
Frontiers of Architectural Research (2014) 3, 337–347
H O S T E D B Y Available online at www.sciencedirect.com
http://dx.doi.
2095-2635/& 2

Peer review

nCorrespond
www.elsevier.com/locate/foar
RESEARCH ARTICLE
Restructuring surface tessellation
with irregular boundary conditions

Tsung-Hsien Wanga,n, Ramesh Krishnamurtib, Kenji Shimadac
aSchool of Architecture, University of Sheffield, Sheffield S10 5DU, UK
bSchool of Architecture, Carnegie Mellon University, Pittsburgh, PA 15213, USA
cDepartment of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Received 16 September 2013; received in revised form 26 May 2014; accepted 4 June 2014
KEYWORDS
Freeform surfaces;
Irregular boundary
conditions;
Boundary-driven ana-
lysis;
Quad-dominant mesh;
Surface tessellation
org/10.1016/j.foar.2014
014. Higher Education P

under responsibility of
ing author.
Abstract
In this paper, the surface tessellation problem is explored, in particular, the task of meshing a
surface with the added consideration of incorporating constructible building components. When
a surface is tessellated into discrete counterparts, certain unexpected conditions usually occur
at the boundary of the surface, in particular, when the surface is being trimmed. For example,
irregularly shaped panels form at the trimmed edges. To reduce the number of irregular panels
that may form during the tessellation process, this paper presents an algorithmic approach to
restructuring the surface tessellation by investigating irregular boundary conditions. The
objective of this approach is to provide an alternative way for freeform surface manifestation
from a well-structured discrete model of the given surface.
& 2014. Higher Education Press Limited Company. Production and hosting by Elsevier B.V. All
rights reserved.
1. Introduction

There is increasing interest in exploring complex freeform
shapes in contemporary architectural and design practice.
Frank Gehry (Lindsey, 2001) and Zaha Hadid (Jodidio, 2009)
are prime examples of pioneering avant-garde designers
who have incorporated freeform shapes into their designs.
The development of manifesting freeform designs relies
.06.001
ress Limited Company. Productio

Southeast University.
heavily on a core geometry, which is used from early
conceptual form finding to final detailed building assembly.
Among the various techniques for freeform shape construc-
tion, a NURBS (Non-Uniform Rational Basis Spline) surface is
perhaps the most commonly exploited geometrical model
(Piegl and Tiller, 1997). To manifest a NURBS surface, a
discrete model, namely a mesh model, is employed. The
meshing process generates an approximation of a given
freeform geometry. In design practice, the modeling and
subsequent, fabrication of an intriguing, sometimes intri-
cate, freeform shapes requires an extension of the meshing
process to include considerations of incorporating
n and hosting by Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.foar.2014.06.001
dx.doi.org/10.1016/j.foar.2014.06.001
dx.doi.org/10.1016/j.foar.2014.06.001
dx.doi.org/10.1016/j.foar.2014.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foar.2014.06.001&domain=pdf
dx.doi.org/10.1016/j.foar.2014.06.001

T.-H. Wang et al.338
constructible building components. This is referred to as the
surface tessellation problem, which is the subject matter of
this paper. There is a close relationship and analogy
between elements of a mesh and the components of a
freeform design, for example, faces associate with panels,
edges to structural frames, and so on.

1.1. Objective

The features of a given surface boundaries are essential for
surface tessellation. For example, boundaries (also called
edges) delineate the appearance of a freeform shape, and
indicate where surface analysis starts and where it ends.
Boundaries also identify whether a surface has been
trimmed, that is, parts of the surface have been removed.
Trimming can occur in the interior, or exterior of a surface.
Figure 1 illustrates an original NURBS surface on the left and
a trimmed surface, with both interior and exterior edges, in
the middle. When tessellating a trimmed surface into its
discrete counterparts, the irregularly shaped panels emerge
at these trimming edges, as shown on the right of Figure 1.
This is a commonly seen problem in NURBS-based freeform
architectural designs as the simple iso-parameterization is not
enough to resolve the potential irregularly shaped panels at
these trimmed boundaries.

By exploring the surface boundary conditions for tessellation-
based patterns, we present an algorithmic approach for gen-
erating boundary-driven meshes. Specifically, the quadrilateral
mesh is used to exemplify the approach applied to the
formation of the tessellation structure with irregular boundary
conditions. Our objective is to present a general algorithmic
solution to discretize freeform surfaces with regular pattern-
based elements, and to develop strategies for solving con-
straints from irregular surface boundaries.

1.2. Background

In applying principles from computational geometry to the
manifestation of freeform design there is emphasis placed
on meshing arbitrary surfaces into discrete building compo-
nents. Each component is procedurally constructed from a
base polygonal pattern, typically, a triangle or quadrilateral
(Wang, 2009).

There has been a shift from using triangles as the base
pattern to approximate freeform shapes towards using
quadrilateral patterns, which is gaining considerable inter-
est in both constructive geometry theory as well as in
Figure 1 (Left) original NURBS surface (middle) trimmed NURBS s
architectural practice and research (Pottmann et al.,
2007b). For reasons of physical construction, it is often
preferable to convert a curvilinear surface into planar
elements. There are published techniques for such conver-
sions. For example, Pottmann et al. (2008) presents a fine-
tuned approach to discretizing the freeform surface with
planar quadrilateral elements. However, Pottmann's
approach of initiating a representative mesh with merely
quadrilateral faces may not always be possible, and often
requires manual remodeling of the original surface. This
reverse-engineering process relies heavily on the preparation
of an initial coarse mesh and on how well this initial mesh
represents the target shape (Pottmann et al., 2007a). Such
an approach, in one sense, is less intuitive for designers to
consider in the design process yet it could be very efficient
given that the initial coarse mesh truly represents the
ultimate shape.

An alternative approach presented by Cutler and Whiting
(2007) looks at a re-meshing technique by iteratively
clustering neighboring mesh elements and fitting them onto
the closest planes. Their result demonstrates an algorithmic
approach to post-restructuring an originally triangulated
mesh into planar elements for architectural fabrication. The
outcome of this approach is organic and formulated with
arbitrary polygonal shapes. The bubble mesh (Shimada and
Gossard, 1995) presents a physics-based algorithm to auto-
mate mesh generation by simulating bubble packing. The
strength of this algorithm lies in its ability to control size,
anisotropy and orientation of mesh formation. As this
approach initiates the bubble packing from the existing
boundaries, the generated result will be close to what will
be described in this paper given that the entire boundary
conditions are taken into the optimization process.

In brief, aforementioned approaches explore how the
mesh elements could be structured by optimizing the
constraints of interest, such as, pattern, planarity, sizing,
etc. However, all these approaches currently do not provide
the flexibility of intervention from users/designers to
inform, or direct, how surface tessellation could be further
improved to facilitate design exploration, in particular, at
the early design conceptual phase. Given the seminal role of
the surface boundaries during the tessellation process, most
of the aforementioned algorithms emphasize on the auto-
mation of the mesh element generation and overlook the
potential of incorporating boundary conditions for custo-
mizable surface tessellation.

The tessellation problem becomes even more challenging
as the complexity of boundary conditions grows as does the
urface (right) sub-surface patches affected by trimming edges.

339Restructuring surface tessellation with irregular boundary conditions
complexity of design operations. Although the emphasis in
this paper is in automating the meshing process (from an
underlying NURBS surface), one of the major challenges is to
address the need of introducing boundary constraints pro-
cedurally to facilitate design exploration. In addition, we
also focus on minimizing irregular regions that could emerge
from the given boundary conditions. Our contention is that
by customizing boundary conditions of a target surface, a
design-oriented and well-structured mesh can be gener-
ated, and thus provide a coherent tessellation pattern to
further freeform design.
2. Surface panelization

Panelization is the process of realizing a freeform surface by
a collection of constructible components, specifically, by
face-based panels and supporting structures. In architec-
tural applications, this process describes how panels are
utilized to construct designated freeform shapes. Here,
each panel is procedurally built from a given base polygonal
shape that specifies a pattern of the local boundary
representation. For example, underlying a four-sided panel
are four vertices that define the local boundary, namely, a
quadrilateral face.

Contemporary digital approaches to modeling panels are
primarily based on isoparameters from the surface domains,
U and V. Isoparameterization is a process of mapping two-
dimensional parameters, u and v, to a three-dimensional
Figure 2 Mapping from a two-dimensional UV parametr

Figure 3 Two types of surface subdivision (left) uniform iso-param
intervals.
manifold. Figure 2 demonstrates such a mapping illustrating
a sub-surface patch formed by the intervals, [u4, u6) along U
and [v2, v4) along V.

These approaches are both simple and efficient; at the
same time, they are limiting. For instance, isoparameters
cannot control the size of sub-surface generation. Nor can
the parameters distinguish boundary conditions well, parti-
cularly at trim edges, which might affect both esthetic
appearance and final manifestation. Normally, a uniform
parametric interval is employed; this usually results in non-
uniform sub-surface generation. The size of each panel, in
fact, is closely related to the initial control polygons.
Control polygons govern control points, which are used to
interpolate ultimate surface presentation. If the vertices of
the control polygons are uniformly distributed, an equi-
dimensional patch is more likely to be generated. However,
given the freedom with which control points can be modified in
any modeling environment, they rarely remain uniformly dis-
tributed once designers start to manipulate the meshing in
some arbitrary fashion.

There is no general way of dividing a surface into uniform
sub-surfaces. Current tessellation applications rely mainly on
uniform isoparametric control. That is, patches are gener-
ated according to the isoparametric domains. Figure 3
illustrates two possible segmentation schemes that generate
very different sub-surface patches with variations in size.
The left side figure illustrates initial surface subdivision by
uniform isoparameters, with equal intervals along both the U
and V domains. The right side figure illustrates an attempt to
ic system onto a three-dimensional surface domain.

etric intervals (right) optimizing face sizes via equi-dimensional

Figure 4 Proposed workflow for boundary-driven mesh optimization.

T.-H. Wang et al.340
equalize the actual size of each sub-surface patch. Using a
different tessellation scheme, another different exclusive
mesh can be created. Yet, for architectural applications, if
one takes into consideration the machining of parts, equi-
dimensional surface patches are the more practical.

To construct equi-dimensional sub-surface regions, one
possible solution is to iteratively optimize cell sizes until they
reach a specified threshold. However, with the growing
complexity of increasingly irregular boundary conditions, the
task of converting an arbitrarily trimmed surface into well-
structured sub-surface regions is challenging. In practice,
designers may, sometimes, unintentionally introduce complex
boundary conditions by trimming the freeform surface for
various purposes, such as entrance, view, and skylight. Our
hypothesis is that by taking the boundary conditions into
consideration, irregular-shaped panels at these trim edges can
be removed, and a coherent underlying tessellation scheme
can be achieved.

In order to solve the problem of tessellating surfaces with
irregular boundary conditions, we propose a workflow based
on an optimization process with the following three major
stages (as shown in Figure 4). The workflow depends on the
formation of three boundary-driven components: BDTensor,
BDCurve, and BDMesh (detailed in Sections 2.1, 2.2 and 2.3).
The workflow is divided into the following three stages:

Feature selection: the first stage is to identify the
featured boundaries from a given surface to be meshed.
This step retrieves both the existing and trimmed bound-
aries from the surface of interest.

Mesh construction: the meshing process initiates from a
seed, a starting BDTensor node, within the target surface
domain. This can be supplied by user input, or stochastically
picked from the initial feature boundaries. Accordingly, a
network of BDCurves is generated and sorted by intersec-
tions. The last step in the second stage is to fit the mesh
faces by iteratively traversing the sorted curve network.

Optimization: after the initial mesh has been constructed, a
post-optimization process is executed to optimize with the
designated constraints. For example, a mesh-smoothing algo-
rithm is implemented to optimize the dimension of mesh
edges through the constructed mesh topology.

By default, all boundary curves of the given surface
are considered for the optimization. However, specific
customized sources, such as partial curve(s) from the sur-
face boundary or curves of interest on the surface, can also
be specified. Further details on how to incorporate single to
multiple boundaries in the meshing process are discussed in
Section 4.

2.1. Boundary-driven tensor

A boundary-driven tensor (BDTensor) is a weighted geo-
metric entity that pertains to information on a location of
interest relative to the given surface. The output of a tensor
node yields directional projections, which are used to
navigate the given surface domain. The Inverse Distance
Weighting (IDW) method (Shepard, 1968) is adopted in
interpolating the BDTensor by taking a given number of
sampled values from the feature boundaries. The equation
for BDTensor interpolation is as follows:

TðxÞ ¼
∑N

i ¼ 1ωiðxÞTi

∑N
i ¼ 1ωiðxÞ ; if dðx; xiÞa0

Ti; if dðx; xiÞ ¼ 0

8<
: ð1Þ

ωiðxÞ ¼
1

dðx; xiÞρ
; 1r irN ð2Þ

N is the number of source nodes initiated from the
boundary conditions, which could be formed from all, or
parts, of existing boundary edges. x denotes the target node.
Each wi is a weighting function, in which xi is a local
interpolation node on a feature boundary edge. d represents
the distance function from a boundary node xi to the target
node x. ρ is the power parameter to smooth out the influence
of the sampled boundary nodes.

Figure 6 illustrates a BDTensor P, which is interpolated
using locally influential nodes, pA, pB, pC, and pD on the
feature boundaries, respectively E_A, E_B, E_C and E_D.
Each node has vector components calculated in two con-
jugate directions with associated weights. These directional
vectors are remapped onto their local reference coordinate
system where the Z-axis is normal to the node location on
the surface. Once the BDTensor interpolation is complete,
boundary-driven curves are constructed through iteratively
tracing the path by moving along the interpolated direction
from the neighboring nodes. Also illustrated in Figure 5 is
the difference between the underlying curve (derived from
uniform iso-parameters) and the interpolated curve (com-
puted by local boundary influences). The iso-parametric
curves are shown shaded in green using a dashed pattern.
Boundary-driven curves in two conjugate directions are
shown with arrows colored blue or red.

Figure 5 Conjugate curves derived from boundary-driven computation and underlying isoparametric grid.

341Restructuring surface tessellation with irregular boundary conditions
2.2. Boundary-driven curve intersection

When boundary-driven curves (BDCurves) are created, they
are grouped by origin, namely, by the directions along which
they were derived. As shown in Figure 6, there are three
kinds of curves: the original edge curve (shown shaded in
green) and two directional curves in a conjugate relation-
ship (shown shaded in blue and red).

For the constructed BDCurves, curve-to-curve intersec-
tions are evaluated. These intersections are used to for-
malize the unsorted BDCurves through the formation of an
interconnected network. In Figure 6 above, ItP_X3Y2 is a
mesh node created by intersecting BDCrv_X03 with
BDCrv_Y02. Each mesh node in the network is connected
to its neighboring nodes in a parametric order on the curves
to which they belong. For instance, ItP_X3Y2 is connected to
mesh nodes, ItP_X2Y2 and ItP_X4Y2, in their parametric
order on BDCrv_Y02, and is also connected to mesh nodes,
ItP_X3Y3 and ItP_X3Y1, along BDCrv_X03.

The parametric order of each node along the associative
curve is determined by its parameter, t, which is often
utilized for interpolating points on the governing curve
domain. For practical reasons, the parametric domain of a
given curve is normalized; thus, the end points of a normal-
ized curve have t=0.0 and t=1.0 respectively. In Figure 7,
the graph node P1 (t=0.3) has a predecessor node P0 (t=0.2)
and a successor node P2 (t=0.4) on CURVE_01; likewise, P1
also maintains connectedness information to its predecessor
and successor nodes, P3 and P4, along Curve_02. These
generated nodes in the network are not necessarily the same
as the sampled BDTensors created in the first step. Instead,
they are remapped nodes on the curve network, which
governs the formation of the boundary-driven mesh
(BDMesh). More detail on how these sorted nodes are
revisited to build the corresponding mesh edges and faces
by the mesh topology solver is given in Section 3.1.
2.3. Meshing with the boundary-driven curve
network

To optimize a target surface with discrete elements, we
start from a representative curve network derived from the
feature boundary conditions. A mesh topology solver is then
employed to construct the corresponding mesh faces and
edges from this interconnected curve network. The algorithm
we propose initiates a search by visiting sorted intersecting
nodes in the network and consecutively determines the
shortest path between its current neighboring nodes to form
corresponding faces. In a sense, an intersecting node from
the sorted curve network is regarded as a mesh vertex in the
mesh topology. By examining the topological connectives
between intersecting nodes, mesh faces are constructed and
therefore mesh edges.

2.3.1. Mesh topology solver
To create a mesh using the sorted curve network, a topology
solver is employed to construct the mesh face from only
local neighbor relationships. Figure 8 illustrates the topol-
ogy solver. V4 is the origin of the search, and it is connected
to V1, V3, V7, and V5 in counter-clockwise order. (When the
mesh nodes are sorted, their topological relations are also
structured in a counterclockwise fashion along the normal
direction). The shortest path approach is adopted to fit a
best-matched mesh face. For instance, to construct faces
connected to mesh node V4, the process examines potential
paths connecting pairs of its neighboring nodes, for exam-
ple, [V7, V5]. The objective is to find the shortest path from
V4 to V5 via V7. To create the mesh face—F1, the algorithm
searches depth first by looking at the connected neighbors
of V7 and finds three potential paths consisting of neighbors,
V6, V10 and V8. By continuously advancing to their consecu-
tive nodes in the network, a shortest path of [V4, V7, V8, V5]
can be found and nodes found at this path are then utilized
as the vertices for a new mesh face. This searching process
terminates immediately when a valid shortest path is found,
for instance path of V4–V7–V8–V5, or, when a face element
that shares the same nodes in the initial search set already
exists. By sweeping through all mesh nodes in the network,
the initial mesh is constructed. The pseudo-code for this
process is shown in Figure 9.

3. Mesh refinement

For practical purposes, we choose the quadrilateral mesh as
the exemplar to demonstrate the process of mesh automa-
tion with boundary-driven optimization. Owing to the
possible complexity of boundary conditions associated with
any arbitrary surfaces, the preliminary boundary-driven

Figure 6 BDCurve generation and curve–curve intersection to construct boundary-driven mesh nodes.

Figure 7 Sorting intersecting nodes by their parametric order
on the associative curve.

Figure 8 Fitting mesh faces by shortest path search.

1
2
3
4
5

/* Constructing the mesh topology by shortest path search on the sorted curve network */
MeshTopologyConstruction(Nodes)
for each sorted node, N, in the curve network:

for each pair of connected nodes, [NStart, NEnd], of the current node (N):
if P shortestPathExist (N, NStart, NEnd):
then MFnew MeshFace (P)

Update (MFnew) in the mesh topology

Figure 9 Pseudo-code for the mesh topology construction.

T.-H. Wang et al.342
mesh will be potentially composed of triangles, quadrilat-
erals and other polygonal face elements. To ensure a quad-
dominant mesh, additional mesh refinement functions are
required to remove skewed triangles, and to construct
quad-dominant faces from arbitrary polygonal faces. Lastly,
a mesh-smoothing operator is introduced to relax the
constructed mesh topology. The conditions and procedures
for refining the BDMesh elements to a well-structured quad-
dominant mesh are discussed below.

3.1. Removing skewed triangles

To control whether a triangular face is skewed for removal is
specified by a threshold parameter, which is calculated by the
ratio of the smallest and largest interior angles of a triangle
face. The threshold parameter may also be set by user input.
When the ratio is less than the specified value, the triangle is
tagged for removal. For instance, Figure 10 illustrates the
removal of a skewed triangle by vertex replacement. The
vertex with the largest interior angle of the triangle is removed,
and is replaced by its nearest vertex in the triangle. All
topological entities associated with this tagged vertex, such
as edges and faces, are updated accordingly. For instance, after
replacing the vertex (colored in dark gray, tagged as “Vt to
Remove”) by the existing vertex (shaded in light gray) in the
network, edges e1, e5 and face F1 are removed and a new edge,
enew, is inserted to form the new mesh face F01.

3.2. Mesh quadrangulation

When tessellating the given surface with the constructed curve
network, polygonal face elements may be produced at points
where multiple boundaries meet. These polygonal faces are
subdivided to convert the initial mesh into a quad-dominant
mesh containing only quadrilateral faces in the network. The
subdivision process is carried out by edge mid-point and face
center vertex insertions. Figure 11 illustrates new quadrilateral
faces being formed by recursively connecting the center of an
existing polygonal face to the mid-point of the edges together
with the original face vertices. A polygon with N edges will yield
N corresponding quadrilateral faces. This mechanism can be
applied to any arbitrary polygonal shape.

3.3. Mesh smoothing

The quality of the resulting quad-mesh can be improved by
mesh smoothing, also called mesh relaxation. We consider a
Laplacian smoothing algorithm (Hermann, 1976) with local

Figure 10 Skewed triangle removal.

Figure 11 Quad meshing by face center and edge midpoint insertion. (left) quadrangulate a triangle face (right) quadrangulate a
5-sided polygon face.

343Restructuring surface tessellation with irregular boundary conditions
vertex perturbation to ensure that the smoothed result
conforms to the original input surface. To start, we compute
new vertex locations by a finite difference approximation of
the Laplace operator, which moves a mesh vertex toward
the centroid of the connected vertices. The equation for
this is as follows:

Pnew ¼ 1
n
∑n

i ¼ 0αipi ð3Þ

where αi is the weighting factor for each connected mesh
vertex.

As the initial BDCurve network is generated from the
conjugate relationship, the connected vertices of a BDMesh
vertex will likely form a convex polyhedron. (Exceptions occur
at vertices on the surface boundaries.) For interior vertices
bounded by convex hulls, the new locations derived from
centroids of these polygons remain inside the original boundary.
This property ensures homogeneous mesh generation and
maintains the original anisotropic configuration. However, for
peripheral vertices on the original surface boundaries, special
treatment is needed. For example, vertices that are moved
away (inside or outside) the original boundaries will need to be
adjusted so that the mesh stays as close as possible to the
original surface. Two cases of mesh vertex replacements are
illustrated in Figure 12. Corner vertices belong to the third
scenario where they will not be modified in order to keep the
original boundaries intact.

After smoothing the mesh vertices, local modulation of
mesh vertex location is executed through vertex perturba-
tion. There are two types: vertex-to-edge and vertex-to-face
perturbations. Vertex-to-edge perturbation moves the mesh
vertex back to the closest boundary (shown in the right side
image in Figure 12). Likewise, vertex-to-face perturbs the
vertex onto the input surface. By so perturbing mesh vertices
either to the nearest location on the boundaries or onto the
surface, the refined BDMesh can better represent the given
surface. It also conforms to the given boundary conditions.

4. Example: meshing a trimmed surface

The algorithm presented above is illustrated on a trimmed
surface as the target surface for boundary-driven mesh
optimization. The left side image in Figure 13 shows the
original untrimmed surface and the right image delineates
the relationships between the original surface and the
trimming curves. The resulting trimmed surface, as shown
in the right side image of Figure 13, has new boundary edges
formed by: (i) original untrimmed edges (shown shaded in
green); (ii) exterior trimming edges (shown shaded in red);
and (iii) interior trimming edges (shown shaded in blue).

By taking these boundary edges into consideration, a
BDCurve network is first created, as shown in the left image
in Figure 14. The right image in Figure 14 illustrates the
preliminary result of meshing the trimmed surface with the
constructed curve network (shown shaded red and blue lines
in the left image of Figure 14). In Figure 15, two smoothed
mesh results are given. On the left is the smoothed result of
the preliminary BDMesh, and on the right is a qaudrangu-
lated result of the smoothed BDMesh.

4.1. From single to multiple boundary
consideration

Given a tessellation scheme that caters to the inherent
boundary conditions, we examine the influences of the
complex boundary conditions incrementally. In this experiment,
we remodeled the west façade of Zaha Hadid's Next-Gene

Figure 12 Mesh vertex replacement (left) interior mesh vertex replaced by the centroid of a convex polyhedron (right) boundary
mesh vertex moved from the original boundary and then adjusted by vertex perturbation.

Figure 13 (Left) original untrimmed surface (right) trimmed surface.

Figure 14 (Left) conjugate curve network (right) preliminary BDMesh.

Figure 15 Mesh smoothing (left) smoothed BDMesh (right) smoothed quadrangulated BDMesh.

T.-H. Wang et al.344
Museum in Taiwan to demonstrate the potential use of the
technique in a real architectural application. The constructive
procedure is initiated from a partial cone surface and then a
series of trimming operations are applied to form the targeted
freeform surface. In Figure 16, there are a total of six curves
utilized for the trimming operations; the resulting surface has
the new boundary formed by the partial trimming curves and
original boundary edges.

In Figure 17, a series of trimming operations coupled with
the corresponding BDMesh results are illustrated. The BDMesh
results are displayed in counter-clockwise order, starting
from the top-left corner to the top-right corner. As shown
in steps 4, 5 and 6 in Figure 17, irregular regions start to
emerge where multiple boundaries meet and thus polygon
face elements, such as pentagons, are generated at these
regions. These polygonal elements are later refined as quad-
dominant elements. The optimized boundary-driven mesh for
the west façade of the Next-Gene Museum is shown in
Figure 18.

5. Discussions and conclusions

Customizing and controlling tessellation schemes for arbi-
trary surfaces is of interest to the field of computational

345Restructuring surface tessellation with irregular boundary conditions
geometry and to the architecture community. Conventionally,
tessellating a surface is often limited to iso-parameterization.
In this paper, we have presented an approach to automating
mesh generation from a given surface with irregular boundary
conditions. Our objective is to provide a distinct approach to
surface tessellation and render a well-structured discretized
model for further freeform surface application. In addition,
the proposed approach is also expected to provide users
(designers) with the flexibility to customize surface computa-
tion catering to their design intention, in this case, the surface
boundary conditions.

At first glance, the UV-based curve network (the left image
of Figure 19) is in appearance similar to the boundary-driven
curve network (the right image of Figure 19). However, they
Figure 16 Applying trimming operations on a partial cone
surface for the experiment.

Figure 17 Variations of BDMesh results ranging
are very different in their formation. The former is inter-
polated solely from the underlying iso-parameters, the latter
is computed from inherent boundary conditions. In a sense,
the boundary-driven curve network conforms to the inherent
surface boundary conditions more strictly than the UV-based
curve network. This property ensures a well-configured
framework for the tessellation pattern, particularly, at the
boundary edges.

Although our approach looks at the entire boundary
condition as the whole to optimize the tessellation result,
it is also possible to specify customized sources to explore
varied surface tessellation pattern generations. In
Figure 20, we demonstrate an example of utilizing an
additional curve on the surface as the input for BDMesh
construction. The image on the left side of Figure 20 shows
an additional curve (shown shaded in red) on the given
surface domain. The right image illustrates the constructed
BDCurve network derived from this customized source. In
this example, we illustrate the capability of introducing
curve inputs as an additional constraint to create the
underlying tessellation structure. This capability would
afford designers a vehicle to control and experiment how
from single to multiple boundary conditions.

Figure 18 Optimized BDMesh for the western façade of the
Next-Gene Museum (Hadid, 2008).

Figure 19 Curve network generations (left) UV-based curve network (right) boundary-driven curve network.

Figure 20 (Left) customized input source for surface tessellation (right) curve network derived from it.

T.-H. Wang et al.346
they intend to discretize the freeform surfaces with
pattern-based elements, such as quadrilaterals, or trian-
gles, using customized input. In comparison to aforemen-
tioned algorithms, this proposed approach is yet another
method with which we examine the surface tessellation
problem. The major difference from this approach to others
is to the adaptability for designers to intervene the optimi-
zation process and induce distinctive freeform surface
designs.

In summary, the capability of supplying customized sources
for tessellation offers flexibility to designers to explore
potential pattern generations. This paper highlights an algo-
rithmic approach of how boundary conditions can be examined
for tessellation pattern generation. The boundary constraints
can be retrieved from the underlying surface boundary edges,
and can be additionally customized by user input. To make this
approach amendable for real design exploration, user control,
from single to multiple boundary sources, is essential and
plays an imperative role in the optimization process. This
personalized control is treated as the key to distinguish itself
from other algorithms.

As discussed in both Wang (2009) and Pottmann et al.
(2008), the base tessellated pattern is seminal for freeform
surface applications and plays an important role in the
constructive procedures. The development from a base
tessellation pattern to real architectural manifestation can
be treated as a remeshing process, which subdivides and
reconfigures an initial discretized model as finer elements
with added physical considerations. We claim that a well-
structured model, which coheres to inherent boundary con-
ditions, will guarantee success for surface development. In
Section 4, we demonstrated how this approach could be
applied procedurally by gradually increasing the boundary
complexity for surface tessellation. In addition, we have
explored other surface tessellation examples to ensure
robustness of our approach. For example we have employed
the Archimedean patterns (Akleman et al., 2005) as exem-
plars to demonstrate the potential of subdivision applications
for customizable pattern-based surface tessellation (Wang,
2012).
References

Akleman, E., Srinivasan, V. and Mandal, E., 2005, Remeshing schemes
for semi-regular tilings. In: Proceedings of the International
Conference on Shape Modeling and Applications, pp. 44–50.

Cutler, B.B., Whiting, E.E., 2007. Constrained planar remeshing
planar for architecture, In: Proceedings of the Graphics Inter-
face Conference, Montreal, Canada, pp. 11–18.

Hadid, Z., 2008. Schematic Design Report for Next-Gene Architec-
ture Museum. Graduate Institute of Architecture, National
Chiao-Tung University, Hsinchu, Taiwan.

Hermann, L.R., 1976. Laplacian-isoparametric grid generation
scheme. J. Eng. Mech. 102 (EM5), 749–756.

Jodidio, P., 2009. Zaha Hadid: Complete Works. TASCHEN America
Llc, Los Angeles.

Lindsey, B., 2001. Digital Gehry. Birkhäuser, Basel.
Piegl, L., Tiller, W., 1997. The NURBS Book. Springer-Verlag, Berlin.
Pottmann, H., Asperl, A., Hofer, M., Kilian, A., Bentley, D. (Eds.),

2007a. Architectural Geometry. Bentley Institute Press, Exton,
Pennsylvania.

Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., Wang, W., 2007b.
Geometry of multi-layer freeform structures for architecture.
ACM Trans. Graph. 26 (3), 1–11.

Pottmann, H., Schiftner, A., Wallner, J., 2008. Geometry of
architectural freeform structures. Int. Math. News 209, 15–28.

Shepard, D., 1968. A two-dimensional interpolation function for
irregularly-spaced data. In: Proceedings of the 1968 ACM
National Conference, pp. 517–524.

http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref2
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref2
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref2
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref3
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref3
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref4
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref4
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref5
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref6
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref7
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref7
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref7
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref8
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref8
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref8
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref9
http://refhub.elsevier.com/S2095-2635(14)00038-7/sbref9

347Restructuring surface tessellation with irregular boundary conditions
Shimada, K. and Gossard, D.C., 1995. Bubble mesh: automated
triangular meshing of non-manifold geometry by sphere packing.
In: Proceedings of the ACM Third Symposium on Solid Modeling
and Applications, pp. 409–419.

Wang, T.-H., 2009. Procedural reconstruction of NURBS surfaces. In:
Proceedings of the 14th International Conference on Computer
Aided Architectural Design Research in Asia, Yunlin, Taiwan,
pp. 597–606.

Wang, T.-H., 2012. Customizing Pattern-Based Panelization for
Surface Reconstruction with Irregular Boundary Conditions (Ph.
D. thesis). School of Architecture, Carnegie Mellon University,
Pittsburgh, Pennsylvania, April 2012.

	Restructuring surface tessellation with irregular boundary conditions
	Introduction
	Objective
	Background

	Surface panelization
	Boundary-driven tensor
	Boundary-driven curve intersection
	Meshing with the boundary-driven curve network
	Mesh topology solver

	Mesh refinement
	Removing skewed triangles
	Mesh quadrangulation
	Mesh smoothing

	Example: meshing a trimmed surface
	From single to multiple boundary consideration

	Discussions and conclusions
	References

