
ELSEVIER Automation in Construction 3 (1995) 305-320

A behavioral language for motion planning in building
construction ’

Rudi Stouffs a, Ramesh Krishnamurti a, * , Irving J. Oppenheim b

a Department of Architecture, Carnegie Mellon University, Pittsburgh, PA 15213 USA
b Departments of Architecture and Civil Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

This paper reports on the development of a motion language to describe the behavior of automated agents in a
dynamically changing environment. The language is based on a general representation that uniformly characterizes a
wide variety of automated agents, using motion rules as a means of establishing the configuration of an agent at any
given time. Motion planning is briefly discussed and the rudiments of a general three dimensional motion planning
algorithm are presented. The results are illustrated in a simulation program with application to building construc-
tion.

Keywords: Building construction; Simulation; Obstacle avoidance; Path planning

1. Introduction

Building construction poses challenging prob-
lems in robotics for multiple reasons: site charac-
teristics, man-machine cooperation and the di-
versity of automated agents. Of particular inter-
est (to us) is this last issue, the use of a number of
different and distinct agents in the construction
of buildings.

Simulation of the construction process offers
valuable insights into construction planning and
management. The use of automated agents adds

* Discussion is open until August 1995 (please submit your

discussion paper to the Editor on Construction Technologies,
M.J. Skibniewski).

* Corresponding author.

an extra dimension to this simulation. Apart from
visualization of the construction process through
consecutive projections of the building during
construction, it provides a manifestation of the
flow of material from storage to assembly and the
manner of assembly itself. Moreover, the use of
agents allows for a more precise analysis of the
difficulty and time involved in the transportation
of the material on the site. These inclusions ne-
cessitate a comprehensive representation for a set
of diverse agents as well as general three dimen-
sional spatial and motion planning algorithms to
specify the requisite motional behavior of agents
in a dynamically changing environment.

In this paper we elaborate on spatial path
planning, describe a general representation for
robot agents, introduce a motion language that
allows one to capture the diversity in behavior

0926-5805/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved
SSDI 0926-5805(94)00033-6

306 R. Stouffs et al. /Automation in Construction 3 (1995) 305-320

between different robot types, and touch upon
three dimensional motion planning. We illustrate
the results in a demonstration of the RUBICON
simulation program.

1.1. Automated agents

We define a robot to be any form or type of
automated mechanical manipulator which takes
part in the construction process and requires
spatial motion of itself. Current research in
robotics, whether in automation programming
languages or path planning, is mostly focused on
general-purpose manipulators such as arm-like
manipulators. However, building construction of-
fers a wide variety of tasks that often require
task-specific robots. We can recognize potential
use of assembly manipulators for transporting,
handling or positioning construction materials,
general-purpose interior robots for operations
such as welding, grouting and nailing, and highly
task-specific robots in areas such as concrete sur-
face leveling or finishing.

As such, robots in building construction come
in a large variety, each tailored to a specific task
or class of tasks. At the same time robots may
vary largely in size and, therefore, in mobility.
Given the large size of the workplace and the fact
that a task is rarely limited to a specific area
within this workplace, issues of mobility and
transportability play a far greater role in building
construction tasks than in general manufacturing
tasks. Often, the deployment of robots may addi-
tionally require cooperative human effort such as
in final positioning.

In this paper we focus on manipulators that
carry out pick-and-place assembly tasks. The re-
sults can be applied to other types of manipula-
tors as well. The simulation examines robot mo-
tion from its initial location to the goal location;
the specific actions involved with picking or plac-
ing are not simulated. Uncertainty is not consid-
ered. Thus, the simulation involves planning a
collision-free path from a determinate initial con-
figuration to a determinate goal configuration of
the robot. Such motion is generally referred to as
gross motion; it does not involve sensing or accu-
racy control.

1.2. Language for simulating behavior

A behavioral approach to robot motion for
assembly programming has been introduced by
Petropoulakis and Malcolm [l] (also [2], [3]). Their
approach is to translate high-level assembly tasks
into specific robot motions in order to deal with
such problems as theoretical complexity and
questionable functionality. Behavioral modules
are designed that are predominantly concerned
with the basic robot activities with respect to the
objects of the assembly and their manipulation.
These modules form the elementary units of the
assembly system and are to be appropriately com-
bined into higher level behaviors in order to
perform complex part manipulations and assem-
blies.

Apart from concerns of translating high-level
task plans into series of robot motions, the re-
search reported in this paper is specifically geared
towards a representation for different robot types
and an expression of their behavior. As such,
describing the behavior of a robot is not a means
to an end, but the end altogether. We are particu-
larly interested in finding a collision-free path for
a robot from one location to another in the
dynamically changing environment of a construc-
tion site. We are concerned with the part that a
particular robot plays in the construction process,
and with its place in that environment. The rela-
tionship between a robot and the environment is
constrained by a number of factors: physical ob-
stacles, interaction as specified by the tasks, in-
teraction with human agents, safety considera-
tions, and other issues that may be important to
the robot’s behavior.

In order to specify the appropriate behavior
for a robot with respect to each of these con-
straints, without restricting the variety of robots
that may be involved in the construction process,
a motion language for robot behavior is devel-
oped. The language is used to specify the transla-
tion process of high-level pick-and-place tasks
into specific, discrete, robot motions, taking into
account motion constraints. The language is gen-
eral in that it can describe disparate robot types,
each operating in a multitude of different situa-
tions, yet it is focused towards a single purpose,

R. Stouffs et al. /Automation in Construction 3 (1995) 305-320
307

R. Stouffs et al. /Automation in Construction 3 (1995) 305-320

%
6.8

+

Bedroom Bedroom

motional capabilities and of its swept volume.
The former constitutes the basis of any motion
planning in free space in the absence of obsta-
cles; the latter allows for collision detection or
the determination of free space. A representation
of the motional capabihties of a robot relies in
the first instance on an expression for the robot’s
configuration, where by configuration we mean
both position and orientation of the body in ques-
tion.

TYPICAL UNIT PLAN, 3LDK l 86m2
0 0510 2.0 m

Fig. 2. Floor plan of a single unit.

that of specifying robot motions for use in a
general motion planning algorithm.

1.3. Construction project example

To demonstrate the simulator we chose the
construction of a typical Japanese precast con-
crete residential building. Figure 1 illustrates
three stories of a typical 5 story, 40 unit building;
Fig. 2 shows the floor plan of a single unit.

2. Representation

The representation of a robot must, before all,
reflect the intended usage. Robot motion or path
planning requires an expression of the robot’s

2.1. Conjigura tion

A manipulator is typically an open kinematic
chain of rigid links, connected with joints which
allow relative motion of neighboring links [4]. At
the “free” end of the chain we recognize the
end-effector of the manipulator. Depending on
the intended application of the robot, this end-ef-
fector may be a gripper, welding torch or other
device. The base of the robot defines the other
end of the open chain. This base may be either
fixed in space or allowed to move within con-
straints established by the mobility mechanism. In
this paper, we are not concerned with the physi-
cal properties of the chain of links and joints that
relate the end-effector to the base, but only with
the configurational relation. We need to know
how the configuration of the end-effector is de-
pendent on the configuration of the base, and
which parameters control the relationship.

In order to describe the position and orienta-
tion of a body in space we rigidly attach a coordi-
nate system or frame to the body. Such a frame
can also be interpreted as a description of one
coordinate system relative to another. We adopt
the term transform to denote such a mapping
between frames. A minimal description of a robot
involves the following three frames: the universal
frame {U} that represents the outside world and
is used as an absolute reference; the base frame
{B} that defines the configuration of the robot’s
base; the tool frame {T} that defines the configu-
ration of the robot’s end-effector (see Fig. 3). The
object frame {O] defines the configuration of the
material being handled.

The positional and orientational relation of
these frames to one another is expressed by the

R. Stouffs et al. /Automation in Construction 3 (1995) 305-320 309

Fig. 3. Three frames to describe the configuration of a robot:

the universal frame {U}, the base frame {B) and the end-ef-

fector frame {T].

following two transforms: BUT describes the base
frame relative to the universal frame; FT defines
the tool frame with respect to the base frame.
The relation between any two of the three frames
can be arithmetically expressed as a function
of BUT and FT, e.g., the composite transform
FT =iT:T which describes the tool frame rela-

tive to the universal frame. The object frame is
described relative to the universal frame by the
composite transform :T = FTJT. A transform

may be represented as a combination of a rota-
tion matrix and a translation vector. The actual
representation is unimportant as to the concept
or usage and, therefore, will not be expanded on
within this paper.

Even though the exact configuration of the
robot requires a description of the orientation
and/or position of each link, in most cases the
robot is sufficiently described by the configura-
tion of its base and end-effector. Robots in con-
temporary building assembly do not require a
high degree of accuracy, because of the site char-
acteristics and the size of construction elements
involved in assembly, and because of man-robot
cooperation. However, if a more precise descrip-
tion is necessary, it is straightforward to expand
the number of frames involved in the representa-
tion.

2.2. Control parameters

Physically, the relationship between the end-
effector and the base of the robot is defined by a
set of links and joints, generally formed into an

open kinematic chain. The number of degrees of
freedom of the robot’s end-effector, with respect
to the base and for an open kinematic chain,
corresponds in most cases to the number of joints.
To represent these degrees of freedom, we define
an equal number of control parameters that con-
trol the configuration and motion of the end-ef-
fector. The set of valid control parameters con-
sists of x, y, z, $, 4 and 0, where x, y, z define
translations parallel to the respective axis and I),
4, 8 define rotations about the X-, Y- and Z-axis,
respectively.

As an example, consider the three-link planar
arm shown in Fig. 4, with three rotational joints
in the XZ-plane. The transform FT, describing
the configuration of the end-effector relative to
the base, is dependent on the actual construct
that links the end-effector to the base. Although
it is possible to represent exactly the end-
effector’s configuration in terms of the joint pa-
rameters 41, 42 and 43 and link lengths x, = 1,
and x2 = I,, it is worthwhile to explore alterna-
tive approximate representations, especially from
considerations of user control (of the simulation)
and computational efficiency.

A simple examination reveals that the
workspace is bound by an outer circle with radius
1, + I,, and that the end-effector can assume any
orientation in the XZ-plane (Fig. 5(a)). A very
crude approximation (but one which may prove
useful) of these characteristics can be achieved
using a single rotational parameter 4 and two
independent translational parameters x and z.
Given the values x,,,~,,, xmax, z,~,, and z,,~,

Fig. 4. A three-link planar arm.

310 R. Stouffs et al. /Automation in Construction 3 (1995) 305-320

--- 1 Y---Y
E

1 I
cp

Fig. 5. Control parameters and workspace for different approximations of the three-link planar arm.

specifying the value ranges for the control param-
eters x and z, the resulting workspace is bound
by a rectangle instead of a circle (Fig. 5(b)).
Depending on the value ranges specified, the
circle with radius 1, + 1, may inscribe, intersect or
circumscribe the rectangle. This approximation
can be refined by introducing an additional rota-
tional parameter instead of one of the transla-
tional parameters. This results in a specification
of the end-effector’s position using polar coordi-
nates x and 4’ (Fig. SC)). A further refinement
would yield the exact representation.

2.3. Motion rules

Often, the control parameters reflect the joint
parameters that specify the configuration of the
joints, and thus of consecutive links. However,
when describing the configuration and/or motion
of a mobile robot’s base with respect to the
outside world, the control parameters take a
slightly different physical meaning. In most cases,
the motional capabilities are defined locally, de-

pendent on the current configuration of the body.
In slight contrast, the configuration itself is de-
fined globally, relative to a fixed reference frame.
Therefore, even though infinitesimal small mo-
tions can be readily described using one repre-
sentation, the global result is not restricted to
that same representation, nor is the configuration
of the body. The obvious example of such a
discrepancy between configuration control and
motion control is a “car”. We refer to Bar-
raquand and Latombe [5] for an “exact” solution,

i.e., motion-planning algorithm, for the “car
problem”. For the sake of simplicity we assume
that the “car”, or mobile agent, is capable of
stationary rotational motion.

Thus, the configuration may become practi-
cally independent of the motion mechanism,
while, at the same time, the motion control pa-
rameters may only approximate the mechanism’s
complexity. To represent these differences in
configuration and motion control we introduce a
set of motion rules that are used to update the
values of the control parameters, especially in the

case when the parameters represent only the
configuration and not the motional capabilities of
the robot.

The objective for specifying motion rules is not
only to solve this discrepancy between configura-
tion and motion control, but also as a tool to
embody the discretization of time. The simulation
of a construction process relies on an activity
network of construction activities and an accom-
panying time-history state representation of the
building under construction [6]. The simulation of
the activities and of the evolving geometry re-
quire a time step to be specified. This time step
defines the discretization of the simulation pro-
cess and of the robot’s motion. The resulting
motion steps also depend on the robot’s joint
velocities. In reality, these velocities may vary in
time in order to achieve a certain smoothness in
the motion (see [4] for a definition of smooth).
Since, in simulation, motion is not represented as
a continuous but as a discrete function, we may
assume the velocity to be constant, but possibly
dependent on the robot and/or joint type. We
further disregard the velocity as a parameter in
the process and use instead a set of motion step
values, one for each control parameter, that are
denoted xs, y,, zs, O,, c$,, and $$. These values
are specified except for their sign (positive or
negative). Within a set of motion rules each of
these values may take either sign, but this sign
has to be the same for all rules in the set.

We define a transform fimction, with respect
to a set of arguments, to be any series of terms
composed with addition and/or multiplication,

X

(a)

R. Stouffs et al. /Automation in Construction 3 (1995) 305-320 311

where each term may be either an argument, a
sin or cos of an argument or a negation of any of
the above. Then, a motion rule takes on the
following form: p +f({a,, a2, . . . , a,}). Here p
denotes a control parameter and f denotes a
transform function; (a,, a*, . . . , a,} denotes a set
of arguments to f, chosen from the set of control
parameters describing the body’s configuration
and the sets of step and constant values. Such a
motion rule generally defines the value of p at
time t + At, where At denotes the time step, in
terms of the control parameter’s values at time t
and the step and constant values. In particular,
these motion rules can be used in three different
ways, depending on the arguments specified to
the transform function. Firstly, a motion rule may
specify a constant value to a parameter. In this
case, the transform function takes a single argu-
ment, which should be the constant value corre-
sponding to the control parameter, e.g., x +x,.
Even though, strictly speaking, these are not
“motion” rules, such degenerate rules are useful
in order to achieve a uniform representation. The
constant values, one for each control parameter,
are denoted x,, yC, zC, e,, 4,, and 4C. They may
also serve as initial values for the configuration.

Secondly, the motion rule may specify the mo-
tion step for the control parameter. Here, the
transform function takes two arguments, which
are the control parameter itself and the corre-
sponding step value, e.g., x +x,. Thirdly, in the
general case, a motion rule may specify the pa-
rameter’s new value in terms of other control
parameters, e.g., x +X + rs cos 13.

(b)
Fig. 6. A mobile agent with (a) stationary rotational motion and (b) translational motion along its axis.

312 R. Stouffs et al. /Automation in Construction 3 (1995) 305-320

As an example, consider a mobile agent with
stationary rotational motion and translational
motion along its axis (Fig. 6). The agent has
control parameters X, y, z, and 8. However, its
motion is specified in polar coordinates. Thus,
the resulting motion rules for a horizontal work

surface are

{et8+8,,xcx+x,cose-y,sin8,

y+y+x,sin0+y,cos0,2+2,.}.

3. Motion planning

In path planning we distinguish between global
and local methods. Global techniques are gener-
ally based on configuration space (C-space) (due
to Lozano-PCrez and Wesley [71) and have been
demonstrated successfully. However, finding col-
lision-free paths in three dimensions and for ob-
jects with rotational degrees of freedom increases
the dimensionality of the configuration space sig-
nificantly, and increases the computation time
exponentially [5]. Further, if the environment
changes dynamically, as is the case in building
construction, this requires a dynamically varying
C-space, which is computationally inefficient. This
will detract from some of the advantages offered
by the global techniques. Local strategies may
function both in task space and in configuration
space. They are generally based on artificial po-
tential functions [8], but exhibit a limitation that
is due to the appearance of local minima.

In order to deal with a dynamically changing
environment it is often useful to follow a local
approach where obstacles are avoided as they are
encountered [9]. In this approach a path is built
up from single motion steps in a bottom-up fash-
ion. We denote this approach motion planning to
distinguish it from global path planning. Such an
approach may be combined with an approximated
global path finding algorithm into a hybrid
method. Ilari and Reyna [lOI and Ilari and Torras
[ll] adopt a hybrid method with a global path
planning phase and a solution path search phase,
the latter based on heuristics.

Our objective is to discuss the rudiments of a
general three dimensional motion planning algo-
rithm that is based on the robot representation
described above. This motion planning may be
either goal-driven or path-driven. The latter con-
stitutes a hybrid method where the motion plan-
ning is influenced by a global path chosen a
priori. Due to the dynamically changing environ-
ment this global path may not be a sufficient
solution, but constitutes a guiding path for mo-
tion planning. In the discussion that follows the
term goal may be interpreted either as the final
goal or as any point on the global path that is
temporarily designated the goal configuration.

3.1. Motion planning algorithm

We define motion planning as the production
of a plan that depends upon (i> the distance from
the current position to the goal position, and (ii)
the required orientation at the goal relative to
the current orientation. The plan is constrained
by the obstacles surrounding the current position,
and any specified motion heuristics (see [lo], [111).
We base our motion planning algorithm on the
robot representation specified above, and in par-
ticular on the motion steps allowed and on the
workspaces of both the base and the end-effector
of the robot.

Lozano-P&ez and Wesley [71 also describe a
simple collision avoidance algorithm for path
planning based on the “generate and test”
paradigm. Adapted to motion planning the algo-
rithm becomes:
(1) compute the volume swept out by the moving

object for the proposed motion step,
(2) determine the intersection of the swept vol-

ume and the surrounding obstacles,
(3) if an intersection exists, propose a new mo-

tion step.
To determine whether two objects intersect,

Brooks [12] introduces the idea of generalized
cones, and Bonner and Kelley [13] introduce Suc-
cessive Spherical Approximations as a complete
model for three dimensional objects, in order to
approximate free space at successive levels of
detail. Krishnamurti (1141, 1151) develops an algo-
rithm for shape intersection based on a represen-

R. Stouffs et al. /Automation in Construction 3 (199.5) 305-320 313

tation of three dimensional polygons or polyhe-
dra in terms of maximal spatial elements. Since
the number of possible motion steps is limited, it
is straightforward to determine the swept volume
of the object and of the robot for each motion
step.

3.2. Motion language

It remains to be specified which motion steps
should be proposed and in what order. This is
equivalent to asking which motion step is most
appropriate at each moment or for each configu-
ration, given the constraints that adhere to the
current situation. Such a decision is highly depen-
dent on the particular robot and on its expected
behavior. The motion language serves as the
means to specify this behavior and, in particular,
the order in which the allowed motion steps
should be proposed.

The key to a behavioral description of a robot
is to specify exactly what behavior is expected of
the robot for each situation that may be encoun-
tered. This requires a situation-based decomposi-
tion of the behavioral description, the equivalent
of which is a case-structure in a programming
language; a selection is made depending on a
particular value or condition. We have adopted a
which-structure with labels that mark the differ-
ent behavioral modules, where each label reflects
the situation that is handled within that module.
Examples of such situations are whether the robot
is transporting material or not, whether safety
considerations are at the brink of being violated,
etc.

Each module specifies a series of actions, each
of which is subject to verification of its validity in
the light of the surrounding obstacles. We have
refrained from using an explicit if-then-else-struc-
ture. Instead, commands (motion steps) are
“chained” together; each element in the chain is
weaved in with the previous and the next ele-
ment. If the current command fails the next one
is invoked, but whenever possible an attempt is
made to try the previous command. That is, com-
mands positionally later in the chain are invoked
only when necessary. This results in a procedure
as outlined below. The procedure ends when

either the goal is reached or the end of the chain
is encountered.
1 if the current command succeeds
2 then if the goal has been reached
3 then exit
4 if there is a previous command in the

chain
5 then current + previous
6 else if there is a next command in the chain
7 then current + next
8 else exit
9 got0 line 1

An extension to this concept is the cycle, or
cyclic chain. Here, no end exists to the chain, only
a starting point, but the chain is augmented with
a conditional statement that specifies when to
exit the cycle. This construct is particularly useful
when the behavior should be one of following a
particular (open or closed) boundary or path. The
exiting condition then may reflect a spatial deci-
sion crossroads, such as the end of an open
boundary (or path) or the point of bifurcation
with respect to a specific goal (or subgoal). A
final control element of the language is the speci-
fication of a set of commands of which only one is
active at any time. Only on failure is such a
command replaced by the next command in the
set. This control structure is denoted each.

The elementary building blocks of the lan-
guage are the motion commands moue ro and
move dir together with a series of funct&s that
may be used as command arguments. Assign-
ments are always specified in conjunction with
the var operator that associates a variable to its
argument, which is typically a control parameter.
commands:
l move to (parameter, goal value)

A single step in the direction of the goal is
performed for the specified parameter, if al-
lowable. If the goal value equals the current
value, no step is performed. Returns TRUE if
the motion step succeeded, else returns
FALSE.

0 move dir (parameter, direction value)
A single step in the specified direction is
performed for the specified parameter, if al-
lowable. Returns TRUE if the motion step
succeeded, else returns FALSE.

314 R. Stouffs et al. /Automation in Construction 3 (1995) 305-320

assignment:
0 var (xl = value

The specified value is stored in variable x.
,functions:

goal (x)
Returns the goal value of parameter x.

r-goal (xl
Determines the goal value for parameter x
relative to the current configuration.
dir (x, c)
Determines the direction specified by L’ with
respect to the current value of parameter x.
axis (x, cl
Reduces the angle L’ to between -90” and
90” with respect to the axis defined by the
current value of x.
min (xl; max (x>
Returns the minimum (maximum) value spec-
ified for parameter x.
min (x, c); max (x, c)
Returns the minimum (maximum) of the cur-
rent value of x and the value c’.
var (xl
Returns the value of the variable associated
with parameter x.

4. Examples

We consider three examples: an exterior wall
finishing robot, an automated crane hoist and an
automated mobile agent. The first one constitutes

I
X

n

a simple example illustrating the issues involved
when describing a robot’s behavior. The second
example demonstrates the usage of the behav-
ioral language in describing the behavior of a
robot agent. The final example explores the de-
scription of the more complicated behavior of a
mobile agent.

4.1. Exterior wall finishing robot

Warszawski [16] distinguishes this type of robot
for usage in finishing activities on building exteri-
ors such as painting, plastering and finish inspec-
tion. A possible robot configuration is illustrated
in Fig. 7. It consists of a vertical carriage sus-
pended from a base vehicle located on the roof.
The base shows for horizontal transIationa1 mo-
tion along the building edge. The carriage has the
ability to move vertically along the building exte-
rior surface. The robot’s end-effector also has
limited horizontal displacement capability that
allows it to cover a vertical strip of the surface
without moving the base.

Firstly, consider the base as an automated
agent. Its motional capability is sufficiently de-
scribed by a single control parameter x; the cor-
responding motion rule is x + x +x,. The behav-
ior of the base as an automated agent consists of
translational motion in order to reach the x-coor-
dinate of the overall goal position.

chain{ moce_to(x,goal(x))} ;

Fig. 7. Front and side view of a possible configuration of an exterior wall finishing robot.

R. Stouffs et al. /Automation in Construction 3 (1995) 305-320 315

Secondly, consider the carriage as an automated
agent independent of the base of the robot, ini-
tially, assuming a fixed end-effector. In this case,
the motional capability is described using the
control parameter z, representing the allowable
vertical displacement which is defined relative to
the base atop the roof. Thus, the behavior of the
carriage (with fixed end-effector) consists only of
vertical motion in order to reach the z-coordinate
of the overall goal position.

chain{ moue-&(z,goal(z))} ;

If we now consider the end-effector as capable of
horizontal motion, its displacement can be de-
fined relative to the carriage. The behavior of the
robot’s end-effector (taken as an automated agent
independent of the base vehicle) is identical to
the behavior of the base agent. Upon considering
their dependency, a choice as to whether the base
or end-effector should be moved can be made
depending on the goal location and the reach of
the end-effector, where the latter is specified
relative to the carriage location by values xmin
and x,,,.

4.2. Automated crane hoist

We consider the motion of an automated crane
hoist with fixed base and full-site access (see Fig.
8). In general, a crane hoist’s end-effector has
only three degrees of freedom. These are repre-
sented exactly by the control parameters 0, x and
z, where 0 represents the orientation of the crane
hoist, and x and z represent the respective hori-
zontal and vertical displacement of the end-effec-
tor with respect to the base. In the case of a
crane hoist with a limited work envelope, the

values ommin, o,,,, Xmin, x,,,, zmi,, and z,,,
(relative to the base position) are specified to
define the workspace of the hoist. The corre-
sponding motion rules are 113 +- 0 + 8,, x +x + xs,
z + z + zJ. When applying these rules, the values
of es, x, and z, may be either positive or nega-
tive.

Given any obstacle, the expected behavior of
the crane should be to raise the load above the
height of the obstacle, if possible, and complete
its trajectory subsequently, only lowering the load

when the goal position has been reached. A cor-
responding motion plan for an automated crane
hoist is shown below.

set the goal height
var(height > = 30;
move clear of the goal height
chain {

move-to (z, max(z, varcheight) + goal(z)))

1;
move closer to the base

chain {move_to (x, min(x, goal(x))));
alter the orientation towards the goal
chain {

move-to (e, goal(e)),
while staying clear of any obstacles

move-dir Cz, dir(z, max(z)))

1;
alter the displacement towards the goal
chain {

move-to (x, goal(x)),
while staying clear of any obstacles

move-dir (z, dir(z, max(z)))

1;
which {

transport:
when transporting an object

stop clear of the goal
chain (move_to(z, var(height I+ goal(z))};

default:
else

lower the end-effector to the goal height

chain (move_to (z, goal(z))};

1;

In many cases it may be either impossible to
raise the load above an obstacle, or it may be
unacceptable for safety reasons when a human
labor crew is working underneath the planned
trajectory. Then, lateral displacement as a result
of rotational motion should be considered as a
way to circumvent such “obstacles”. The follow-
ing motion sub-plan proposes lateral motion:

try a combination
chain {

of translational motion
var(x) = dir(x, goal(x)),
and rotational motion

316

zo

\

R. Stouffs et al. /Automation in Construction 3 (1995) 305-320

-

Z,

f ’

\ -

1 *

:

1
X,

Z

Ye
F

Fig. 8. A crane hoist.

move-to (0, goal(O)),
the former in either direction but not intermixed
each (move-dir (x, vat-(x)>,

move-dir (x, -var(x>)]
I,

A choice in direction is made depending on
the initial direction of the goal with respect to the
end-effector, and any motion is continued in the
same initial direction, unless prohibited by the
obstacle.

4.3. Automated mobile agent

Consider the mobile agent illustrated in Fig. 6.
It has the ability to move horizontally through
stationary rotational motion and through transla-
tional displacements along its axis. the corre-
sponding control parameters are x, y, z and 8
and the motion rules are (0 * 8 + f3,, x +--x +x,
C0Se-y, sin@, y+y+x, sinO+y, case, Z+
z,l.

We assume different behavior depending on
whether it is transporting an object or not. In the
former case, translational forward motion is
preferable over backward motion. In the latter
case, no distinction is made between forward and

backward. That is, when considering a rotation of
the axis of the mobile agent towards the goal, the
axis is treated as undirected. Overall, the agent is
oriented towards the goal, if possible, in order to
shorten the necessary trajectory. If an obstacle is
found on its path toward the goal, the agent
follows the obstacle’s boundary until it can re-
sume a straight path towards the goal.

var(8) = dir(0, r_goal(O));
which (

transport:
when transporting an object
try to orientate itself relative to the goal
chain {move_to (0, r_goal(e)));
var(x) = dir(x, r-goal(x));
keep an orientation towards the goal
while the goal has not been reached
chain (move_to (0, r_goal(O)),

move-to (x, r goal(x)),
move-dir (0, dir(e, r_goal(O))),

follow the boundary of the obstacle by
using a combination of the following
moves:

move forward
move-dir (x, var(x)>,
rotate one way
move-dir (0, var(e)>,
move backward
move-dir (x, -var(x)>,
or rotate the other way
move-dir (0, -var(O))};

default:
else
follow the same behavior but assume the axis
is not oriented
chain [move_to (0, axis@, r_goal(B))));
var(x) = dir(x, r-goal(x));
chain {move_to (f3, axis (0, r_goal(O>)),

move-to (x, r goal(x)),
move-dir (0, &(e, r_goal(O))),
move-dir (x, var(x>),
move-dir (0, var(B)),
move dir (x, -var(x)>,
moveair (0, -var(e))};

1;
finally, adopt the correct orientation
chain (move_to (0, goal(e)));

R. Stouffs et al. /Automation in Construction 3 (1995) 305-320 317

5. The RUBICON simulator

The findings of this research have been imple-
mented in a simulation program, RUBICON. The
program can be used to study different task plans,
report on different robot types, study alternate
robot-human crew mix examples, and produce
measurements in terms of time or cost. Working
examples include an automated crane hoist and
an automated tow-motor active in the construc-
tion of a typical precast concrete residential
building. The results of the simulation will assist
an engineer or planner to decide on the appropri-
ate mix of robots and human labor crews in the
planning stage of a building construction project.

5.1. RUBICON

The simulation takes a building construction
task plan as input. This is a detailed plan describ-

ing the construction elements and the construc-
tion process as a task schedule. A task is to be
performed either by a human crew or by a robot.
The simulator then translates each task into a
robot motion plan (a sequence of motion steps)
using a rule-based description of the robot agents.
The motion plans reflect the respective robot’s
motional capabilities and limits, and avoid any
collision. The simulation also rejects impossible
tasks and allows for a variety of different robot
types. The result of the simulation consists of a
graphical visualization of the motion plans, and
of the building under construction.

The input to the RUBICON program consists
of two kinds of files. One file contains the task
plan [17] describing the components and the con-
struction process as a sequence of tasks, each of
which is performed by a human or robot crew.
For each robot agent specified in the task plan, a
motion file is read in that contains a description

Fig. 9. Snapshot of the RUBICON graphical user interface.

318 R. Stouffs et al. /Automation in Construction 3 (1995) 305-320

of the motional capabilities of the robot and the
motion rule set describing its intended behavior,
expressed in the motion language specified above.

The output of the RUBICON program is a

graphical simulation of the construction process
as specified in the task plan, with a visualization
of the motional actions of the robot agents and of
the transportation of the construction compo-

Fig. 10. Snapshots of the simulation: (a) Step 1: The panel is picked up from the truck site or delivery location, after a human crew
has taken care of connecting the panel to the crane hoist’s tool. (b) Step 2: The robot crane uses rotational motion (about its axis)

to move the panel from the delivery location closer to its final position. Obstacles are avoided by raising the panel. (c) Step 3: The

robot crane uses (radial) translational motion to move the panel above its final position. Obstacles are avoided by raising the panel.
(d) Step 4: While still attached to the robot’s tool, the panel is rotated to its final orientation by a human crew. (e) Step 5: Aided by
the human crew, the panel is lowered to its placement location and disconnected from the robot’s tool. The robot crane returns to

the truck site for its next task.

R. Stouffs et al. /Automation in Construction 3 (1995) 305-320 319

nents by these agents, and with a specification of
the process time. The output is controlled through
an audio/video-like control panel with buttons
for play, fast play, next, previous, pause and
stop. Fast play is achieved by unmaterializing the
robot agent; next and previous instantly jump to
the next, respectively previous, construction com-
ponent.

Other interface panels allow the user to choose
and load a new task plan and corresponding
motion files, alter the 3D-viewing parameters,
alter the displayed grid, and view the current
process time (see Fig. 9).

5.2. Demonstration of the program

Figure 10 illustrates an exemplar simulation of
a single task: the placement of a wall-panel in the
second unit of the first floor of the building under
construction.

5.3. Simulation results

The simulation can be used to make observa-
tions on the feasibility of each task and to main-
tain a running measure of construction time and
cost. It can also be used to study the productivity
of alternate construction plans and alternate re-
source mixes or robot types. Examples of simula-
tion results are demonstrated in 1171. RUBICON
may serve as a tool for construction company
engineers to perform studies on real project task
plans; engineers/developers may use RUBICON
to develop better task planners.

6. Conclusion

In this paper we have outlined the uniform
representation for a variety of robot agents for
use in a potentially real-world application, namely
the use of automated agents in cooperation with
humans to assembly building. We have intro-
duced motion rules as a way of capturing the
diversity between the different robot types in a
uniform manner, and we have shown how these
motion rules can be incorporated into a general

three dimensional motion planning algorithm
based on the “generate and test” paradigm.

We have presented some basic structural, op-
erational and functional elements of a motion
language that is used to describe the behavior of
a robot in a multitude of different situations. The
resulting motion plan specifies a time-dependent
trajectory as a series of motion steps that is
particular to the situations encountered along the
trajectory.

The simulation program, RUBICON, is
demonstrated for a residential building example
constructed with precast concrete panels.

Three simple robot examples are described in
the paper, two of which were used in our simula-
tion studies: a crane for moving precast concrete
panels and a tow-motor to position palletized
material.

Finally, it is interesting to draw a comparison
between the approach presented in this paper to
simulate building construction and generative ap-
proaches to building design. Both are goal driven.
Both are rule based. Both seek to arrive at se-
quences of “admissible” steps. The essential dif-
ference is in the vocabulary which, in our case,
includes the sets of building blocks and the sets
of robot agents.

Acknowledgements

The work reported in this paper was funded in
part by the Japan Research Institute, Tokyo.

References

[l] L. Petropoulakis and C. Malcolm, Programming au-

tonomous assembly agents: functionality and robustness,

DA1 Res. Paper 468, Dept. of Artificial Intelligence,

University of Edinburgh, 1990.

[2] C. Malcolm, Planning and performing the robotic assem-

bly of some cube constructions, M.Sc. Dissertation, Uni-

versity of Edinburgh, 1987.

[3] C. Malcolm, T. Smithers and J. Hallam, An emerging
paradigm in robot architecture, Proc. 2nd Conf: on Intel-

ligent Autonomous Systems, 1989.

[4] J.J. Craig, Introduction to Robotics: Mechanics and Con-

trol (2nd ed.), Addison-Wesley, Reading, Mass. (1989).

320 R. Stouffs et al. /Automation in Construction 3 (1995) 305-320

[5] J. Barraquand and J.-C. Latombe, Robot motion plan- [ll] J. Ilari and C. Torras, The classical 2D find-path prob-

ning: a distributed representation approach, STAN-CS- lem: improving search efficiency by using orientation

89-1257, Dept. of Comp. Science, Stanford University, heuristics, Mobile Robots II. Proc. SPIE 852, 1987, pp.

1989. 248-255.

[6] C. Hendrickson and T. Au, Project Management for Con-
struction: Fundamental Concepts for Owners, Engineers,
Architects and Builders, Prentice-Hail, Englewood Cliffs,

N.J. (1989).

[7] T. Lozano-Perez and M.A. Wesley, An algorithm for

planning collision-free paths among polyhedral obstacles,

Comm. ACM, 22 (1979) 560-570.
[8] 0. Khatib, Real-time obstacle avoidance for manipula-

tions and mobile robots, Int. .I. Robot. Res., 5 (1986)
90-98.

[12] R.A. Brooks, Solving the find-path problem by good

representation of free-space. IEEE Trans. Systems, Man
and Cybernet., I3 (1983) 190-197.

[13] S. Bonner and R.B. Kelley, Planning 3-D collision-free

paths, IEEE Int. Symp. on Intelligent Control, 1989, pp.

550-555.

[14] R. Krishnamurti, The maximal representation of a shape,

Enciron. Planning B: Planning and Design, 19 (19921

2677288.

[9] V.J. Lumelsky, Continuous motion planning in unknown

environment for a 3D Cartesian robot arm, Proc. IEEE
Int. Conf on Robotics and Automation, 1986, pp. 1050-

1055.

[15] R. Krishnamurti, The arithmetic of maximal planes, Enc-
iron. Planning B: Planning and Design, 19 (1992) 431-464.

[16] A. Warszawski, Robots in the construction industry,

Robotica, 4 (1986) 181-188.

[lo] J. Ilari and J.Ll. Reyna, Some experimental results using

heuristics for solving the find-path problem in C-space,

Theory of Robots. Selected Papers from the IFAC/IFIP/
IMACS Symp., 1986, pp. 337-342.

[17] R. Stouffs, R. Krishnamurti, S.R. Lee and I.J. Oppen-

heim, Construction process simulation with rule-based

robot path planning, Automat. Construction, 3 (1994)
79-86.

