Rivest R L, 1973 "A procedure to improve the upper bound for the number of

w-ominoes" Canadian Journal of Mathematics 25 585-602
Lehmer D H, 1964 "The machine tools of combinatorics" in Applied Combinatorial Mathematics

Ed. F E Beckenbach (John Wiley, New York)
Littlewood D E, 1931 "The groups of the regular solids in ^-dimensions" Proceedings of the London

Mathematical Society 32 10-20
Lunnon W F, 1969 "Three combinatorial problems" PhD Thesis, Department of Mathematics,

University of Manchester, Manchester
Lunnon W F, 1971 "Counting polyominoes" in Computers and Number Theory Eds A O L Atkin,

B J Birch (Academic Press, London) pp 347-372
Lunnon W F, 1972 "Counting hexagonal and triangular polyominoes" in Graph Theory and

Computing Ed. R C Read (Academic Press, New York) pp 87-100
Lunnon WF, 1975 "Counting multidimensional polyominoes" The Computer Journal 18 366-367
March L, Earl C F, 1977 "On counting architectural plans" Environment and Planning B 4 57-80
Martin J L, 1974 "Computer technique for evaluating lattice constants" in Phase Transitions and

Critical Phenomena, Volume 3 Eds C Domb, M S Green (Academic Press, New York) pp 97-112

260 R Krishnamurti, P H O'N Roe

Martin J L, Watts M C, 1971 "The endpoint distribution of self-avoiding walks in a crystal lattice"
Journal of Physics A 4 456-463

Palmer E M, 1972 "Variations of the cell growth problem" in Lecture Notes in Mathematics 303.
Graph Theory and Its Application Eds Y Alavi, D R Lick, A T White (Springer, Berlin)
pp 215-224.

Parkin T R, Lander I J, Parkin D R, 1967 "Polyomino enumeration results" paper presented at the
Society for Industrial and Applied Mathematics (SIAM) Fall Meeting, Santa Barbara, Calif.

Read RC, 1962 "Contributions to the cell growth problem" Canadian Journal of Mathematics 15
1-20

Read R C, 1978 " 'Every one a winner' or 'How to avoid isomorphism search when cataloguing
combinatorial configurations'" Annals of Discrete Mathematics 2 107-120

Reingold E M, Neivergelt J, Deo N, 1977 Combinatorial Algorithms: Theory and Practice (Prentice-
Hall, Englewood Cliffs, NJ)

Stiny G, Mitchell W J, 1978 "Counting Palladian plans" Environment and Planning B 5 189-198
Sykes M F, Gaunt D S, Roberts P D, Wyles J A, 1972a "High temperature series for the susceptibility

of the Ising model I. Two-dimensional lattices" Journal of Physics A 5 624-639
Sykes M F, Gaunt D S, Roberts P D, Wyles J A, 1972b "High temperature series for the susceptibility

of the Ising model II. Three-dimensional lattices" Journal of Physics A 5 640-652
Sykes M F, Glen M, 1976 "Percolation process in two dimensions I" Journal of Physics A 9 87-95
Sykes M F, Guttman A J, Watts M G, Roberts P D, 1972c "The asymptotic behaviour of self-avoiding

walks and returns on a lattice" Journal of Physics A 5 653-660
Tarjan RE, 1972 "Depth first search and linear graph algorithms" SIAM Journal on Computing 1

146-160
Tarjan RE, 1975 "Efficiency of a good but not linear set union algorithm" Journal of the ACM

22 215-225
Tarry G, 1895 "Le probleme des labyrinthes" Nouvelles Annates de Mathematiques 14 187-190
Tilley R C, 1970 "The cell growth problem for filaments" in Proceedings of the Louisiana

Conference on Combinatorics, Graph Theory and Computing (Louisiana State University,
Baton Rouge, La); also MA Thesis, York University, Toronto

Walker R J, 1960 "An enumerative technique for a class of combinatorial problems" in Combinatorial
Analysis: Proceedings of Symposia in Applied Mathematics X Eds R Bellman, M Hall Jr
(American Mathematical Society, Providence, RI) pp 91-94

Wells A F, 1977 Three Dimensional Nets and Polyhedra (John Wiley, New York)
Williamson S G, 1973 "Isomorph rejection and a theorem of de Bruijn" SIAM Journal on Computing

2 44-59

P © 1979 a Pion publication printed in Great Britain

