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Abstract. In this paper results are presented from two independently developed computer programs-
algorithms RK and CB—on counting and classifying rectangular dissections. A population census is 
given for all weights less than eleven. In spite of the radically different approaches adopted by the 
two algorithms in solving this enumeration problem, both sets of results agree completely. 

Definitions 
Rectangular gratings, defined in a mathematical sense by Newman (1964) and first 
referred to in the design literature by March (1972), form the basis of the representation 
of rectangular dissections which is discussed in this paper. In the present context 
they have been elaborated upon by Mitchell et al (1976) and by Bloch (1976). 

An (/, m) rectangular grating is formed by drawing / - 1 straight line segments 
parallel to one side of a rectangle and m~ 1 such segments parallel to an adjacent 
side. The lines go right across the rectangle in such a manner that segmentation 
divides it into edge-connected rectangular cells, or two-cells, arranged in / rows and 
m columns. Two rectangular gratings will be defined to be equivalent if they have 
the same number of rows and columns. This is an equivalence relation, and the 
(/, m) equivalence class, for example, consists of all rectangular gratings with / rows 
and m columns, irrespective of the different spacings of the line segments. Select as 
representative of each class the grating in which the line segments are equally spaced: 
such a representative will be called a unit grid. The two-cells of a unit grid are squares. 

Suppose a rectangular dissection (containing exactly p rectangles, say) is superimposed 
on the (/, m) unit grid; then it is said to be (/, m) and standard if each line of the 
grid contains at least one edge of a constituent rectangle, and every edge of a rectangle 
lies on some grid line. The number of rectangular elements, p, is defined here to be 
the weight of the dissection, although elsewhere the terms 'content' and 'order' have 
also been used for this purpose. If it is assumed, without loss of generality, that / < m, 
then, for a given p, it is known (Bloch, 1976) that the set of unit-grid dimensions 
(/, m) to which there correspond (/, m) standard rectangular dissections is 

(/, m): 1 < / < ," , max ( /1 < m < p + l - / 

where for any real number s, \s] denotes the least integer greater than or equal to s. 
If / = ra, the symmetry group that leaves the unit grid invariant is clearly D 4 , the 

dihedral group of order eight; whereas, if / < m, K4, the Klein group of order four, 
is clearly the group that leaves the unit grid invariant. The symmetry of rectangular 
dissections is taken into account when enumerating them: that is, an equivalence 
relation is defined under symmetry. 



208 C J Bloch, R Krishnamurti 

Arrangements of rectangles have been discussed elsewhere: see, for example, 
Brooks et al (1940), Bouwkamp (1947), Bouwkamp et al (1960), Tutte (1966), Biggs 
(1969), and Flemming (1977). 

Characteristics 
Valency 
Grid points are the points of intersection of the grid lines. The internal points of a 
dissection are the points of intersection of at least two distinct edges of the rectangular 
elements, incident at some grid point. The valency of an internal point is the number 
of rectangular elements coincident at that point. For dissections we need only 
consider 3-way and 4-way points (Biggs, 1969; Combes, 1976). A dissection is 
trivalent if it contains no 4-way points. Since any 4-way point can be replaced by 
two 3-way points (Biggs, 1969), trivalent dissections may be regarded as being in a 
sense more fundamental. 

Alignment 
Suppose we are given a dissection in which there are two distinct line segments which 
are collinear (that is, collinear with the same grid line). These line segments are said 
to be aligned (Earl, 1977). Those dissections that do not contain at least one pair of 
aligned line segments are referred to as nonaligned dissections. It can be shown (Earl, 
1978) that the set of nonaligned trivalent dissections of weight p consists of all those 
on (/, m) unit grids for which /+ ra- 1 = p. In keeping with the spirit of the paper 
by March and Earl (1977), the nonaligned trivalent dissections are defined here to be 
fundamental dissections. 

Grid partition 
Each dissection of weight p on an (/, m) unit grid may be mapped to a partition of the 
integer Im into p parts, since the Im two-cells are to be distributed into p rectangles 
(Bloch, 1978). A partition of Im into p parts ql9 q2, ..., qp for which at least one 
standard dissection exists is a grid partition of the (/, ra) unit grid. (The qt may be 
written so that qi+l < qi9 for all /, whence 

Im = qi + q2+- + qP , 

where qi+l < qt and 1 < qt < Im -p+ 1.) Each qt represents the number of two-cells 
comprising a rectangular element, or tile, and the dimensions of this tile, (rn, ri2), 
constitute a factorisation of qt. In general there are several possible tiles for each qi9 

so that a given grid partition may be decomposed into a number of distinct factored 
representations; not all, but at least one, will be realised as a standard dissection. An 
equivalence relation can be defined on the set of (/, ra) rectangular dissections of 
weight p by taking two dissections to be equivalent if their grid-partition factored 
representations are identical. 

Algorithms 
Now we briefly outline algorithms RK and CB, both of which draw on concepts 
defined in the previous section. Algorithm RK makes use of the valency and 
alignment properties in the formulation of shape rules, whereas algorithm CB utilises 
grid partition and factored representation as a means of problem decomposition. 
Both enumerate dissections of a given weight on a given unit grid. Both were 
implemented in ALGOL68C and run on the Cambridge Computer Laboratory's 
IBM 370/165. 

First, however, we mention a previous attempt at enumerating dissections, namely 
that of Mitchell et al (1976). Their approach was to generate the dissections of 
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weight p from those of weight p - 1, making no use of gratings or indeed of any 
other characteristics as a means of classification. They published results for dissections 
up to weight 8, but Earl (1977) has demonstrated the inconsistency of their definitions, 
and has shown that their algorithm is not exhaustive. 

It should be noted that neither of the following algorithms makes use of any 'list' 
of dissections of weight p— 1 in the generation of those of weight p. 

Algorithm RK 
The algorithm is based on a technique for enumerating any class of designs that can 
be encased within a rectangular framework. The algorithm essentially simulates a 
parameterised shape grammar for dissections. A feature of this shape grammar is that 
every dissection is produced by a unique sequence of production rules, and furthermore 
the dissections in the grating are exhaustively generated; that is, duplicates are never 
generated. The shape rules used here generate the constituent rectangles in the 
dissection by extending existing rectangles along the horizontal and vertical directions 
as well as by dividing existing rectangles into smaller rectangles. 

The shape rules are translated into equivalent grid-cell colouring rules. The colours 
are represented by integers. By colouring is meant the obvious colouring, namely, 
grid cells in the same rectangular element have the same colour and those in different 
rectangles have different colours. There are of course many possible colourings for a 
dissection; but of these there is one 'minimum' colouring that allows us to detect 
symmetry isomorphs without having to resort to any external storage device. 

The generating algorithm takes as its input a unit grid. It proceeds recursively over 
the grid from left to right, bottom to top; all possible shape rules that apply to the 
current grid cell are selected and for each rule the appropriate colour is allocated to 
the cell. 

Boolean predicates are employed to control the selection of the rule, such as to 
ensure that the number of colours used does not exceed the weight p and to ensure 
that only standard dissections are encountered. Alignment checks are also translated 
from conventional shape rules to Boolean predicates. Trivalent dissections are 
obtained by eliminating one of the rules. The generation is improved by judicious 
pruning of the search. For further details the reader is referred to Krishnamurti and 
Roe (1978). 

Algorithm CB 
First, for the given unit grid and weight, all possible grid partitions and factored 
representations are generated. The generating algorithm per se accepts as input a unit 
grid and a single set of tiles. Tiles are 'laid' from the top of the grating downwards, 
working row by row from left to right. The placing of tiles over unoccupied two-cells 
in a row effectively partitions the unoccupied segment of cells into as many parts as 
there are tiles. The unoccupied segments chosen are those lying in the uppermost 
row containing the unoccupied cells; the partitioning referred to here concerns the 
division of these segments into horizontal components, that is, by the vertical edges 
of the tiles so placed. Thus the basic steps in the algorithm are as follows. 
1. Locate the uppermost unoccupied segments. 
2. Generate a partition of the leftmost segment in the row. 
3. For each component of this partition, select a tile from those remaining having one 
dimension equal to the number of two-cells in the partition component. 
4. 'Place' the tile on the grating by colouring the two-cells it covers by an integer. 
5. When all components of the partition have been matched to tiles, generate a 
permutation of these tiles within the confines of the current unoccupied segment. 
6. Go to step 2 if there exists another segment in the current row, otherwise go to 
step 1. 
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Note that for the resulting dissection to be standard it is necessary but not sufficient 
that at least one tile be placed per row. For further details the reader is referred to 
Bloch (1978). 

Computational results 
The computational results are given in the appendix. Table Al presents the population 
of dissections, by grating, for weights up to and including p = 10; the table also 
shows the results further subdivided into trivalent, nonaligned, and fundamental 
dissections. (The results for p = 10 were obtained by runs of algorithm RK only.) 
Figure 1 illustrates these results for p = 5. Table A2 gives the distributions of 
dissections for p = 6 and 7 over grid partitions and factored representations of the 
unit grid. 

I I I I I I 

H I 

fundamental 

trivalent 

nonaligned 

general 

Figure 1. The dissections of weight p = 5. 
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APPENDIX 

Table Al. The breakdown of dissections, for weights up to and including p = 10, according to 
their gratings. 

Grating Number of dissections 

(1,5) 
(2,3) 
(2,4) 
(3,3) 
all 

(1,6) 
(2,3) 
(2,4) 
(2,5) 
(3,3) 
(3,4) 
all 

(1,7) 
(2,4) 
(2,5) 
(2,6) 
(3,3) 
(3,4) 
(3,5) 
(4,4) 
all 

general 

1 
3 
9 

11 
24 

1 
1 

11 
19 
13 
81 

126 

1 
4 

30 
35 

9 
181 
286 
269 
815 

nonaligned 

1 
2 
9 

11 
23 

1 
1 
8 

19 
9 

81 
119 

1 
3 

19 
35 
6 

116 
286 
269 
735 

trivalent 

1 
1 
9 

11 
22 

1 
-
3 

19 
4 

81 
108 

1 
-

11 
35 

1 
65 

286 
269 
668 

fundamental 

1 
— 
9 

11 
21 

1 
-
— 

19 
-

81 
101 

1 
— 
— 

35 
-
-

286 
269 
591 
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Table Al (continued) 

p Grating Number of dissections 

general nonaligned trivalent fundamental 

8 (1,8) 
(2,4) 
(2,5) 
(2,6) 
(2,7) 
(3,3) 
(3,4) 
(3,5) 
(3,6) 
(4,4) 
(4,5) 
all 

9 (1,9) 
(2,5) 
(2,6) 
(2,7) 
(2,8) 
(3,3) 
(3,4) 
(3,5) 
(3,6) 
(3,7) 
(4,4) 
(4,5) 
(4,6) 
(5,5) 
all 

1 
1 

20 
85 
71 

2 
189 
966 
968 

1034 
3128 
6465 

1 
5 

72 
217 
135 

1 
103 

1527 
4565 
3135 
1805 

17023 
16061 
13422 
58072 

1 
1 

13 
55 
71 

1 
97 

582 
968 
610 

3128 
5527 

1 
3 

41 
132 
135 

1 
43 

647 
2597 
3135 

710 
9276 

16061 
13422 
46204 

1 
-
1 

30 
71 
-

19 
384 
968 
424 

3128 
5026 

1 
-
4 

85 
135 

-
2 

196 
1968 
3135 

249 
7747 

16061 
13422 
43005 

1 
-
-
— 

71 
-
-
— 

968 
-

3128 
4168 

1 
-
— 
-

135 
-
— 
— 
— 

3135 
-
— 

16061 
13422 
32754 

(2,5) 
(2,6) 
(2,7) 
(2,8) 
(2,9) 
(3,4) 
(3,5) 
(3,6) 
(3,7) 
(3,8) 
(4,4) 
(4,5) 
(4,6) 
(4,7) 
(5,5) 
(5,6) 
all 

1 
31 

259 
549 
271 
35 

948 
9881 

19243 
9936 
1896 

43961 
117070 
76622 

102184 
195775 
578663 

1 
18 

135 
332 
271 

17 
325 

3642 
10443 
9936 

542 
14388 
59915 
76622 
51361 

195775 
423724 

-
— 

20 
217 
271 

-
35 

1513 
8800 
9936 

67 
7890 

37833 
76622 
50823 

195775 
389803 

-
— 
— 
-

271 
— 
— 
— 
— 

9936 
-
— 
— 

76622 
-

' 195775 
282605 
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Table A2. The distribution of dissections for p = 6 and 7 over grid partitions and factored 
representations of the unit grid. 

Grating Grid partition Factored Number of 
representation3 dissections 

p = 6 
(2,4) 

(2,5) 

(3,3) 

(3,4) 

p=7 
(2,4) 
(2,5) 

(2,6) 

(3,3) 

(3,4) 

3 1 1 1 1 1 
221111 
5 11111 
421111 
331111 
322111 
22221 1 
411111 
321111 
2221 1 1 

621111 
441 1 1 1 

432111 

42221 1 

333111 
332211 
322221 
222222 

2111111 
4111111 
3211111 
2221 1 1 1 
6111111 
5211111 
4311111 
4221 1 1 1 
3321111 
32221 1 1 
222221 1 
3 111111 
2211111 
6111111 
431 1 1 1 1 

4221 1 1 1 

3321111 
32221 1 1 
222221 1 

(1,4) 

(2,2) 

(2,3) 
(1,4) (1,4) 
(2,2) (2,2) 
(1,4) 
(2,2) 
(1,4) 
(2,2) 

(1,4) 

(1,6) 

I (1,4) 
I (1,4) 

[ (2,3) 
L (1,4) 

(2,2) 
I (1,4) 

(2,2) 

1 
10 
1 
2 
1 
6 
9 
1 
5 
7 
2 
2 
1 
5 
9 
11 
6 
4 
27 
12 
2 

4 
1 
7 
22 
1 
2 
1 
6 
3 
10 
12 
2 
7 
1 
3 
4 
18 
21 
29 
79 
26 
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Table A2 (continued) 

Grating Grid partition Factored Number of 
representationa dissections 

8211111 
6411111 
6321111 
62221 1 1 
5511111 
5421111 
5331111 
5322111 
5222211 
4431 1 1 1 

4422111 

4332111 

432221 1 

4222221 

3333 111 
3332211 
3322221 
3222222 
9211111 
6421 1 1 1 

6331111 
63221 1 1 
622221 1 
4441 1 1 1 

44321 1 1 

442221 1 

4333 111 

433221 1 

4322221 

4222222 

333321 1 
3332221 
3322222 

(2,4) 
(2,3) (2,2) 
(2,3) 
(2,3) 

(1,5) (1,4) 

(1,4) (1,4) 
(1,4) (2,2) 
(2,2) (2,2) 
(1,4) (1,4) 
(1,4) (2,2) 
(2,2) (2,2) 
(1,4) 
(2,2) 
(1,4) 
(2,2) 
(1,4) 
(2,2) 

(3,3) 
(2,3) (1,4) 
(2,3) (2,2) 
(2,3) 
(2,3) 
(2,3) 
(1,4) (1,4) (1,4) 
(1,4) (2,2) (2,2) 
(1,4) (1,4) 
(1,4) (2,2) 
(2,2) (2,2) 
(1,4) (1,4) 
(1,4) (2,2) 
(2,2) (2,2) 
(1,4) 
(2,2) 
(1,4) 
(2,2) 
(1,4) 
(2,2) 
(1,4) 
(2,2) 

2 
1 
9 
6 
2 
5 
2 
14 
14 
2 
2 
3 
6 
9 
5 
15 
21 
33 
30 
7 
6 
7 
46 
33 
6 
1 
5 
4 
2 
20 
7 
2 
1 
9 
22 
3 
19 
14 
4 
5 
2 
54 
21 
27 
13 
4 
1 
6 
17 
6 

a Factors are only given for those values of qt for which more than one factorisation is possible; for 
example, factors of 1,2, and 3—(1,1), (2,1), and (3,1)—are not shown, whereas those of 4—(4,1) and 
(2,2)—are indicated. 
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