
R Stouffs and R Krishnamurti.
Sortal grammars as a framework for exploring grammar formalisms. Mathematics and
Design'01, Deakin University, Geelong, Australia July 2001

SORTAL GRAMMARS AS
A FRAMEWORK FOR EXPLORING GRAMMAR

FORMALISMS

Rudi Stouffs
Faculty of Architecture, Delft University of Technology, Delft, The Netherlands

Ramesh Krishnamurti
School of Architecture, Carnegie Mellon University, Pittsburgh, USA

Abstract: Grammar formalisms come in a large variety and are commonly difficult to
implement. To alleviate these obstacles to a more widespread adoption, a framework for
developing grammar systems is needed that supports an exploration of alternate and
varying grammar formalisms in a rapid prototyping way. We present such a framework
based on a formalism for representational flexibility, named sorts. Sorts provide a
component-based approach for building grammar systems, utilising a uniform
characterisation of grammars.

Introduction

Grammar formalisms have been around for over 40 years and have found application in a
wide variety of disciplines and domains, to name a few, natural language, architectural
design, mechanical design, and syntactic pattern recognition. Their implementations,
however, have been mostly narrowly focused and sparse. In design, in particular, the
expectation of grammar formalisms or similar rule-based systems to pervade design
software has so far remained only an illusion. There are three main reasons for this. The
first relates to the difficulty stemming from technical considerations of implementing
grammars, which we addressed in an earlier paper (Krishnamurti and Stouffs, 1993). The
second difficulty pertains to ways of enabling designers to employ grammatical rules in a
manner that does not impede their act of designing. In this paper, we consider a third
difficulty that affects the rapid development, adaptation, and maintenance of grammar-
based systems.

Grammar formalisms come in a large variety, requiring different representations of the
objects being generated, and different interpretative mechanisms for this generation.
Altering the representation may necessitate a rewrite of the interpretative mechanism,
resulting in a redevelopment of the entire system. At the same time, all grammars share
certain definitions and characteristics. Grammars are defined over an algebra of objects, U,
that is closed under the operations of addition, +, and subtraction, − , and a set of
transformations, F. In other words, if u and v are members of U, so too are u + f(v) and u −
f(v) where f is a member of F. In addition, a match relation, ≤, on the algebra governs when

2

an object occurs in another object under some transformation, that is, f(u) ≤ v whenever u
occurs in v for some member f of F, if u and v are members of U.

Building on these commonalties, we propose a framework for exploring different
grammar formalisms, based on a variety of algebra, and match relations (or interpretative
mechanisms). We base this framework on sorts, a concept for representational flexibility
(Stouffs and Krishnamurti, 1998; 1997). Sorts constitute a model for representations that
defines formal operations on sorts and recognises formal relationships between sorts. Each
sort defines an algebra over its elements; formal compositions of sorts derive their algebraic
properties from their component sorts. This algebraic framework makes sorts particularly
suited for defining grammar formalisms. Provided a large variety of primitive sorts are
defined, sorts can be conceived corresponding to almost every representation. Since sorts
can easily be adapted and compared, these provide the basis for exploring alternate and
varying grammar formalisms.

In this paper, we describe the concept and implementation of sorts, reflect on a
uniform characterisation of grammars and its application to sorts, and present examples of
grammar formalisms that can be expressed with sorts. We conclude with a discussion of
the scope and flexibility of sorts in exploring new grammar formalisms.

Sorts

Conceptually, a sort specifies a set of similar models; sorts combine algebraically to form
new sorts (Stouffs and Krishnamurti, 1998). Consider a sort as a set of models that are
described in terms of a set of equations. Then, each individual of the sort corresponds to a
distinct assignment of values to the parameters in the set of equations. For example, a point
is specified by its tuple of coordinates. Furthermore, sorts can be related by comparing
their systems of equations, in a mathematical manner. Since each such equation constrains
the values that its parameters may adopt, a sort subsumes another sort if its equations form a
subsystem of the other’s sortal equations.

Representationally, elementary data types define primitive sorts, which combine to
composite sorts under formal compositional operations defined over sorts (Stouffs and
Krishnamurti, 1997). For instance, an attribute operator provides for recursively,
subordinate compositions of sorts using an object-attribute relationship, in both one-to-one
and one-to-many instantiations. For example, the sort of labelled points is specified as a
sort of points with one or more labels assigned as attributes to each point in the data form.
The operation of sum allows for disjunctively co-ordinate compositions of multiple sorts,
under many-to-one and many-to-many instantiations, where each sort may – though not
necessarily – be represented in the data form. As an example, a rule has both a lhs (left-
hand-side) and rhs (right-hand-side) component, either of which can be omitted. Other
compositional operations can also be considered, such as an array- or grid-like composition
of sorts.

The result is a constructive, hierarchical description of sorts as compositions of other
sorts, where each leaf node specifies a primitive data type and every other node defines a
compositional operation on its operand children nodes (Figure 1). Assigning names to sorts
provides for a semantic-like differentiation of sorts that may be, otherwise, syntactically
identical, e.g., lhs and rhs denote equivalent − not identical − sorts.

3

concepttree

+

^ ^ ^

[Label]

concepts concepttree

concepts hasrefs

concepts

:

:

concepts

isrefsconceptrefs :

[Property]

(hasrefs, isrefs) :

concepts conceptrefs

sort conceptrefs : (concepts : [Label]);
sort (hasrefs, isrefs) : [Property] (concepts, conceptrefs);
sort concepttree : concepts ^ concepttree + concepts ^ hasrefs + concepts + conceptrefs ^ isrefs;

Figure 1. Textual and graphical definition of a recursive ‘concepttree’ sort.
A ‘concepttree’ may include multiple instances of a single concept, with one
instance defined and referenced by all other instances. ‘+’ and ‘^’ denote
operations of sum and attribute respectively. ‘:’ denotes the naming of a sort.
‘Label’ and ‘Property’ are primitive sorts; the latter defines a property
relationship sort between two given sorts.

The definition of a sort includes a specification of the operational behaviour of its
members and collections, denoted as forms, for the common arithmetic operations of sum,
difference, and product (intersection). This behavioural specification enables a uniform
handling of forms of different sorts, on the proviso that the universe of all forms of a sort is
closed under the respective operations. Additionally, if a match relation exists, that is, there
is a partial order relation on the sortal forms, a grammar can be defined over this sort. The
simplest behaviour that fulfils these requirements is discrete behaviour, corresponding to a
mathematical set, where the part relation reduces to the subset relation and the operations of
addition and subtraction correspond to set union and difference, respectively. A contrasting
behaviour offers the maximal element representation (Krishnamurti, 1992; Stouffs, 1994),
where any element or individual contains indefinitely many, not necessarily disjoint,
individuals. This behaviour applies readily to intervals over continuous domains, e.g., line
or plane segments, or volumes. Primitive sorts have their behaviours assigned in order to
achieve a desired effect, e.g., discrete behaviour for points and labels, interval behaviour for
line segments, and an ordinal behaviour for weights such as thickness or tones. On the
other hand, a composite sort receives its behaviour from its component sorts, based on its
compositional relationship (Stouffs and Krishnamurti, 1997).

Formal relationships between sorts enable the comparison and mapping of sorts as
representational structures. The behavioural specification of sorts supports the mapping of
information structures onto different sorts, such that the resulting information structures
conform to the definition of the respective sorts or representations.

4

Sortal grammars

Grammars are formal devices for specifying languages. A grammar defines a language as
the set of all objects generated by the grammar, where each generation starts with an initial
object and uses rules to achieve an object that contains only elements from a terminal
vocabulary. A rewriting rule has the form lhs → rhs; lhs specifies the similar object to be
recognised, rhs specifies the manipulation leading to the resulting object. A rule applies to
a particular object if the lhs of the rule ‘matches’ a part of the object under some allowable
transformation. Rule application consists of replacing the matching part by the rhs of the
rule under the same transformation. In other words, when applying a rule a → b to an
object s under a transformation f such that f(a) ≤ s, rule application replaces f(a) in s by f(b)
and produces the shape s − f(a) + f(b). The set F of valid transformations is dependent on
the object type. In the case of geometric entities, the set of valid transformations,
commonly, is the set of all Euclidean transformations, which comprise translations,
rotations, reflections, and scale. In the case of textual entities, or labels, case
transformations of the constituent letters may constitute valid transformations.

The central problem in implementing grammars is the matching problem, that of
determining the transformation under which the match relation holds for the lhs. Clearly,
this problem depends on the representation of the elements of the algebra. Sorts offer a
representational flexibility where each sort additionally specifies its own match relation as a
part of its behaviour. For a given sort, a rule can be specified as a composition of two
forms, a lhs and a rhs (Figure 2). This rule applies to any particular form if the lhs of a rule
is a part of the form under any applicable transformation f, corresponding to the behavioural
specification of the form’s sort. Rule application results in the subtraction of f(lhs) from the
form, followed by the addition of f(rhs) to the result. Both operations are also defined as
part of the behavioural specification of the sort.

a_rule : (a_lhs : a_sort) + (a_rhs : a_sort)

a_rule :

+

:

a_sort

:

a_sort

a_lhs a_rhs

Figure 2. Sort definition for rules applying to a given sort ‘a_sort.’
 A rule is composed of a lhs and a rhs sort, under the operation of sum.

As composite sorts derive their behaviour from their component sorts, the technical
difficulties of implementing the matching problem only apply once for each primitive sort.
As the part relationship can be applied to all kinds of data types, recognition algorithms can
easily be extended to deal with arbitrary data representations, considering a proper
definition of what constitutes a transformation. Correspondingly, primitive sorts can be
developed, distributed, and adopted by users without any need for reconfiguring the system.
At the same time, the appropriateness of a given grammar formalism for a given problem

5

can easily be tested, the formalism correspondingly adapted, and existing grammar
formalisms can be modified to cater for changing requirements or preferences.

The specification of spatial rules and grammars leads naturally to the generation and
exploration of possible designs; spatial elements emerging under a part relation is highly
enticing to design search (Mitchell, 1993; Stiny, 1993). However, the concept of search is
more fundamental to design than its generational form alone might imply. In fact, any
mutation of an object into another, or parts thereof, can constitute an action of search. As
such, a rule can be considered to specify a particular compound operation or mutation, that
is, a composition of operations and/or transformations that is recognized as a new, single,
operation and applied as such. Similarly, the creation of a grammar is merely a tool that
allows a structuring of a collection of rules or operations that has proven its applicability to
the creation of a certain set (or language) of designs.

Examples

A uniform characterisation for a variety of grammar systems is given in (Gips and Stiny,
1980). Krishnamurti and Stouffs (1993) survey a variety of spatial grammar formalisms
from an implementation standpoint. Here, we consider the specification of some of these
examples using sorts.

Structure grammars

Structure grammar is an example of a set grammar. “A structure is a symbolic
representation of parts and their relationships in a configuration” (Carlson et al, 1991). A
structure is represented as a set of pairs, each consisting of a symbol, e.g., a spatial icon,
and a transformation. The resulting algebra corresponds to the Cartesian product of the
respective algebras for the set of symbols and the group of transformations. Both symbols
and transformations define sorts with discrete behaviour, i.e., respective sets match under
the subset relationship. These combine into a composite sort under the attribute
relationship; each symbol in a set may have one or more transformations assigned as an
attribute.

Tartan Worlds

The Tartan Worlds (Woodbury et al, 1992) is a spatial grammar formalism that bestrides
string and set grammars. We consider a simplified string grammar version of the Tartan

Worlds: each symbol in a string corresponds to a geometrical entity represented as a
graphical icon and located on a grid. A rule in these simplified Tartan Worlds
(Krishnamurti and Stouffs, 1993) consists of one symbol on the lhs and symbols on the rhs
given in their spatial relation. An equivalent sortal grammar may be defined over a sort
composed over a grid of a sort of graphical icons. On a fixed-sized grid, the behaviour of
the composite sort breaks down into the behaviour of the sort of graphical icons, e.g.,
ordinal or discrete, over each grid cell. The matching relation is defined in the same way.

Augmented shape grammars

A shape (Stiny, 1980) is defined as a finite arrangement of spatial elements from among
points, lines, planes, or volumes, of limited but non-zero measure. A shape is a part of

6

another shape if it is embedded in the other shape as a smaller or equal element; shapes
adhere to the maximal element representation (Krishnamurti, 1992; Stouffs, 1994). Shapes
of the same dimensionality belong to the same algebra; these define a sort. A shape
consisting of more than one type of spatial elements belongs to the algebra given by the
Cartesian product of the algebras of its spatial element types. The respective sorts combine
under the operation of sum, as a disjunctive composition.

A shape can be augmented by distinguishing spatial elements, e.g., by labelling,
weighting, or colouring these elements. Augmented shapes also specify an algebra as a
Cartesian product of the respective shape algebra and the algebra of the distinguishing
attributes. However, the resulting behaviour can better be expressed with a sort that is a
subordinate composition of the respective sorts, i.e., combined under the attribute operator.
A sort of labels may adhere to a discrete behaviour, a sort of weights to an ordinal
behaviour; a weight matches another weight if it has a smaller or equal value.

Discussion

Technical considerations make grammar systems generally difficult to implement. Part of
this difficulty also relates to the appropriateness of a given grammar formalism for a given
design problem, and to the representational demands that grammar systems impose on users
and developers. Together, these difficulties inhibit the rapid development, adaptation, and
maintenance of grammar-based systems. Adopting an existing grammar system may
present the user with a system that is not exactly suited for the purpose. On the other hand,
it is unreasonable to expect every user to develop a grammar system from scratch or invest
the time to analyse and adapt an existing system. Instead, a development environment for
grammar systems based on sorts will provide the user with the ability to define a grammar
formalism and explore its appropriateness for the problem at hand, and then, to integrate it
into a larger application.

The concept of sorts only specifies a common syntax, allowing for different
vocabularies and languages to be created, and providing the means to develop conversion
and translation facilities between these. For example, a point may be specified with any
number of coordinates depending on its dimensionality; its coordinates may constitute
integers, reals or rationals; these may be bounded in space, etc. Sorts can be defined
accordingly and, based on their compositional structures, compared and related. For
example, the operation of sum specifies a subsumption relationship on sorts, where one sort
may match a part of another sort, under sum (Stouffs and Krishnamurti, 1997).
Compositional structures under the attribute relationship, if not equal, may be fully (or
partially) convertible: the attribute relationship is associative though not commutative.
Based on the result of this comparison, translation support can be provided for and data loss
monitored. For example, partial conversions always result in data loss; complete
conversions may result in data loss depending on the behavioural categories of the
constituent sorts.

Alternative design representations can be defined as variations on a given sort, by
altering the components or the composition. As an example, consider a representation for a
collection of drawings given a sort that defines a single drawing. By specifying an attribute
composition with a sort of labels, a named collection of drawings is enabled similar to a set
of layers in a CAD application (Stouffs and Krishnamurti, 1996). Alternatively, by
specifying an attribute composition with a sort of points or rectangles, a layout can be
represented for these drawings (Figure 3). One step further, this sort can be modified to

7

enable drawings to relate to parts within other drawings, allowing for detailing relationships
to be specified in this layout.

named_drawings : drawings ^ (labels : [Label])
layouts : drawings ^ (points : [Point])
named_layouts : drawings ^ points ^ labels

named_drawings :

^

:

drawings

[Label]

layouts :

^

:

drawings

[Point]

labels points

:

^

drawings

points

named_layouts

^

labels

Figure 3. Sort definitions for named drawings, layouts of drawings,
 and named layouts of drawings, given a sort for a drawing.

There is no imposition of concepts beyond the purely syntactical and the alphabet of
building blocks can be readily extended at all times. No language thus created ever needs
to be static. Firstly, a vocabulary may be extended from the existing alphabet or using
newly developed building blocks. Secondly, representations may be updated by
reconfiguring the existing composition of sorts or by extending it using additional
component sorts. Far from having to redevelop the data structure and the applicative
operations, the concept of sorts aims to provide almost continuous support to evolving
representations, providing for an environment that supports exploration and trial, even with
respect to the representation. Representational structures can be compared and mapped,
data can be readily converted to new and extended (or condensed) representations, and
procedural operations remain applicative if such flexibility has been considered.

Grammar formalisms can be explored in a similar way. Depending on the matching
characteristics required, a representation or sort could be developed or, preferably, adapted.
This representation and its corresponding matching algorithms can be integrated into an
exploratory environment. Consequentially the results of this testing, the sort may be further
adapted to achieve the desired effect. Such adaptation requires little alteration of the
exploratory processes. Forms of different sorts behave in a uniform way with respect to
matching and other common operations. This uniform behaviour, together with the
flexibility to build a wide variety of representations from a common vocabulary of
representational building blocks and compositional operations, makes sorts particularly
appropriate for the exploration and rapid development of grammar and other rule-based
systems.

Acknowledgment

The research on sorts is funded in part by the Netherlands Organization for Scientific
Research (NWO), grant nr. 016.007.007.

8

References

Carlson, Christopher, R. McKelvey, Robert F. Woodbury, An introduction to structure and
structure grammars, Environment and Planning B: Planning and Design 18 (1991),
417-426.

Gips, James, George Stiny, Production systems and grammars: a uniform characterization,
Environment and Planning B: Planning and Design 7 (1980), 399-408.

Krishnamurti, Ramesh, The maximal representation of a shape, Environment and Planning
B: Planning and Design 19 (1992), 585-603.

Krishnamurti, Ramesh, Rudi Stouffs, Spatial grammars: motivation, comparison and new
results, CAAD Futures ‘93 (eds. U. Flemming and S. Van Wyk), pp. 57-74, North-
Holland, Amsterdam, 1993.

Mitchell, William. J., A computational view of design creativity, Modeling Creativity and
Knowledge-Based Creative Design (eds. J.S. Gero and M.L. Maher), Lawrence Erlbaum
Associates, Hillsdale, N.J, 1993.

Stiny, George, Emergence and continuity in shape grammars, CAAD Futures 1993 (eds. U.
Flemming and S. Van Wyk), pp. 37-54, North-Holland, Amsterdam, 1993.

Stiny, George, Introduction to shape and shape grammars, Environment and Planning B:
Planning and Design 7 (1980), 343-351.

Stouffs, Rudi, The algebra of shapes, Ph.D. dissertation, Department of Architecture,
Carnegie Mellon University, 1994.

Stouffs, Rudi, Ramesh Krishnamurti, An algebraic approach to comparing representations,
Mathematics & Design 98 (ed. J. Barallo), pp. 105-114, The University of the Basque
Country, San Sebastian, Spain, 1998.

Stouffs, Rudi, Ramesh Krishnamurti, Sorts: A concept for representational flexibility,
CAAD Futures 1997 (ed. R. Junge), pp. 553-564, Kluwer Academic, Dordrecht, The
Netherlands, 1997.

Stouffs, Rudi, Ramesh Krishnamurti, The extensibility and applicability of geometric
representations, 3rd Design and Decision Support Systems in Architecture and Urban
Planning Conference, Architecture Proceedings, pp. 436-452, Eindhoven University of
Technology, Eindhoven, The Netherlands, 1996.

Woodbury, Robert F., Antony D. Radford, Paul N. Taplin and Simon A. Coppins, Tartan
worlds: a generative symbol grammar system, ACADIA ’92 (eds. D. Noble and K.
Kensek), 1992.

