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A B S T R A C T   

Motivated by reflection-in-action in architectural design, this article introduces a spatial synthesis artifact that 
relies on multi-agent reinforcement learning to address spatial goals with fine-grained control in a simulation. It 
relies on parameter sharing with proximal policy optimization and a parameterized reward function to train 
robust agent policies in random environments with random spatial problems. The agents are evaluated in three 
design cases: a house design with 12 agents in three sites, a museum with 18 agents in an interstitial urban site, 
and a speculative design of a housing complex with 96 agents on a large empty site. The policies performed well 
in all the cases and produced morphologically consistent solutions. However, in cases with a larger number of 
agents, the system largely benefited from a spring layout algorithm for the initialization. Future research will 
address more complex spatial synthesis problems and mechanisms for human-computer interaction.   

1. Introduction 

In computer-aided architectural design (CAAD), the terms spatial 
synthesis ([15], 425), automated facility layout ([13], 197), and space 
planning ([4], 242) refer to the problem of generating architectural 
spaces that comply with specific objectives and constraints using 
computational methods. Spatial synthesis in CAAD mainly relies on 
satisficers and optimizers [8,12,13,15]. 

Satisficers require the creation of design rules or transformations that 
structure an implicit design space with derivational dependencies to 
produce spatial configurations incrementally ([15], 453–68) in the very 
large space of architectural problems ([1], 422). As the search tree grows 
exponentially with the branching factor as the base and the depth as the 
exponent, spatial synthesis algorithms must constrain the search for 
spatial configurations to restricted portions using different control 
strategies ([1], 435–40). 

Current optimizers rely on black box methods, such as meta
heuristics, direct search, and model-based methods, to explore designs 
in a bounded parametric space without the need for expressing the 
design problem in analytical form [35]. Designers interact with opti
mizers either by controlling input parameters related to the problem and 
to the algorithm and then visualizing catalogues and dashboards with 
correlations between design alternatives and their respective 

performance [11,23,34]. 
Satisficers and optimizers require anticipating knowledge about the 

problem, the consequences of the decision making, and the forms of 
evaluation as collections of facts and rules. Besides, due to the large size 
of architectural layout problems, they are typically solved by compu
tational agents with sophisticated strategies to search for good design 
solutions isolated from design interaction and without real-time guid
ance. This is particularly problematic in architectural design, where 
thinking, perception, and action are coupled in the circumstance of the 
design task, providing opportunities for ad hoc responses to unforeseen 
contingencies [19,20]. Design problem and solution co-evolve as a 
conversation between architects and the design media, such as drawings 
or physical models. The progressive actions over a design model provide 
feedbacks for the designers, which can influence their ideas and estab
lish a session of reflection-in-action [19]. In this process, “(…) the 
designer constructs the design world within which he/she sets the di
mensions of his/her problem space, and invents the moves by which he/ 
she attempts to find solutions” ([20], 11). Not surprisingly, classic 
spatial synthesis methods have been criticized by the lack of support for 
design knowledge and interaction between problem solving and prob
lem definition ([8], 182) and by its emphasis on an engineering 
approach to architectural problems ([14], 158–59). 

Motivated by the creation of interactive spatial synthesis methods for 
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reflection-in-action, this research proposes an alternative approach 
centered on fine-grained interaction in a sequential decision structure. 
Fine-grained interaction refers to the increase of speed and granularity 
of the turn-taking in order to enable humans and computational agents 
to be continuously active and responsive to unforeseen situations in a 
shared task ([27], 685–86). However, seamlessly interacting with de
signers in spatial synthesis is not trivial, because it requires responding 
to real-time updates of the environment based on human behavior, 
which makes the task environment non-stationary and dynamic. To 
address this setting, our approach relies on a game to be solved by a 
multi-agent system in a simulation, which can be shared with human 
designers. Interactive simulations with agents support fast and fine- 
granular turn-taking and enable the sequential generation of spatial 
configurations in large state spaces under uncertainty. For that, they rely 
on computational agents that can handle multiple spatial objectives and 
conflicts in real-time, and that are resilient to variations in the initial 
setup, order of operations, and control strategies. 

In this article, we prove the feasibility of this unorthodox spatial 
synthesis approach by presenting the formulation, training, and evalu
ation of a design construct. The formulation relies on ideas from agent- 
based modeling to create cellular agents that collaborate and occupy 
cells in a shared environment grid, forming spatial partitions shaped as 
polyominoes without holes (PnH). Multi-agent deep reinforcement 
learning (MADRL) is used to train an ecology of these agents in random 
spatial problems using a series of parameterized reward functions. The 
evaluation is based on three distinct design cases: a house design, a 
museum in an interstitial urban site, and a speculative house complex on 
a large empty site. To the extent of our knowledge, this research resulted 
in the first successful design artifacts that address the problem of 
interactive spatial synthesis in CAAD with MADRL. 

2. Background 

2.1. Agent-based modeling and multi-agent spatial synthesis 

Agent-based computing encompasses decentralized computational 
methods based on a collection of agents, which are autonomous 
computational entities that have sensors, actuators, and internal pro
grams that allow them to interact locally in a shared environment. The 
domain of agent-based computing comprehends many areas of study, 
such as computer science, life sciences, ecological sciences and social 
sciences ([16], 479–80). 

In the field of Artificial Intelligence (AI), agents are computational 
constructs that operate autonomously to solve a problem. Multiagent 
task environments require multiple computational agents that can 
compete and/or collaborate to solve a task ([18], 43–45). In Multi-Agent 
Systems (MAS), agents are defined both by their capacity for autono
mous decision-making and for interacting with other agents and 
engaging in analogues of social activities ([33], 4–5). AI and MAS 
include algorithms for distributed constraint-satisfaction problems, 
distributed optimization, multiagent learning, and topics such as game 
theory, communication, and social choice [22]. 

In Agent-based modeling (ABM), agents are algorithmic descriptions 
of entities in a shared environment that can take local decisions based on 
the perception of its neighborhood, and they are used as a modeling 
methodology to capture the changing dynamics of complex systems 
([32], 203–76). As the computation typically happens in the local rep
resentation of the agents during the simulation, it avoids the exponential 
joint action spaces of a centralized controller, and it enables a variable 
and large number of agents during a simulation. Besides, ABM also 
supports the visualization of different behaviors and spatial patterns 
over time and under uncertainty. It is used to capture the arising of novel 
and coherent patterns on the macro-level of the system from the inter
action of its constituent elements at the micro-level – i.e. emergence 
([9], 115–24; [3], 3; [32], 6). These properties make ABM a strong 
candidate as a method that can both increase the speed and granularity 

of turn-taking and support the exploration of novelty in spatial 
synthesis. 

Despite the growth of application of ABM and simulation in archi
tecture ([24], 2), they are barely present in the general literature re
views on spatial synthesis in CAAD [10,13–15,30]. Still, Veloso, Rhee, 
and Krishnamurti [29] identify a series of research prototypes in CAAD 
that use ABM and simulation to generate spatial configurations, which 
they refer to as multi-agent space planning (MASP). 

The human-computer interaction in MASP can potentially happen in 
a real-time simulation, at every step of the generation of the design al
ternatives and can support the exploration of emerging spatial patterns 
from the interaction of multiple agents. However, that relies on typical 
properties of ABM, such as the restriction of the agent’s perception to the 
neighborhood information and the limited access to the model of the 
environment by the agent’s policy. As a result, it is not trivial to design 
computational agents that both operate in real-time and follow a local 
policy capable of handling multiple spatial objectives and conflicts. To 
address this trade-off between operating in a simulation and the satis
faction of multiple realistic goals, such as adjacency, area, room shapes, 
and daylight access, researchers have explored hybrid techniques. These 
rely on the use of ABM and simulation to define general diagrams of the 
spatial organization and other techniques, such as metaheuristics [2,6] 
or generative adversarial networks [17,28], to convert them into more 
refined layouts. 

2.2. Reinforcement Learning for training spatial agents 

To develop an approach that relies on the behavior of multiple agents 
to respond to realistic layout goals and constraints, we focus on rein
forcement learning (RL), a branch of machine learning that addresses 
sequential decision problems by training an agent to maximize the ex
pected cumulative reward from its interaction with the environment 
(see Fig. 1). In RL, the decision making is idealized and modeled as a 
Markov Decision Process (MDP), so the probability distributions that 
define the interactions at a given timestep are dependent only on the 
current state and actions ([25], 49). 

The RL agent is the learner and decision-making entity encoded into 
a behavioral function commonly known as a policy π(at |st), which maps 
the current state st to the probability of selecting an action at. The 
environment (S,A,T,R ) comprehends everything that is external to the 
agent, which is defined by a state in the state space (s ∈ S) that can be 
influenced by the actions of the agents in the action space (a ∈ A). It uses 
a transition function T(st+1|st , at) to map the action taken by the agent at 
a certain time and state, to the probability of reaching a new state. With 
the new state defined, the reward function R (st , at , st+1) maps both 
states and the action of the agent to a certain reward signal rt. 

In large state spaces or in the face of partial information about s, it is 
useful to rely on function approximators, such as deep neural networks, 
to represent the agent policy. In this case, instead of explicitly storing the 
states in a table to support decision making, it is only necessary to store 
the description of the neural network and to manipulate a fixed-sized 

Fig. 1. The agent-environment interaction in the case of a MDP – based on 
([25], 48). Notice that the time index of the reward is aligned with the action 
that generated it and not with the state produced, which simplifies the notation 
for the trajectory and for the description of the equations and algorithms. 
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vector θ ∈ ℝd with its learnable parameters. Neural networks are also 
good for generalization, so with a good distribution of samples, it can be 
trained to learn a hierarchy of features and generalize the knowledge 
acquired to unknown situations ([25], 197). 

Besides using deep neural networks, the proposed formulation of 
spatial synthesis also requires specific types of environments and 
training algorithms for multiple agents, which are part of the sub-field of 
multi-agent deep reinforcement learning (MADRL). This research fo
cuses on the parameter sharing approach, where all the agents share the 
same individual policy [7,26]. To ensure that a single policy can express 
a diversity of actions and agent types, the information in the observation 
is customized for the agent, which can include part of its own internal 
state, its id, or even global information. Parameter sharing is a simple 
approach that enables the use of single RL algorithms with minimal 
modifications. The use of the shared policy enables training it with the 
data from all the agents, provides some level of centralization in the 
learning that can potentially mitigate non-stationarity, accelerate 
training [26], and lead to emergent cooperative behavior [7]. 

3. Formulation of the prototype 

In this section we present the design and implementation of a design 

artifact based on ABM and MADRL that supports real-time, sequential, 
and granular construction of the design alternative with reduced as
sumptions about setup and order of the solution procedure. The problem 
is defined as a sequential decision process of an ecosystem of N agents 
sharing the same policy, reward function, and environment. Formally, 
this decision model is a variation of a partially observable stochastic 
game defined by the tuple (S,N,A,T,Ω,Oi,R i), where:  

• S is the set of possible states for the environment  
• N is the number of agents  
• A is the action space for the agents  
• T is the transition function  
• Ω is the observation space for the agents  
• Oi is the observation function that is customized to the different 

agents  
• R i is the reward function that is customized to the different agents 

The multiple agents observe, act in the environment together, and 
receive individual observation and reward signals (see Fig. 2). Notice 
that instead of separate reward functions, there is a single function that 
is parameterized to support heterogeneous goals and behavior. This 
approach assumes that a single policy and a single reward function are 

Fig. 2. The agent-environment interaction in the prototype as a variation of a partially observable stochastic game.  

Fig. 3. Left: simplified visualization of agents in the grid with obstacles. The squares with solid lines around the agents represent the boundaries of their action grids 
and the square with dashed lines represents the boundary of the observation grid of agent 0. Middle: closest neighbors with k = 2: agent 0: [agent 3 and agent 2], 
agent 1: [agent 4 and agent 0], agent 2: [agent 0 and agent 1], agent 3: [agent 0 and agent 2], agent 4: [agent 1 and agent 0]. Right: example of adjacency goals with l 
= 2: agent 0: [agent 1, agent 2], agent 1: [agent 0, agent 4], agent 2: [agent 0], agent 3: [], agent 4: [agent 1]. By Author. 
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Fig. 4. Observation for agent 0 with action grid of shape (5,5), observation grid of shape (15, 15), k = 2, and l = 2. Row 1: grid with obstacles (agents are added just 
for visualization). The following rows are based on the l agents that share a relationship of adjacency with agent 0 (1, and 2) and its k closest neighbors that do not 
share a relationship of adjacency (3 and 4). Row 2: classification of the cells: structure (dark blue), surface (medium blue), and legal offset (light blue); row 3: score of 
the agent with the respect to the area over the action grid; row 4: soft adjacency values based on Manhattan distance; row 5:indication of folding cells: L-folds (light 
blue), U-folds (dark blue); row 6: indication of the cells with daylight access; row 7: the current utility of the agent represented in the internal cells of the agent. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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enough to model the range of behaviors in the system. 

3.1. Spatial and topological information 

Each agent is a polyomino with no holes (PnH) forming a connected 
set of cells that represents a spatial boundary (see Fig. 3). The PnH 
discretizes different geometric entities into a homogeneous representa
tion, which can approximate any polygon, such as conventional room 
shapes (rectangles, L-shapes, U-shapes, T-shapes, etc.), unconventional 
and irregular shapes, or even shapes with free form. These agents and 
the shared environment are represented spatially in a state space S⊂ 
ℝwenv×henv×denv that contains overlapping grids of information that are 
stored in multi-dimensional arrays of shape (wenv, henv, denv). While 
(wenv, henv) defines the spatial dimensions of each information grid, denv 
defines the number of grids stored in the environment. 

The basic environment layer contains cells in two states: empty or 
obstacle. That allows the representation of existing buildings, elements 
of the landscape, or other elements defined by designers as spatial 
constraints. Besides, all the information that is relevant for the agents 
can be discretized and stored in additional layers, increasing denv. The 
agent layers contain the state information of the agent expressing the 
configuration and the goals of the agent (see the following sections for 
further description) to facilitate learning. In the design artifact, dagent =

6, which means that each agent has 6 layers:  

• the classification of the cells based on the PnH  
• the score of the agent with the respect to the area  
• the soft adjacency values based on Manhattan distance from its body  
• the indication of the cells on its concave corners – i.e., L- and U-folds  
• the indication of cells with daylight access  
• the current utility of the agent represented in the internal cells of the 

agent. 

In terms of topological information, each agent i shares a relationship 
of adjacency to a maximum of l agents defined by the spatial synthesis 
problem and has a relationship of proximity with the k-closest and non- 
adjacent neighbors, which are dynamically defined during the simula
tion (see example in Fig. 3 and Fig. 4 with k = 2, l = 2). 

3.2. Agent action 

The basic actions available for the agents are single-cell expansion 
and retraction inside an action grid. The action grid is located on the 
current centroid of the PnHi and defines the boundaries for the action 
space (Fig. 3 – Left). Therefore, as the agent expands the PnHi into a 
certain direction, it also moves the centroid and, consequently, the ac
tion grid. The shape of the action grid (wact , hact) plus the option of not 
taking any action define the maximum size of an agents’ discrete action 
space as wact × hact + 1. 

Inside the action grid, the action space is defined by the cells that are 
not blocked by an obstacle of the environment and that preserve the 
PnHness of all the agents in the simulation if they are selected by the 
agent i. For the latter, the cells are classified into four types:  

• legal expansion: cells in the von Neumann neighborhood of the PnH 
that if expanded, will not create a hole in the PnH.  

• illegal expansion: cells outside of the von Neumann neighborhood of 
the PnH or cells in the von Neumann neighborhood of the PnH that if 
expanded, will create a hole in the PnH.

• legal retraction / agent surface: internal cells that if retracted will not 
create a hole or divide the PnH into two separate parts.  

• illegal retraction / agent structure: internal cells that if eliminated 
will create a hole or divide the PnH into two separate parts. 

Cell expansion and retraction are building blocks that can be com

bined to form complex interplays such as blocking, pushing, pulling, or 
attraction. For example, if the agent eliminates all the cells of its PnH 
using retraction, it then can jump to any legal cell inside the current 
action grid, using a single expansion. 

3.3. The transition and observation functions 

The changes in the environment rely on the transition function 
T(st , at), which updates the environment configuration to a following 
state, given the previous state and all the agents’ actions at at once. The 
use of synchronous/simultaneous plays simplifies the process of training 
a variable number of agents and reduces the pre-defined assumptions 
about the sequences of decision from the perspective of the user. To 
make T deterministic, internally, the environment engine sorts the 
agents based on their current performance (best agent moves first) and 
solves the actions sequentially based on the constraints of obstacles and 
PnHs. 

Inspired by agent-based modeling, the information available for the 
agent i is managed by the observation function O(st+1, i), which maps the 
updated environment and agents’ layers into a partial observation oi in 
the space Ω⊂ℝwobs×hobs×dobs . This agent-centric observation only depends 
on the current configuration of the neighborhood of agent i, to support a 
computational method that is adaptable to problems with different 
environment sizes and with variable number of agents in a simulation. 
More specifically, this observation oi is represented by an array of shape 
(wobs, hobs, dobs). The information in oi is sliced by the agent’s observation 
grid of shape (wobs, hobs), which is smaller than the environment grid and 
is centered at the centroid of the current PnHi (Fig. 3 and Fig. 4). It is 
defined by a series of dobs layers related to the environment, to the agent 
i, and to other inter-related agents, such as the l agents that share a 
relationship of adjacency with i and the k-closest and non-adjacent 
agents. Overall, dobs consists of a stack with  

• a layer with the environment obstacles 
• dagent layers with specific information about agent i (check first col

umn of Fig. 4)  
• l × dagent layers with information about the l agents that share a 

relationship of adjacency with agent i  
• k × dagent layers with information about the k closest agents that do 

not share a relationship of adjacency with agent i 

For the design construct, we used wobs = hobs = 15, dagent = 6, k = 4, 
and l = 3, so the observation oi is a multi-dimensional array of shape 
(15,15, 49). Fig. 4 shows a simplified example of the observation of an 
agent with an action grid of shape (5, 5), observation grid of shape 
(15,15), k = 2, l = 2, and dagent = 6. 

3.4. Spatial objectives and reward function 

The goals of the agents are modeled by functions f j that return a 
scalar value in the unit interval representing the performance of the 
agent. These goal functions are parameterized by the agents so they can 
be dynamically modified during the generation of a solution to reframe 
the design problem on the fly. For each goal function f j, there is a 
complementary spatial function gj that provides a perceptual map 
related to the agent’s performance w.r.t a goal j in the form of an array of 
size (wenv, henv) – see Fig. 4: rows 3–6. These maps augment S to facil
itate training a single policy that can address multiple goals. For the 
design construct, there are goal functions to indicate area, smooth ad
jacency, not-folding (stimulates shapes with few concave corners, such 
as rectangle, L or U shapes), and daylight access (stimulates agent cells 
adjacent to open spaces). 

To provide a dense signal related to adjacency, the function gadj la
bels the cells in the environment based on their distance to the PnHi. The 
values are 1 for the cells that are inside or adjacent the PnHi, then they 
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decay over the Manhattan distance until they reach 0 at the maximum 
distance (distmax) beyond the adjacent cells and on – see Fig. 4: row 4. 
The function fadj

min evaluates the maximum values in gadj that intersect 
with PnHi for all the agents that share a relationship of adjacency with it 
(the set Di). Then, it returns the minimum value in that set, which rep
resents its worst performance in terms of adjacency. 

f adj
min(i, distmax, c) = min

d∈Di

(
max

(
gadj(d, distmax, c)

⋂
PnHi

) )
(1)  

gadj(i, distmax, c) =
(

distmax–clip(MDistMap(PnHi) − 1 , 0, distmax)

distmax

)c

(2) 

The function farea is a piecewise linear function based on the rela
tionship between the agent area and its target area. It returns 1 when the 
agent reaches the target area. This value linearly decreases when the 
area of the agent moves away from the target. It becomes 0 when its area 
is 0 or when it is twice or more than the target area. The spatial repre
sentation garea labels the cells of the action grid with the ratio between 
the agent and target area shifted by one and bounded by 1. It labels the 
action grid with − 1 when the agent has area 0, 0 when it reaches the 
target, and 1 when it has twice the target area or more. 

f area(i ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

areai

targeti
if areai ≤ targeti

2–
areai

targeti
else if areai ≤ 2 targeti

0 else

(3)  

garea(i) = ActionGridimin
(

areai

targeti
–1, 1

)

(4) 

To prevent irregular shapes, the spatial function gfold assigns the 
value of 1/foldmax to the concave corners of the agent’s PnHi that are 
surrounded by two adjacent edges (a L-fold) and assigns 2/foldmaxto the 
ones with three adjacent cell edges (U-fold) – see Fig. 4: Row 5. The 
parameter foldmax is controlled by the designer to define how regular the 
shapes should be. The function f fold returns a value of one minus the sum 
of all the values in gfold, bounded by zero to prevent negative scores. The 
functions foldL and foldU are indicators that return a zero array of shape 
(wenv, henv) with ones in the position of the respective folds. 

f fold(i) = max
(
1–sum

(
gfold(i)

)
, 0
)

(5)  

gfold(i, foldmax) =
foldL(i)
foldmax

+
2foldU(i)

foldmax
(6) 

Finally, for daylight, we assume that only the cells in the PnHi that 
are adjacent to one or more empty cells in the environment have 
daylight access. Thus, the daylight function f lit divides the percentage of 
agent cells that have daylight access by the target percentage and 
bounds the result by 1. litcells(i) is an indicator function that returns a 
zero array of shape (wenv, henv) with ones in the position of the daylit 
cells. glit returns a map with the daylit cells of an agent tagged with the 
value of f lit . 

f lit(i, lit%) = min
(

sum(lit cells(i) )
areai

, lit%

)/

lit% (7)  

glit(i, lit%) = litcells(i)f lit(i, lit%) (8) 

The utility f(s, i) is a function that combines a subset of these goal 
functions with a weighted average or with a multiplication of the terms 
to incentivize simultaneous exploration of goals. For each agent i, there 
is a parameterized reward function R (st , st+1, i) that maps the consecu
tive environment states and the agent information to dense scalar 
reward signals, to condition heterogeneous behaviors and accelerate 
training. R is defined as the difference between the utility values of two 
consecutive states according to the objectives and the agent parameters: 
f(st+1, i) − f(st , i). 

4. Training 

In this design artifact, we train a shared policy to express the di
versity of agent behaviors conditioned on custom agent observation and 
rewards. It is a simple approach that enables the use of model-free and 
single-agent RL algorithms with minimal modifications. The advantage 
of this approach is that it enables training the same policy network with 
the data from all the agents, providing a level of centralization in the 
learning. 

Table 1 contains the specifications of the two iterations in the 
training setting of the design artifact. The next sections will describe the 
algorithm, model, initialization, and training results. To test the feasi
bility of developing custom agents with different spatial behaviors, the 
model in both settings were trained with various objectives (see 
Table 2). 

4.1. Training algorithm 

We use Proximal Policy Optimization (PPO, [21]) for training. PPO 

Table 1 
Specification of two settings used in training.    

Setting 1 Setting 2 

RL RL algorithm PPO PPO 
ɣ 0.99 0.99 
buffer size 10,000 10,000 
value function weight 0.5 0.5 
entropy weight 0.01 0.01 
epsilon clip (ϵ in Lclip) 0.3 0.3 
max grad. norm. 
(clipping) 

0.5 0.5 

GAE λ 0.85 0.85 
reward normalization 1 1 
value clip 1 1 

Environment n agents in training 16 16 
n agents in test 4, 8, 12, 16, and 

20 
4, 8, 12, 16, and 
20 

max l adjacencies 3 3 
max k closest 
neighbors 

4 4 

action grid shape (5, 5) (5, 5) 
observation grid shape (15, 15) (15, 15) 
action space Discrete (26,) Discrete (26,) 
observation space (15, 15, 49) (15, 15, 49) 
board initialization 
shape 

(8–31, 8–31) (15–45, 15–45) 

board configuration in 
training 

random obstacles random carving 

board padding (7, 7, 7, 7) (7, 7, 7, 7) or (9, 9, 
9, 9) 

steps per episode 128 256 
Training optimization 

algorithm 
Adam Adam 

learning model CNN (shared) +
FC (heads) 

CNN (shared) +
FC (heads) 

learning rate 0.0003 0.0003 
Loss function PPO policy and 

value losses 
PPO policy and 
value losses 

batch size 64 64 
n of training env. 64 32 
n of test env. 32 8 
epochs 300 200 (one with 

300) 
episodes per epoch 512 512 
repeat per collect 2 2 
agent samples per 
epoch 

262,144 262,144  
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modifies the original objective J of an advantage actor-critic algorithm 
to overcome some problems of stability, such as variance and perfor
mance collapse, and makes the training more sample-efficient. It uses 
the relative performance identity – i.e., the difference in performance 
between two policies – to ensure non-negative improvement in a con
servative policy iteration ([5], 165–94). In practice, this identity is 
approximated by using trajectories from the old policy adjusted with 
weights based on the ratio of action probabilities between the successive 

policies, which upweights the action that are more likely under the new 
policy. This creates a surrogate objective function based on importance 
sampling that guarantees monotonic improvement within an error 
bound. 

Particularly, we opted for a PPO algorithm with a surrogate objective 
JCLIP

π , which uses clipping inside the objective to limit the ratio to an 
ε-neighborhood to guarantee monotonic improvement (see Algorithm 
1). The algorithm relies on Generalized Advantage Estimation (GAE), 
which uses a weighted average of the advantages for the different n-step 
returns to reduce its variance. There is also an entropy regularization 
term H that is subtracted from the loss function to increase exploration 
in the training by incentivizing policies with more uniform distributions. 
The base implementation of PPO is derived from the library Tianshou 
0.3.0 [31], which was extended with custom code to support the pro
posed MADRL formulation with parameter sharing. Basically, this 
extension creates a multi-agent environment that handles transitions 
with arbitrary N actions, rewards, and state updates. Benefiting from the 

fact that agents share the same policy network, the multi-agent experi
ence is collected from instances of this environment using different 
settings and is later merged into a large training batch with the expe
rience of all individuals. 

Algorithm 1. PPO-Clip with multiple environments – based on ([5], 
177–78; [31]). 

4.2. Training model 

The neural network used for training has a shared body (initial 
layers) and separate network heads (the final layers) for the actor and for 
the critic (see Table 3). This architecture allows the model to build a 
common representation based on the agent observation, then establishes 
custom features for their distinct tasks in the independent portion of the 
neural network. 

4.3. Random initialization 

To learn a robust and general policy, we implemented two methods 
of random initialization for training: random obstacles and random 
carving. The random obstacles algorithm populates the board with x- 
aligned and y-aligned obstacles (see Fig. 5). The random carving algo
rithm excavates an initial board full of obstacles by sampling cells using 
a factor proportional to the number of empty neighbors, which 

Table 2 
Utility functions used in the training. The rows in bold refer to the policies that were evaluated in this article.   

Name used in this article Utility function Setting 1 Setting 2 

Goals Adjacency and Area fadj
minfarea X X 

Adjacency, Area, and Not Folding (3) 
fadj

min

(
f area + f fold

)

2
with foldmax = 3 

X  

Adjacency, Area, and Not Folding (5) 
f adj

min

(
f area + f fold

)

2
with foldmax = 5 

X X 

Adjacency, Area, and Daylight (75%) 
f adj

min

(
f area + f lit

)

2
with lit75% 

X  

Adjacency, Area, Not Folding (5), and Daylight (50%) 
fadj

min

(
f area + f fold + f lit

)

3
with lit50%  

X 

Adjacency, Area, Not Folding (5), and Daylight (75%) 
fadj
min

(
farea + ffold + f lit

)

3 
with lit75% 

X X  
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incentivizes cave-like shapes (see Fig. 6). After the obstacles are defined, 
the engine randomly initializes the areas, adjacency targets, layers, and 
initial positions for the agents, then runs several steps with random 
actions so they settle in a random initial configuration. 

4.4. Training results 

All the policies in setting 1 were trained for 300 epochs (see Fig. 7). 
Due to time restriction, the policy Adjacency, Area, Not Folding (5) was 
trained over 300 epochs but the other policies were trained over 200 
epochs in the second setting (see Fig. 8). 

5. Results 

We evaluate if the proposed formulation and training can produce 
policies for reflex agents that address multiple spatial objectives in three 
unseen design cases: a single-family house to be implemented in 
different sites; a single-story complex of art galleries; a speculative 
complex of eight single-family houses. This evaluation comprehends a 
few goals. First, having an effective method to train agents to satisfy 
multiple spatial objectives in a simulation is still an open problem in 
multi-agent spatial synthesis. Secondly, it tests the capacity of the 
method to produce policies that support step-by-step formation of valid 
designs in face of adversity, such as new sites, programmatic conditions, 
or state perturbations by humans. While a policy trained with the data 
from a specific design case could perform better in the same case, pol
icies that are robust to unseen situations and variations can be used in 
design tools because they reduce the need of training on-demand, and 
they allow designers to provide guidance. Finally, we also evaluate the 
morphological consequences of the different reward functions based on 
a visual analysis of the resulting configurations. 

In this article, we focus on four policies:  

• Adjacency, Area, and Not Folding (3) from setting 1  
• Adjacency, Area, and Daylight (75) from setting 1  
• Adjacency, Area, and Not Folding (5) from setting 2  
• Adjacency, Area, Not Folding (5), and Daylight (50) from setting 2 

To demonstrate the integration of the artifact with design workflows, 
the resulting configurations are post-processed in a parametric modeling 
editor, which can be controlled in real-time during a simulation. The cell 
configuration of the agents is the input of a parametric model that 
generates the geometry for visualization, with floors, walls, windows, 
and openings for doors. These are the basic steps of the model (Fig. 9): 

A) Extracting polyominoes and other information from the 
environment 
B) Converting the polyomino of each agent into a single mesh 
C) Combining agents that represent a single space, based on user 
input 
D) Extracting internal and external walls 

E) Defining the rooms that do not have external walls, such as 
porches, based on user input 
F) Defining the glass walls for the external walls of the rooms 
selected, based on user input 
G) Defining the window positions based on a percentage of glazing 
and on a heuristic 
H) Defining the door positions between rooms that share a rela
tionship of adjacency by randomly selecting one of the cell edges in 
the shared walls 
I) The resulting parametric model. 

5.1. Design case 1 

The first design case consists of a single-family house to be imple
mented in three different sites with obstacles (Fig. 10): (1) a site on the 
top of the hill, (2) a site with a central obstacle, (3) a site with two stream 
banks connected by a bridge. The program consists of 12 agents that 
represent the spaces of a two-bedroom house with a free floor plan (see 
Fig. 11). 

This case was originally created in [36] to assess a previous research 
prototype, which was still limited to a fixed spatial representation of the 
environment. In this design construct it is used to evaluate the robust
ness and performance of a realistic policy: Adjacency, Area, and Not 
Folding (5). For each episode, the agents interact for 6500 steps, which 
are divided in three stages that are separated by two phases of 
perturbations:  

• Initialization: empty agents start at random positions  
• Stage 1 (0–1999): policy selects actions  
• Perturbation 1 (2000–2099): random action selection for 

randomization.  
• Stage 2 (2100–3099): policy selects actions  
• Perturbation 2 (4100–4499): random action selection for 

randomization.  
• Stage 3 (4500–6499): policy selects actions 

In a visual and qualitative analysis, it is possible to observe that the 
agents developed a functional and consistent behavior (Fig. 12). The 
layouts are mostly mosaics of rectangular and quasi-rectangular shapes. 
The agents were also able to react to the constraints of the site. For 
example, on site 3, the bridge incentivized a separation of the social and 
private areas of the house to the two banks, mediated by the corridors in 
the center, which is beneficial for the adjacency requirements. 

The policy was also evaluated 50 times in each of the environments. 
The results are on the following graphs (Fig. 13). Notice that on average, 
the agents converged to good results in all the three scenarios either 
starting from random initialization or from a random perturbation. 
There is a big improvement after a few iterations, and over the 
remaining iterations the agents keep refining the configuration and 
solving local problems. The average adjacency performance in the site 

Table 3 
Architecture of the training model.   

Layer Type Input shape Output shape Kernel Stride Padding Activation 

Shared Body Convolution 2D (b, 15, 15, 49) (b, 15, 15, 64) (3,3) (1,1) (1, 1) ReLU 
Convolution 2D (b, 15, 15, 64) (b, 15, 15, 32) (3, 3) (1, 1) (1, 1) ReLU 
Convolution 2D (b, 15, 15, 32) (b, 15, 15, 16) (3, 3) (1, 1) (1, 1) ReLU 
Convolution 2D (b, 15, 15, 16) (b, 15, 15, 8) (3, 3) (1, 1) (1, 1) ReLU 
Convolution 2D (b, 15, 15, 8) (b, 15, 15, 4) (3, 3) (1, 1) (1, 1) ReLU 
Flatten (b, 15, 15, 4) (b, 900) – – – – 
Fully Connected (b, 900) (b, 256) – – – Linear 

Critic Head Fully Connected (b, 256) (b, 128) – – – ReLU 
Fully Connected (b, 128) (b, 64) – – – ReLU 
Fully Connected (b, 64) (b, 1) – – – Linear 

Actor Head Fully Connected (b, 256) (b, 128) – – – Relu 
Fully Connected (b, 128) (b, 26) – – – Linear  

P. Veloso and R. Krishnamurti                                                                                                                                                                                                               



Automation in Construction 154 (2023) 104997

9

with central obstacles is the only one that drops below 0.9. 

5.2. Design case 2 

Design case 2 is a single-story complex of galleries for local and 
regional artists, with a focus on the promotion of visual arts. It was 
designed to test the capacity of generalization of the different policies. It 

consists of an art gallery complex that is modeled by 18 agents with 
more connections and a loop – see Fig. 14. The floorplan of the complex 
should have a fluid configuration, which provides opportunities to 
evaluate the morphological implications of the policies derived from 
different spatial goals. 

The site is located between urban lots with one to two-story buildings 
and an existing park (see Fig. 15). It is defined by an irregular boundary 

Fig. 5. 48 examples of agent initialization with random obstacles.  

Fig. 6. 48 examples of agent initialization with random carving.  
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Fig. 7. Training graphs with training rewards for setting 1.  

Fig. 8. Training graphs with training rewards for setting 2.  

Fig. 9. Basic steps for the parametric model derived from the agent configuration.  
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behind the buildings, fences, and many natural elements such as boul
ders or trees, some of which are also present inside the site and should be 
preserved. 

Like in design case 1, we tested the performance of the agents over 
several steps to evaluate the flexibility, robustness, and convergence of 
the agent to good configurations under different conditions. However, 
considering the larger number of policies and the good performance of 
the training, the number of total steps and stages were reduced. The 
agents interact in the environment for 2200 steps, which are divided in 
two stages that are separated by a single perturbation:  

• Initialization: empty agents start at random positions defined by a 
spring layout method using the adjacency graph of the program  

• Stage 1 (0–999): policy selects the actions  
• Perturbation 1 (1000–1199): random action selection  
• Stage 2 (1200–2199): policy selects the actions 

In the policy Adjacency, Area, and Not Folding (3), adding a single 
fold to a room shape has a large impact in the score. Therefore, the 
agents opted for generating rows of single cells, which eliminates folds 
in the formation process and reduces the distance between agents (see 
Fig. 16: left column). However, the action grid restricts the extension of 
the rows to 5 cells, which is smaller than all the target areas in the art 
gallery program, resulting in undersized rooms. The agents had good 
performance in terms of adjacency, not folding, and even daylight ac
cess, which was further improved in the early stage with the spring 
layout initialization (Fig. 18). 

In the case of the policy Adjacency, Area, and Daylight (75%) there is 
a strong pressure to increase the external walls adjacent to open spaces. 
Thus, each agent tends to create irregular polyominoes with multiple 
concavities, which results in rooms formed by interconnection of cor
ridors and niches (see Fig. 16: right column). Overall, this spatial pattern 
results in a maze-like floorplan with small external patios in between the 
agents. 

Adjacency, Area, and Not Folding (5) resulted in arrangements of 
rectangular and L-shaped rooms. With the spring layout initialization, 
the agents are positioned further away from the neighbors, so they must 
move closer to resolve spatial conflicts and satisfy adjacency. Conse
quently, it results in a freeform layout that expands from the center (hall 
and patios) to centrifugal gallery and administrative blocks in the pe
riphery, which results in a better performance in terms of adjacency (see 
Fig. 17: left column). 

Adjacency, Area, Not Folding (5), and Daylight (50%) results in 
rectangular arrangements like the ones from Adjacency, Area, and Not 
Folding (5). However, the agents themselves organize a more disperse 
and centrifugal layout, which provides daylight access on the scale of the 
building arrangement (see Fig. 17: right column). It also minimizes the 
number of cells that are adjacent to the borders and obstacles of the site. 
Overall, the agents opt for having some flexibility in terms of area to 
improve the other metrics. 

In terms of performance, the policies generally satisfy their target 
spatial goals in phase 1, where there is the support of the spring layout 
initialization. The exception is the area in the policy Adjacency, Area, 
and Not Folding (3), which opted for sub-optimal configurations with 
linear rooms, and Adjacency, Area, Not Folding (5), and Daylight (50) 
which allows the area to change to create more access to daylight. After 
the random perturbation, the policies achieve good configurations, but 
the overall performance is typically worse than in stage 1, which ben
efits from the spring layout algorithm. 

5.3. Design case 3 

Case 3 comprehends the speculative design of a large single-floor 
complex composed of 8 units with the same area and adjacency speci
fication as in case 1. The complex occupies an empty and flat site of 
shape (50,40). In total, there are 96 agents in the simulation, which are 
initialized with the spring layout algorithms and run for 2000 steps. This 
was repeated 50 times for each policy. The goal of this case is to  

• evaluate if the policy can generalize to a design case with many more 
agents than in the random training  

• evaluate the possibility of the system to support the parallel design of 
multiple buildings on a site  

• visualize morphological qualities that emerge from the interaction of 
many agents with the different policies 

The morphological results are consistent with the previous case but 
there are some spatial patterns that emerged with the interaction of a 

Fig. 10. Three different sites: (1) site on the top of the hill, (2) site with central obstacles, (3) site with stream and bridge.  

Fig. 11. Program of the house in case 1. The leading number is used to identify 
the spaces in the next images. The numbers in parenthesis indicate the target 
areas. The connections indicate adjacency. The colored grouping indicates 
spatial integration between spaces. 
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Fig. 12. Selected iterations from simulation of 12 agents using the policy Adjacency, Area, and Not Folding (5). Left Column: site on the top of the hill. Middle 
Column: site with bridge over a stream. Right Column: site with central obstacles. 
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larger number of agents in case 3. 
Adjacency, Area, and Not Folding (3) generates rows of single cells 

restricted by the extension of 5 cells, which eliminates folds in the shape 
and reduces the distance between agents (see Fig. 19). This policy results 
in an agglomeration of linear rooms. In the case of the grouped agents 

without internal walls, there are also rectangular, L-shaped, and S-sha
ped rooms. With 96 agents, large multiple quasi-rectangular patios are 
created between the building units, which contribute to good daylight 
access. However, as the layout is based on an agglomeration of linear 
shapes, there are many cases where an internal room is surrounded by 

Fig. 13. Graphs with the average performance of the agents over 50 episodes for each of the three environments. The areas between dotted lines indicate the periods 
where action was selected randomly (perturbation). The means (μ) and standard deviations (σ) consider the three stages with ε-greedy action selection but not the 
periods with random perturbation. 
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internal walls, which drastically reduces daylight access. 
Adjacency, Area, and Daylight (75%) increases the extension of the 

external walls by creating irregular polyominoes with multiple con
cavities, which results in a maze-like configuration of corridors, small 
patios, and niches (see Fig. 20). Evidently, these concavities are not 
common in the design of houses but that can be useful for other pro
grams, such as the galleries in case 2. 

Adjacency, Area, and Not Folding (5) results in arrangements of 
rectangular and L-shaped rooms in a free form and centrifugal layout. 
With the large number of agents and limited space, buildings are con
nected, creating a series of irregular courtyards of different sizes (see 
Fig. 21). 

Adjacency, Area, Not Folding (5), and Daylight (50%) results in 
building configurations like the ones from the previous policy but with 
more intricate outdoor configuration. To provide more access to 
daylight, each agent exposes more cells to the exterior, which results in a 
hierarchy of outdoor spaces, comprehending a network of courtyards of 
different sizes, and small corridors and patios between buildings (see 
Fig. 22). 

Quantitatively, the agents quickly converge to a configuration with 
high-performance (see Fig. 23) and they spend most of the simulation 

doing small adjustments in the layout. In some cases, the agents were not 
able to solve a few high-level conflicts in terms of adjacencies that would 
require long-term collaboration of multiple agents. 

6. Discussion and future research 

Overall, the policies were able to address the three design cases, were 
efficient with respect to the different goals and were robust to the 
random perturbations in the simulations. They succeeded not only in 
terms of performance but also in producing a diversity of design alter
natives that share essential spatial qualities. With more agents in the 
simulation and a larger site, specific cluster configurations that were not 
embedded directly into the policy emerged, such as a hierarchy of 
irregular courtyards, boulevards, and patios between housing units (see 
Fig. 24). 

By training and deploying custom agents for interactive exploration 
of consistent spatial configurations, the research artifact proves the 
viability of the proposed framework for fine-grained interaction in 
spatial synthesis. It suggests a form of human-machine interaction that is 
an alternative for collaboration and shared authorship in design work
flows based on AI, where designers can use ad hoc responses to the 
circumstances of the design generation inside the loop. Besides, it in
centivizes the incorporation of principles from agent-based computing 
to architectural morphology and to the solution of practical architec
tural problems. 

Some of these aspects will be discussed in another research under 
development, where a version of this prototype was integrated into a 
design tool to evaluate the experience of designers. Besides, future 
versions of the design artifact could benefit from code optimization, 
further parameter fine-tuning, longer training, or additional design 
knowledge. There are a lot of opportunities for future research under 
this framework, such as  

• using different representations and expanding them to 3-D spaces  
• extending the environment and observation grid to provide more 

contextual information  
• increasing the action grid to allow shapes with higher resolution  
• extending the number of adjacencies to enable more complex layouts 

Fig. 14. Program for art gallery. The leading number is an identifier of the spaces. The numbers in parenthesis indicate the target areas. The connections indicate 
adjacency. The colored grouping indicates spatial integration between spaces. 

Fig. 15. Site for the art gallery. Dotted red line represents the boundary and 
obstacles for the agents. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

P. Veloso and R. Krishnamurti                                                                                                                                                                                                               



Automation in Construction 154 (2023) 104997

15

Fig. 16. Left: agents from setting 1 trained for adjacency, area, and not folding (3) goals. Right: Left: agents from setting 1 trained for adjacency, area, and daylight 
(75) goals. 
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Fig. 17. Left: agents from setting 1 trained for adjacency, area, and not folding (5) goals. Right: Left: agents from setting 1 trained for adjacency, area, not folding (5), 
and daylight (50) goals. 
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Fig. 18. Performance of the four policies in case 2. The areas between dotted lines indicate the periods where action was selected randomly (perturbation). The 
means (μ) and standard deviations (σ) consider the periods following the policy. 
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• leaving all the goal parameters free, including not folding or daylight 
access, to incentivize the existence of more heterogenous agents in 
the same simulation  

• incorporating objectives based on the direct interaction with the 
designer or on design examples to make the framework more adap
tive to specific design practices 

7. Limitations 

This research explores an unorthodox approach to spatial synthesis 
based on a simulation with fine-granular interaction, which has a few 
limitations. 

First, it is not straightforward to compare it with other algorithms 
off-shelf, because it breaks many assumptions of classical methods, such 
as the reliance on a pre-defined decision structure or hierarchy of 

Fig. 19. 50 configurations produced by policy Adjacency, Area, and Not Folding (3) after 2000 steps. The configurations highlighted were selected for a more 
detailed description at the bottom. 

P. Veloso and R. Krishnamurti                                                                                                                                                                                                               



Automation in Construction 154 (2023) 104997

19

decisions to make the exploration of the search tree more efficient or the 
idea that the designer is outside of the loop. For example, centralized 
approaches to heuristic search or to optimization would require some 
research on how to conciliate acting on the exponential action space 
imposed by the agents and supporting fine-grained interaction. 

Another limitation is that MADRL presents a set of technical chal
lenges for research. The target function for RL is nonstationary, RL 

algorithms are data hungry, and the sequential nature of the agent- 
environment interaction restricts parallelization. In our design 
construct, we trained the models in a laptop with Intel® Core™ i9- 
9880H CPU @2.30 GHz, 2304 MHz, 8 cores, 16 logical processors, 32 
GB (RAM), and NVIDIA GeForce RTX 2080 with Max-Q Design. Working 
with computers with better graphical processing units in a cloud 
computing service barely improved the performance because the 

Fig. 20. 50 configurations produced by policy Adjacency, Area, and Daylight (75%) after 2000 steps. The configurations highlighted were selected for a more 
detailed description at the bottom. 
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processes that rely on parallelization (backpropagation and forward 
passes) consumed minimal time compared to the production of obser
vations by the training environments. To increase the efficiency of 
training and produce better models it will be necessary to work with an 
implementation that allows the use of multiprocessing for the training 
environments. 

Finally, a theoretical limitation of our problem formulation is that it 

relies on an agent-centric reward function, which restricts its capacity to 
model top-down qualities of an architectural composition that depend 
on the configuration of many agents, such as axiality or symmetry. For 
that, it would be necessary to extend our approach with some environ
mental mechanism that is able to translate global properties into 
perceptual and reward feedback for each agent. 

Fig. 21. 50 configurations produced by policy Adjacency, Area, and Not Folding (5) after 2000 steps. The configurations highlighted were selected for a more 
detailed description at the bottom. 
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8. Conclusion 

Motivated by situated cognition and reflection-in-action, this 
research addressed the specific problem of creating a computational 
framework for spatial synthesis to support designers inside the genera
tive loop with fine-grained interaction. To address this setting, our 
approach relies on a game to be solved by a multi-agent system in a 

simulation, which can be shared with human designers. 
To prove the feasibility of this computational framework, we 

developed a research artifact that integrates agent-based modeling and 
multi-agent deep reinforcement learning to support the design an ecol
ogy of custom agents for interactive spatial synthesis. The method uses 
parameter sharing and a parameterized reward function to train multi
ple heterogeneous spatial agents that address multiple spatial synthesis 

Fig. 22. 50 configurations produced by policy Adjacency, Area, Not Folding (5), and Daylight (50%) after 2000 steps. The configurations highlighted were selected 
for a more detailed description at the bottom. 
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Fig. 23. Average performance of different policies over 50 episodes and with spring layout initialization.  
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Fig. 24. 3D models of the selected samples from design case 3 showing the consistent morphology row by row.  
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goals and are largely independent of a predefined order of operation or 
initialization. The design artifact succeeded in addressing multiple 
design cases and was able to produce variations of design alternatives 
with shared spatial qualities. The interactive simulations with agents 
supported fast and fine-granular turn-taking and enabled the sequential 
generation of spatial configurations in large state spaces under 
uncertainty. 

The success of the artifact opened doors to different lines of inquiry, 
from the gamification of human-machine interaction to the incorpora
tion of structural innovations in the artifact to address more complex 
spatial problems. 
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