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Abstract 

This paper reports on the development of a motion language to describe the behavior of automated agents in a 
dynamically changing environment. The language is based on a general representation that uniformly characterizes a 
wide variety of automated agents, using motion rules as a means of establishing the configuration of an agent at any 
given time. Motion planning is briefly discussed and the rudiments of a general three dimensional motion planning 
algorithm are presented. The results are illustrated in a simulation program with application to building construc- 
tion. 
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1. Introduction 

Building construction poses challenging prob- 
lems in robotics for multiple reasons: site charac- 
teristics, man-machine cooperation and the di- 
versity of automated agents. Of particular inter- 
est (to us) is this last issue, the use of a number of 
different and distinct agents in the construction 
of buildings. 

Simulation of the construction process offers 
valuable insights into construction planning and 
management. The use of automated agents adds 

* Discussion is open until August 1995 (please submit your 

discussion paper to the Editor on Construction Technologies, 
M.J. Skibniewski). 

* Corresponding author. 

an extra dimension to this simulation. Apart from 
visualization of the construction process through 
consecutive projections of the building during 
construction, it provides a manifestation of the 
flow of material from storage to assembly and the 
manner of assembly itself. Moreover, the use of 
agents allows for a more precise analysis of the 
difficulty and time involved in the transportation 
of the material on the site. These inclusions ne- 
cessitate a comprehensive representation for a set 
of diverse agents as well as general three dimen- 
sional spatial and motion planning algorithms to 
specify the requisite motional behavior of agents 
in a dynamically changing environment. 

In this paper we elaborate on spatial path 
planning, describe a general representation for 
robot agents, introduce a motion language that 
allows one to capture the diversity in behavior 
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between different robot types, and touch upon 
three dimensional motion planning. We illustrate 
the results in a demonstration of the RUBICON 
simulation program. 

1.1. Automated agents 

We define a robot to be any form or type of 
automated mechanical manipulator which takes 
part in the construction process and requires 
spatial motion of itself. Current research in 
robotics, whether in automation programming 
languages or path planning, is mostly focused on 
general-purpose manipulators such as arm-like 
manipulators. However, building construction of- 
fers a wide variety of tasks that often require 
task-specific robots. We can recognize potential 
use of assembly manipulators for transporting, 
handling or positioning construction materials, 
general-purpose interior robots for operations 
such as welding, grouting and nailing, and highly 
task-specific robots in areas such as concrete sur- 
face leveling or finishing. 

As such, robots in building construction come 
in a large variety, each tailored to a specific task 
or class of tasks. At the same time robots may 
vary largely in size and, therefore, in mobility. 
Given the large size of the workplace and the fact 
that a task is rarely limited to a specific area 
within this workplace, issues of mobility and 
transportability play a far greater role in building 
construction tasks than in general manufacturing 
tasks. Often, the deployment of robots may addi- 
tionally require cooperative human effort such as 
in final positioning. 

In this paper we focus on manipulators that 
carry out pick-and-place assembly tasks. The re- 
sults can be applied to other types of manipula- 
tors as well. The simulation examines robot mo- 
tion from its initial location to the goal location; 
the specific actions involved with picking or plac- 
ing are not simulated. Uncertainty is not consid- 
ered. Thus, the simulation involves planning a 
collision-free path from a determinate initial con- 
figuration to a determinate goal configuration of 
the robot. Such motion is generally referred to as 
gross motion; it does not involve sensing or accu- 
racy control. 

1.2. Language for simulating behavior 

A behavioral approach to robot motion for 
assembly programming has been introduced by 
Petropoulakis and Malcolm [l] (also [2], [3]). Their 
approach is to translate high-level assembly tasks 
into specific robot motions in order to deal with 
such problems as theoretical complexity and 
questionable functionality. Behavioral modules 
are designed that are predominantly concerned 
with the basic robot activities with respect to the 
objects of the assembly and their manipulation. 
These modules form the elementary units of the 
assembly system and are to be appropriately com- 
bined into higher level behaviors in order to 
perform complex part manipulations and assem- 
blies. 

Apart from concerns of translating high-level 
task plans into series of robot motions, the re- 
search reported in this paper is specifically geared 
towards a representation for different robot types 
and an expression of their behavior. As such, 
describing the behavior of a robot is not a means 
to an end, but the end altogether. We are particu- 
larly interested in finding a collision-free path for 
a robot from one location to another in the 
dynamically changing environment of a construc- 
tion site. We are concerned with the part that a 
particular robot plays in the construction process, 
and with its place in that environment. The rela- 
tionship between a robot and the environment is 
constrained by a number of factors: physical ob- 
stacles, interaction as specified by the tasks, in- 
teraction with human agents, safety considera- 
tions, and other issues that may be important to 
the robot’s behavior. 

In order to specify the appropriate behavior 
for a robot with respect to each of these con- 
straints, without restricting the variety of robots 
that may be involved in the construction process, 
a motion language for robot behavior is devel- 
oped. The language is used to specify the transla- 
tion process of high-level pick-and-place tasks 
into specific, discrete, robot motions, taking into 
account motion constraints. The language is gen- 
eral in that it can describe disparate robot types, 
each operating in a multitude of different situa- 
tions, yet it is focused towards a single purpose, 
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motional capabilities and of its swept volume. 
The former constitutes the basis of any motion 
planning in free space in the absence of obsta- 
cles; the latter allows for collision detection or 
the determination of free space. A representation 
of the motional capabihties of a robot relies in 
the first instance on an expression for the robot’s 
configuration, where by configuration we mean 
both position and orientation of the body in ques- 
tion. 

TYPICAL UNIT PLAN, 3LDK l 86m2 
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Fig. 2. Floor plan of a single unit. 

that of specifying robot motions for use in a 
general motion planning algorithm. 

1.3. Construction project example 

To demonstrate the simulator we chose the 
construction of a typical Japanese precast con- 
crete residential building. Figure 1 illustrates 
three stories of a typical 5 story, 40 unit building; 
Fig. 2 shows the floor plan of a single unit. 

2. Representation 

The representation of a robot must, before all, 
reflect the intended usage. Robot motion or path 
planning requires an expression of the robot’s 

2.1. Conjigura tion 

A manipulator is typically an open kinematic 
chain of rigid links, connected with joints which 
allow relative motion of neighboring links [4]. At 
the “free” end of the chain we recognize the 
end-effector of the manipulator. Depending on 
the intended application of the robot, this end-ef- 
fector may be a gripper, welding torch or other 
device. The base of the robot defines the other 
end of the open chain. This base may be either 
fixed in space or allowed to move within con- 
straints established by the mobility mechanism. In 
this paper, we are not concerned with the physi- 
cal properties of the chain of links and joints that 
relate the end-effector to the base, but only with 
the configurational relation. We need to know 
how the configuration of the end-effector is de- 
pendent on the configuration of the base, and 
which parameters control the relationship. 

In order to describe the position and orienta- 
tion of a body in space we rigidly attach a coordi- 
nate system or frame to the body. Such a frame 
can also be interpreted as a description of one 
coordinate system relative to another. We adopt 
the term transform to denote such a mapping 
between frames. A minimal description of a robot 
involves the following three frames: the universal 
frame {U} that represents the outside world and 
is used as an absolute reference; the base frame 
{B} that defines the configuration of the robot’s 
base; the tool frame {T} that defines the configu- 
ration of the robot’s end-effector (see Fig. 3). The 
object frame {O] defines the configuration of the 
material being handled. 

The positional and orientational relation of 
these frames to one another is expressed by the 
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Fig. 3. Three frames to describe the configuration of a robot: 

the universal frame {U}, the base frame {B) and the end-ef- 

fector frame {T]. 

following two transforms: BUT describes the base 
frame relative to the universal frame; FT defines 
the tool frame with respect to the base frame. 
The relation between any two of the three frames 
can be arithmetically expressed as a function 
of BUT and FT, e.g., the composite transform 
FT =iT:T which describes the tool frame rela- 

tive to the universal frame. The object frame is 
described relative to the universal frame by the 
composite transform :T = FTJT. A transform 

may be represented as a combination of a rota- 
tion matrix and a translation vector. The actual 
representation is unimportant as to the concept 
or usage and, therefore, will not be expanded on 
within this paper. 

Even though the exact configuration of the 
robot requires a description of the orientation 
and/or position of each link, in most cases the 
robot is sufficiently described by the configura- 
tion of its base and end-effector. Robots in con- 
temporary building assembly do not require a 
high degree of accuracy, because of the site char- 
acteristics and the size of construction elements 
involved in assembly, and because of man-robot 
cooperation. However, if a more precise descrip- 
tion is necessary, it is straightforward to expand 
the number of frames involved in the representa- 
tion. 

2.2. Control parameters 

Physically, the relationship between the end- 
effector and the base of the robot is defined by a 
set of links and joints, generally formed into an 

open kinematic chain. The number of degrees of 
freedom of the robot’s end-effector, with respect 
to the base and for an open kinematic chain, 
corresponds in most cases to the number of joints. 
To represent these degrees of freedom, we define 
an equal number of control parameters that con- 
trol the configuration and motion of the end-ef- 
fector. The set of valid control parameters con- 
sists of x, y, z, $, 4 and 0, where x, y, z define 
translations parallel to the respective axis and I), 
4, 8 define rotations about the X-, Y- and Z-axis, 
respectively. 

As an example, consider the three-link planar 
arm shown in Fig. 4, with three rotational joints 
in the XZ-plane. The transform FT, describing 
the configuration of the end-effector relative to 
the base, is dependent on the actual construct 
that links the end-effector to the base. Although 
it is possible to represent exactly the end- 
effector’s configuration in terms of the joint pa- 
rameters 41, 42 and 43 and link lengths x, = 1, 
and x2 = I,, it is worthwhile to explore alterna- 
tive approximate representations, especially from 
considerations of user control (of the simulation) 
and computational efficiency. 

A simple examination reveals that the 
workspace is bound by an outer circle with radius 
1, + I,, and that the end-effector can assume any 
orientation in the XZ-plane (Fig. 5(a)). A very 
crude approximation (but one which may prove 
useful) of these characteristics can be achieved 
using a single rotational parameter 4 and two 
independent translational parameters x and z. 
Given the values x,,,~,,, xmax, z,~,, and z,,~, 

Fig. 4. A three-link planar arm. 
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Fig. 5. Control parameters and workspace for different approximations of the three-link planar arm. 

specifying the value ranges for the control param- 
eters x and z, the resulting workspace is bound 
by a rectangle instead of a circle (Fig. 5(b)). 
Depending on the value ranges specified, the 
circle with radius 1, + 1, may inscribe, intersect or 
circumscribe the rectangle. This approximation 
can be refined by introducing an additional rota- 
tional parameter instead of one of the transla- 
tional parameters. This results in a specification 
of the end-effector’s position using polar coordi- 
nates x and 4’ (Fig. SC)). A further refinement 
would yield the exact representation. 

2.3. Motion rules 

Often, the control parameters reflect the joint 
parameters that specify the configuration of the 
joints, and thus of consecutive links. However, 
when describing the configuration and/or motion 
of a mobile robot’s base with respect to the 
outside world, the control parameters take a 
slightly different physical meaning. In most cases, 
the motional capabilities are defined locally, de- 

pendent on the current configuration of the body. 
In slight contrast, the configuration itself is de- 
fined globally, relative to a fixed reference frame. 
Therefore, even though infinitesimal small mo- 
tions can be readily described using one repre- 
sentation, the global result is not restricted to 
that same representation, nor is the configuration 
of the body. The obvious example of such a 
discrepancy between configuration control and 
motion control is a “car”. We refer to Bar- 
raquand and Latombe [5] for an “exact” solution, 

i.e., motion-planning algorithm, for the “car 
problem”. For the sake of simplicity we assume 
that the “car”, or mobile agent, is capable of 
stationary rotational motion. 

Thus, the configuration may become practi- 
cally independent of the motion mechanism, 
while, at the same time, the motion control pa- 
rameters may only approximate the mechanism’s 
complexity. To represent these differences in 
configuration and motion control we introduce a 
set of motion rules that are used to update the 
values of the control parameters, especially in the 



case when the parameters represent only the 
configuration and not the motional capabilities of 
the robot. 

The objective for specifying motion rules is not 
only to solve this discrepancy between configura- 
tion and motion control, but also as a tool to 
embody the discretization of time. The simulation 
of a construction process relies on an activity 
network of construction activities and an accom- 
panying time-history state representation of the 
building under construction [6]. The simulation of 
the activities and of the evolving geometry re- 
quire a time step to be specified. This time step 
defines the discretization of the simulation pro- 
cess and of the robot’s motion. The resulting 
motion steps also depend on the robot’s joint 
velocities. In reality, these velocities may vary in 
time in order to achieve a certain smoothness in 
the motion (see [4] for a definition of smooth). 
Since, in simulation, motion is not represented as 
a continuous but as a discrete function, we may 
assume the velocity to be constant, but possibly 
dependent on the robot and/or joint type. We 
further disregard the velocity as a parameter in 
the process and use instead a set of motion step 
values, one for each control parameter, that are 
denoted xs, y,, zs, O,, c$,, and $$. These values 
are specified except for their sign (positive or 
negative). Within a set of motion rules each of 
these values may take either sign, but this sign 
has to be the same for all rules in the set. 

We define a transform fimction, with respect 
to a set of arguments, to be any series of terms 
composed with addition and/or multiplication, 

X 

(a) 
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where each term may be either an argument, a 
sin or cos of an argument or a negation of any of 
the above. Then, a motion rule takes on the 
following form: p +f({a,, a2, . . . , a,}). Here p 
denotes a control parameter and f denotes a 
transform function; (a,, a*, . . . , a,} denotes a set 
of arguments to f, chosen from the set of control 
parameters describing the body’s configuration 
and the sets of step and constant values. Such a 
motion rule generally defines the value of p at 
time t + At, where At denotes the time step, in 
terms of the control parameter’s values at time t 
and the step and constant values. In particular, 
these motion rules can be used in three different 
ways, depending on the arguments specified to 
the transform function. Firstly, a motion rule may 
specify a constant value to a parameter. In this 
case, the transform function takes a single argu- 
ment, which should be the constant value corre- 
sponding to the control parameter, e.g., x +x,. 
Even though, strictly speaking, these are not 
“motion” rules, such degenerate rules are useful 
in order to achieve a uniform representation. The 
constant values, one for each control parameter, 
are denoted x,, yC, zC, e,, 4,, and 4C. They may 
also serve as initial values for the configuration. 

Secondly, the motion rule may specify the mo- 
tion step for the control parameter. Here, the 
transform function takes two arguments, which 
are the control parameter itself and the corre- 
sponding step value, e.g., x +x,. Thirdly, in the 
general case, a motion rule may specify the pa- 
rameter’s new value in terms of other control 
parameters, e.g., x +X + rs cos 13. 

(b) 
Fig. 6. A mobile agent with (a) stationary rotational motion and (b) translational motion along its axis. 
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As an example, consider a mobile agent with 
stationary rotational motion and translational 
motion along its axis (Fig. 6). The agent has 
control parameters X, y, z, and 8. However, its 
motion is specified in polar coordinates. Thus, 
the resulting motion rules for a horizontal work 

surface are 

{et8+8,,xcx+x,cose-y,sin8, 

y+y+x,sin0+y,cos0,2+2,.}. 

3. Motion planning 

In path planning we distinguish between global 
and local methods. Global techniques are gener- 
ally based on configuration space (C-space) (due 
to Lozano-PCrez and Wesley [71) and have been 
demonstrated successfully. However, finding col- 
lision-free paths in three dimensions and for ob- 
jects with rotational degrees of freedom increases 
the dimensionality of the configuration space sig- 
nificantly, and increases the computation time 
exponentially [5]. Further, if the environment 
changes dynamically, as is the case in building 
construction, this requires a dynamically varying 
C-space, which is computationally inefficient. This 
will detract from some of the advantages offered 
by the global techniques. Local strategies may 
function both in task space and in configuration 
space. They are generally based on artificial po- 
tential functions [8], but exhibit a limitation that 
is due to the appearance of local minima. 

In order to deal with a dynamically changing 
environment it is often useful to follow a local 
approach where obstacles are avoided as they are 
encountered [9]. In this approach a path is built 
up from single motion steps in a bottom-up fash- 
ion. We denote this approach motion planning to 
distinguish it from global path planning. Such an 
approach may be combined with an approximated 
global path finding algorithm into a hybrid 
method. Ilari and Reyna [lOI and Ilari and Torras 
[ll] adopt a hybrid method with a global path 
planning phase and a solution path search phase, 
the latter based on heuristics. 

Our objective is to discuss the rudiments of a 
general three dimensional motion planning algo- 
rithm that is based on the robot representation 
described above. This motion planning may be 
either goal-driven or path-driven. The latter con- 
stitutes a hybrid method where the motion plan- 
ning is influenced by a global path chosen a 
priori. Due to the dynamically changing environ- 
ment this global path may not be a sufficient 
solution, but constitutes a guiding path for mo- 
tion planning. In the discussion that follows the 
term goal may be interpreted either as the final 
goal or as any point on the global path that is 
temporarily designated the goal configuration. 

3.1. Motion planning algorithm 

We define motion planning as the production 
of a plan that depends upon (i> the distance from 
the current position to the goal position, and (ii) 
the required orientation at the goal relative to 
the current orientation. The plan is constrained 
by the obstacles surrounding the current position, 
and any specified motion heuristics (see [lo], [ 111). 
We base our motion planning algorithm on the 
robot representation specified above, and in par- 
ticular on the motion steps allowed and on the 
workspaces of both the base and the end-effector 
of the robot. 

Lozano-P&ez and Wesley [71 also describe a 
simple collision avoidance algorithm for path 
planning based on the “generate and test” 
paradigm. Adapted to motion planning the algo- 
rithm becomes: 
(1) compute the volume swept out by the moving 

object for the proposed motion step, 
(2) determine the intersection of the swept vol- 

ume and the surrounding obstacles, 
(3) if an intersection exists, propose a new mo- 

tion step. 
To determine whether two objects intersect, 

Brooks [12] introduces the idea of generalized 
cones, and Bonner and Kelley [13] introduce Suc- 
cessive Spherical Approximations as a complete 
model for three dimensional objects, in order to 
approximate free space at successive levels of 
detail. Krishnamurti (1141, 1151) develops an algo- 
rithm for shape intersection based on a represen- 
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tation of three dimensional polygons or polyhe- 
dra in terms of maximal spatial elements. Since 
the number of possible motion steps is limited, it 
is straightforward to determine the swept volume 
of the object and of the robot for each motion 
step. 

3.2. Motion language 

It remains to be specified which motion steps 
should be proposed and in what order. This is 
equivalent to asking which motion step is most 
appropriate at each moment or for each configu- 
ration, given the constraints that adhere to the 
current situation. Such a decision is highly depen- 
dent on the particular robot and on its expected 
behavior. The motion language serves as the 
means to specify this behavior and, in particular, 
the order in which the allowed motion steps 
should be proposed. 

The key to a behavioral description of a robot 
is to specify exactly what behavior is expected of 
the robot for each situation that may be encoun- 
tered. This requires a situation-based decomposi- 
tion of the behavioral description, the equivalent 
of which is a case-structure in a programming 
language; a selection is made depending on a 
particular value or condition. We have adopted a 
which-structure with labels that mark the differ- 
ent behavioral modules, where each label reflects 
the situation that is handled within that module. 
Examples of such situations are whether the robot 
is transporting material or not, whether safety 
considerations are at the brink of being violated, 
etc. 

Each module specifies a series of actions, each 
of which is subject to verification of its validity in 
the light of the surrounding obstacles. We have 
refrained from using an explicit if-then-else-struc- 
ture. Instead, commands (motion steps) are 
“chained” together; each element in the chain is 
weaved in with the previous and the next ele- 
ment. If the current command fails the next one 
is invoked, but whenever possible an attempt is 
made to try the previous command. That is, com- 
mands positionally later in the chain are invoked 
only when necessary. This results in a procedure 
as outlined below. The procedure ends when 

either the goal is reached or the end of the chain 
is encountered. 
1 if the current command succeeds 
2 then if the goal has been reached 
3 then exit 
4 if there is a previous command in the 

chain 
5 then current + previous 
6 else if there is a next command in the chain 
7 then current + next 
8 else exit 
9 got0 line 1 

An extension to this concept is the cycle, or 
cyclic chain. Here, no end exists to the chain, only 
a starting point, but the chain is augmented with 
a conditional statement that specifies when to 
exit the cycle. This construct is particularly useful 
when the behavior should be one of following a 
particular (open or closed) boundary or path. The 
exiting condition then may reflect a spatial deci- 
sion crossroads, such as the end of an open 
boundary (or path) or the point of bifurcation 
with respect to a specific goal (or subgoal). A 
final control element of the language is the speci- 
fication of a set of commands of which only one is 
active at any time. Only on failure is such a 
command replaced by the next command in the 
set. This control structure is denoted each. 

The elementary building blocks of the lan- 
guage are the motion commands moue ro and 
move dir together with a series of funct&s that 
may be used as command arguments. Assign- 
ments are always specified in conjunction with 
the var operator that associates a variable to its 
argument, which is typically a control parameter. 
commands: 
l move to (parameter, goal value) 

A single step in the direction of the goal is 
performed for the specified parameter, if al- 
lowable. If the goal value equals the current 
value, no step is performed. Returns TRUE if 
the motion step succeeded, else returns 
FALSE. 

0 move dir (parameter, direction value) 
A single step in the specified direction is 
performed for the specified parameter, if al- 
lowable. Returns TRUE if the motion step 
succeeded, else returns FALSE. 
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assignment: 
0 var (xl = value 

The specified value is stored in variable x. 
,functions: 

goal (x) 
Returns the goal value of parameter x. 

r-goal (xl 
Determines the goal value for parameter x 
relative to the current configuration. 
dir (x, c) 
Determines the direction specified by L’ with 
respect to the current value of parameter x. 
axis (x, cl 
Reduces the angle L’ to between -90” and 
90” with respect to the axis defined by the 
current value of x. 
min (xl; max (x> 
Returns the minimum (maximum) value spec- 
ified for parameter x. 
min (x, c); max (x, c) 
Returns the minimum (maximum) of the cur- 
rent value of x and the value c’. 
var (xl 
Returns the value of the variable associated 
with parameter x. 

4. Examples 

We consider three examples: an exterior wall 
finishing robot, an automated crane hoist and an 
automated mobile agent. The first one constitutes 

I 
X 

n 

a simple example illustrating the issues involved 
when describing a robot’s behavior. The second 
example demonstrates the usage of the behav- 
ioral language in describing the behavior of a 
robot agent. The final example explores the de- 
scription of the more complicated behavior of a 
mobile agent. 

4.1. Exterior wall finishing robot 

Warszawski [16] distinguishes this type of robot 
for usage in finishing activities on building exteri- 
ors such as painting, plastering and finish inspec- 
tion. A possible robot configuration is illustrated 
in Fig. 7. It consists of a vertical carriage sus- 
pended from a base vehicle located on the roof. 
The base shows for horizontal transIationa1 mo- 
tion along the building edge. The carriage has the 
ability to move vertically along the building exte- 
rior surface. The robot’s end-effector also has 
limited horizontal displacement capability that 
allows it to cover a vertical strip of the surface 
without moving the base. 

Firstly, consider the base as an automated 
agent. Its motional capability is sufficiently de- 
scribed by a single control parameter x; the cor- 
responding motion rule is x + x +x,. The behav- 
ior of the base as an automated agent consists of 
translational motion in order to reach the x-coor- 
dinate of the overall goal position. 

chain{ moce_to( x,goal( x))} ; 

Fig. 7. Front and side view of a possible configuration of an exterior wall finishing robot. 
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Secondly, consider the carriage as an automated 
agent independent of the base of the robot, ini- 
tially, assuming a fixed end-effector. In this case, 
the motional capability is described using the 
control parameter z, representing the allowable 
vertical displacement which is defined relative to 
the base atop the roof. Thus, the behavior of the 
carriage (with fixed end-effector) consists only of 
vertical motion in order to reach the z-coordinate 
of the overall goal position. 

chain{ moue-&( z,goal( z))} ; 

If we now consider the end-effector as capable of 
horizontal motion, its displacement can be de- 
fined relative to the carriage. The behavior of the 
robot’s end-effector (taken as an automated agent 
independent of the base vehicle) is identical to 
the behavior of the base agent. Upon considering 
their dependency, a choice as to whether the base 
or end-effector should be moved can be made 
depending on the goal location and the reach of 
the end-effector, where the latter is specified 
relative to the carriage location by values xmin 
and x,,,. 

4.2. Automated crane hoist 

We consider the motion of an automated crane 
hoist with fixed base and full-site access (see Fig. 
8). In general, a crane hoist’s end-effector has 
only three degrees of freedom. These are repre- 
sented exactly by the control parameters 0, x and 
z, where 0 represents the orientation of the crane 
hoist, and x and z represent the respective hori- 
zontal and vertical displacement of the end-effec- 
tor with respect to the base. In the case of a 
crane hoist with a limited work envelope, the 

values ommin, o,,,, Xmin, x,,,, zmi,, and z,,, 
(relative to the base position) are specified to 
define the workspace of the hoist. The corre- 
sponding motion rules are 113 +- 0 + 8,, x +x + xs, 
z + z + zJ. When applying these rules, the values 
of es, x, and z, may be either positive or nega- 
tive. 

Given any obstacle, the expected behavior of 
the crane should be to raise the load above the 
height of the obstacle, if possible, and complete 
its trajectory subsequently, only lowering the load 

when the goal position has been reached. A cor- 
responding motion plan for an automated crane 
hoist is shown below. 

set the goal height 
var(height > = 30; 
move clear of the goal height 
chain { 

move-to (z, max(z, varcheight) + goal(z))) 

1; 
move closer to the base 

chain {move_to (x, min(x, goal(x)))); 
alter the orientation towards the goal 
chain { 

move-to (e, goal(e)), 
while staying clear of any obstacles 

move-dir Cz, dir(z, max(z))) 

1; 
alter the displacement towards the goal 
chain { 

move-to (x, goal(x)), 
while staying clear of any obstacles 

move-dir (z, dir(z, max(z))) 

1; 
which { 

transport: 
when transporting an object 

stop clear of the goal 
chain (move_to( z, var( height I+ goal(z))}; 

default: 
else 

lower the end-effector to the goal height 

chain (move_to (z, goal(z))}; 

1; 

In many cases it may be either impossible to 
raise the load above an obstacle, or it may be 
unacceptable for safety reasons when a human 
labor crew is working underneath the planned 
trajectory. Then, lateral displacement as a result 
of rotational motion should be considered as a 
way to circumvent such “obstacles”. The follow- 
ing motion sub-plan proposes lateral motion: 

try a combination 
chain { 

of translational motion 
var(x) = dir(x, goal(x)), 
and rotational motion 
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Fig. 8. A crane hoist. 

move-to (0, goal(O)), 
the former in either direction but not intermixed 
each (move-dir (x, vat-(x)>, 

move-dir (x, -var(x>)] 
I, 

A choice in direction is made depending on 
the initial direction of the goal with respect to the 
end-effector, and any motion is continued in the 
same initial direction, unless prohibited by the 
obstacle. 

4.3. Automated mobile agent 

Consider the mobile agent illustrated in Fig. 6. 
It has the ability to move horizontally through 
stationary rotational motion and through transla- 
tional displacements along its axis. the corre- 
sponding control parameters are x, y, z and 8 
and the motion rules are (0 * 8 + f3,, x +--x +x, 
C0Se-y, sin@, y+y+x, sinO+y, case, Z+ 
z,l. 

We assume different behavior depending on 
whether it is transporting an object or not. In the 
former case, translational forward motion is 
preferable over backward motion. In the latter 
case, no distinction is made between forward and 

backward. That is, when considering a rotation of 
the axis of the mobile agent towards the goal, the 
axis is treated as undirected. Overall, the agent is 
oriented towards the goal, if possible, in order to 
shorten the necessary trajectory. If an obstacle is 
found on its path toward the goal, the agent 
follows the obstacle’s boundary until it can re- 
sume a straight path towards the goal. 

var(8) = dir(0, r_goal(O)); 
which ( 

transport: 
when transporting an object 
try to orientate itself relative to the goal 
chain {move_to (0, r_goal(e))); 
var(x) = dir(x, r-goal(x)); 
keep an orientation towards the goal 
while the goal has not been reached 
chain (move_to (0, r_goal(O)), 

move-to (x, r goal(x)), 
move-dir (0, dir(e, r_goal(O))), 

follow the boundary of the obstacle by 
using a combination of the following 
moves: 

move forward 
move-dir (x, var(x)>, 
rotate one way 
move-dir (0, var(e)>, 
move backward 
move-dir (x, -var(x)>, 
or rotate the other way 
move-dir (0, -var(O))}; 

default: 
else 
follow the same behavior but assume the axis 
is not oriented 
chain [move_to (0, axis@, r_goal(B)))); 
var(x) = dir(x, r-goal(x)); 
chain {move_to (f3, axis (0, r_goal(O>)), 

move-to (x, r goal(x)), 
move-dir (0, &(e, r_goal(O))), 
move-dir (x, var(x>), 
move-dir (0, var(B)), 
move dir (x, -var(x)>, 
moveair (0, -var(e))}; 

1; 
finally, adopt the correct orientation 
chain (move_to (0, goal(e))); 
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5. The RUBICON simulator 

The findings of this research have been imple- 
mented in a simulation program, RUBICON. The 
program can be used to study different task plans, 
report on different robot types, study alternate 
robot-human crew mix examples, and produce 
measurements in terms of time or cost. Working 
examples include an automated crane hoist and 
an automated tow-motor active in the construc- 
tion of a typical precast concrete residential 
building. The results of the simulation will assist 
an engineer or planner to decide on the appropri- 
ate mix of robots and human labor crews in the 
planning stage of a building construction project. 

5.1. RUBICON 

The simulation takes a building construction 
task plan as input. This is a detailed plan describ- 

ing the construction elements and the construc- 
tion process as a task schedule. A task is to be 
performed either by a human crew or by a robot. 
The simulator then translates each task into a 
robot motion plan (a sequence of motion steps) 
using a rule-based description of the robot agents. 
The motion plans reflect the respective robot’s 
motional capabilities and limits, and avoid any 
collision. The simulation also rejects impossible 
tasks and allows for a variety of different robot 
types. The result of the simulation consists of a 
graphical visualization of the motion plans, and 
of the building under construction. 

The input to the RUBICON program consists 
of two kinds of files. One file contains the task 
plan [17] describing the components and the con- 
struction process as a sequence of tasks, each of 
which is performed by a human or robot crew. 
For each robot agent specified in the task plan, a 
motion file is read in that contains a description 

Fig. 9. Snapshot of the RUBICON graphical user interface. 
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of the motional capabilities of the robot and the 
motion rule set describing its intended behavior, 
expressed in the motion language specified above. 

The output of the RUBICON program is a 

graphical simulation of the construction process 
as specified in the task plan, with a visualization 
of the motional actions of the robot agents and of 
the transportation of the construction compo- 

Fig. 10. Snapshots of the simulation: (a) Step 1: The panel is picked up from the truck site or delivery location, after a human crew 
has taken care of connecting the panel to the crane hoist’s tool. (b) Step 2: The robot crane uses rotational motion (about its axis) 

to move the panel from the delivery location closer to its final position. Obstacles are avoided by raising the panel. (c) Step 3: The 

robot crane uses (radial) translational motion to move the panel above its final position. Obstacles are avoided by raising the panel. 
(d) Step 4: While still attached to the robot’s tool, the panel is rotated to its final orientation by a human crew. (e) Step 5: Aided by 
the human crew, the panel is lowered to its placement location and disconnected from the robot’s tool. The robot crane returns to 

the truck site for its next task. 



R. Stouffs et al. /Automation in Construction 3 (1995) 305-320 319 

nents by these agents, and with a specification of 
the process time. The output is controlled through 
an audio/video-like control panel with buttons 
for play, fast play, next, previous, pause and 
stop. Fast play is achieved by unmaterializing the 
robot agent; next and previous instantly jump to 
the next, respectively previous, construction com- 
ponent. 

Other interface panels allow the user to choose 
and load a new task plan and corresponding 
motion files, alter the 3D-viewing parameters, 
alter the displayed grid, and view the current 
process time (see Fig. 9). 

5.2. Demonstration of the program 

Figure 10 illustrates an exemplar simulation of 
a single task: the placement of a wall-panel in the 
second unit of the first floor of the building under 
construction. 

5.3. Simulation results 

The simulation can be used to make observa- 
tions on the feasibility of each task and to main- 
tain a running measure of construction time and 
cost. It can also be used to study the productivity 
of alternate construction plans and alternate re- 
source mixes or robot types. Examples of simula- 
tion results are demonstrated in 1171. RUBICON 
may serve as a tool for construction company 
engineers to perform studies on real project task 
plans; engineers/developers may use RUBICON 
to develop better task planners. 

6. Conclusion 

In this paper we have outlined the uniform 
representation for a variety of robot agents for 
use in a potentially real-world application, namely 
the use of automated agents in cooperation with 
humans to assembly building. We have intro- 
duced motion rules as a way of capturing the 
diversity between the different robot types in a 
uniform manner, and we have shown how these 
motion rules can be incorporated into a general 

three dimensional motion planning algorithm 
based on the “generate and test” paradigm. 

We have presented some basic structural, op- 
erational and functional elements of a motion 
language that is used to describe the behavior of 
a robot in a multitude of different situations. The 
resulting motion plan specifies a time-dependent 
trajectory as a series of motion steps that is 
particular to the situations encountered along the 
trajectory. 

The simulation program, RUBICON, is 
demonstrated for a residential building example 
constructed with precast concrete panels. 

Three simple robot examples are described in 
the paper, two of which were used in our simula- 
tion studies: a crane for moving precast concrete 
panels and a tow-motor to position palletized 
material. 

Finally, it is interesting to draw a comparison 
between the approach presented in this paper to 
simulate building construction and generative ap- 
proaches to building design. Both are goal driven. 
Both are rule based. Both seek to arrive at se- 
quences of “admissible” steps. The essential dif- 
ference is in the vocabulary which, in our case, 
includes the sets of building blocks and the sets 
of robot agents. 
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