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Abstract: This work is based on the recognition that there will always be a need for
different representations of the same entity, albeit a building or building part, a shape or
other complex attribute. This exigency ensues, formally, to define the relations between
alternative representations, in order to support translation and identify where exact
translation is possible, and to define coverage of different representations. We present an
abstraction of representations to model sorts that allows us to define algebraic operations
on sorts and recognize algebraic relationships between sorts. This approach provides us
with a method for the analysis of representations, and the comparison of their coverage.

1.  Introduction

As a mathematical abstraction, a model can be described by a system of mathematical
equations, the solution(s) to which specify the model with respect to a chosen universe.  For
example, a line may be expressed as an infinite set of points, a color as an entity in some
color space. Similar models, such as different lines, can be described by similar systems of
equations. Generally, the variations between such similar systems can be reduced to a few
numeric values within each system of equations. By parametrizing these numeric values
and, possibly, specifying additional equations to constrain these parameter values where
appropriate, we arrive at a single system of equations expressing an indefinite number of
similar models. We denote such a set a sort. For example, points and lines each are a sort
and so are triangles and squares. Sorts are not limited to geometrical objects, colors are a
sort and so do other attributes define sorts. A sort constitutes the basic entity for our
formalism; we rely on the fact that for each practical representation we can define an
appropriate model sort. We explore a representational description for sorts that illustrates
this correspondence between representations and sorts. We consider algebraic operations on
sorts, the results of which define new sorts. We posit that the organization of a
representational schema, as defined by its representational structures, corresponds to an
equivalent algebraic organization.
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2.  A Representation for Sorts

For any sort, we consider a system of equations over a set of parameters. Such a system is
derived from the equations of any individual of the sort, by introducing additional
parameters that generalize these equations over all models of the sort, and equations that
serve to bound the collection of individuals that constitute the sort. For example, consider a
quadrilateral formed by four line segments with their respective equations. When
parametrizing the endpoint coordinates, additional equations become necessary to constrain
the endpoints to coincide two by two. Thus, within the description of a sort, we distinguish
equations that characterize any individual and equations that specify the collection of
individuals. We denote the former characteristic equations and the latter instance
equations.

Likewise, we distinguish two types of parameters. Characteristic parameters serve to
specify an individual within a chosen universe, e.g., a line in Euclidean space. Instance
parameters serve to specify an individual within a sort, e.g., a particular line in a sort of
lines. For example, in the coordinate sort with characteristic equation x = xc, the
characteristic parameter x specifies the coordinate as an entity on a cartesian axis, and the
instance parameter xc specifies the particular entity, the one for which x equals the given
value of xc. It follows that characteristic equations are defined over both characteristic and
instance parameters, while only instance parameters occur in instance equations.

We consider the following four components in the representation of a sort: a set of
instance parameters whose values specify an individual of the sort; a set of characteristic
parameters whose value ranges specify an individual within a chosen universe; a system of
characteristic equations over both the instance and characteristic parameters, that represents
an individual given a set of values for the instance parameters; and a system of instance
equations over the instance parameters only, that specifies the collection of individuals that
define the sort.

Notationally, for a sort a, with a system of characteristic equations Ac, a system of
instance equations Ai, the set of characteristic parameters Ac = { } and the set of
instance parameters Ai = { }, we write

a = [1]

and use a to denote both the sort of individuals, semantically, and its representation,
syntactically.

An individual of this sort is specified by the characteristic equations and a tuple of
values for the instance parameters. These values necessarily adhere to the instance
equations of the sort. 

In practical data descriptions, a particular representation corresponds exactly to this
tuple of values, where the representational structure is an expression of the instance
parameters of the corresponding sort. On the other hand, the system of characteristic
equations, as uniquely defined for the entire sort, is maintained within the application that
interprets the data description. The specific sort is commonly referenced by a label, a code
or by the use of delimiters. For example, a representational structure for a line segment may
consist of a tuple of four coordinate values of the line segment’s endpoints. A parenthesized
structure for this tuple, the term “line segment” or similar, or a corresponding numeric or
symbolic code ensures proper interpretation.
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3.  Algebraic Operations on Sorts

Complex representational schemata can be treated as compositions of other representational
structures. Similarly, compositions of sorts are sorts and can be defined by algebraic
operations. We consider the following operations on sorts a and b.

Additionally, we define the power sum a⊕  as the sort of all tuples of individuals of a.
This operation may be considered as an infinite composition of the operations of sum and

cartesian product over the same sort. We write a⊕  = a + a × a + a × a × a + a × a × a × a +

… = , or, if we denote a1 = a and an = a × an−1, then, a⊕  = .

We define an empty sort, denoted 0, which contains no individuals. The empty sort is
a subsort of every sort. It is also the result of the operation of product on two sorts that do
not share any individuals. 0 is the neutral element for sum, i.e., a + 0 = a = 0 + a, ∀  a. It
follows that a ⋅ 0 = 0 = 0 ⋅ a, a − 0 = a and 0 − a = 0. We define a × 0 = 0 = 0 × a and, thus,
0⊕  = 0.

The partial order relationship underlying the algebraic operations serves to define a
subsumption relationship on representational structures that facilitates the comparison of
representational structures in terms of scope and issues of translation. For example, the sum
of two sorts has both operands as a part. Similarly, the product of two sorts forms a part of
both sorts, while the operations of product and difference define a classification of a sort
with respect to another sort into disjoint parts.

Examples
The operation of sum applied to the sorts of points and lines results in the sort that

contains all points as well as all lines, i.e., an individual of this sort is either a point or a
line. Similarly, the operation of cartesian product applied to these sorts results in the sort of
all 2-tuples containing exactly one point and one line. These tuples specify the individuals
of the sort. Considering the representation of a line segment by its two endpoints, the
corresponding sort can be derived from the cartesian product of two point sorts. Similarly,
the sort of triangles is the result of two cartesian products on sorts of line segments. The
sort of all polygons, independent of the number of line segments, is defined from the sort of
line segments by the operation of power sum. 

operation notation definition

subsort a ≤ b every individual of a is an individual of b

sum a + b the sort of all individuals from a and b

product a ⋅ b the sort of all individuals that belong to both a and b

difference a − b the sort of all individuals that belong to a but not to b

cartesian 
product

a × b the sort of all 2-tuples of individuals, one of which 
belongs to a and the other to b
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4.  Composing Sorts

A composite sort can always be represented as a syntactical composition of its operands’
representation. In order to compare sorts successfully, a composite representation must be
reduced whenever possible into a unique representation as specified in [1]. The reductions
depend on the relationships between the respective parameter sets and their semantics.
Parameters with different meanings must be distinguished by name; conversely, those with
identical meaning must be identified into a single parameter. For example, the cartesian
coordinates x and y have different meanings, while, by convention, each has the same
meaning for all geometric equations within the same cartesian space.

We distinguish two aspects of a parameter’s meaning: its signature and domain. The
signature of a parameter expresses its (unique) relationship to the universe or space it
operates in. This signature is assigned to a parameter by definition or convention. For
example, the parameter x denotes the abscissa on the X-axis within a cartesian space. By the
same convention, y denotes the ordinate on the Y-axis in this cartesian space. In a three-
dimensional color universe, we can define three parameters r, g and b (for red, green and
blue), each with their specific signature. Alternatively, we can define three different
parameters h, s and i (for hue, saturation and intensity) that specify the same color universe.
The dependencies between r, g and b on one hand, and h, s and i on the other hand, form a
part of their signatures and must be taken into account when identifying or distinguishing
parameters. The domain of a parameter specifies its extent within the universe or space it is
defined, as independent of this parameter. As such, domains can be combined under
cartesian product into multi-dimensional domains corresponding to sets of parameters. For
example, the domain of parameter x is the X-axis, the set {x, y, z} defines the three-
dimensional cartesian space, {r, g, b} defines a three-dimensional color space, and the
domain of their union constitutes a six-dimensional universe of space and color. Note that
the sets of color parameters {r, g, b} and {h, s, i} define the same domain, so do the sets of
cartesian and polar coordinates.

It is clear that any system of characteristic equations can have only one characteristic
parameter of the same signature, and any parameter can have only one meaning within any
system of equations. When combining characteristic equations, a proper identification or,
otherwise, distinction of the respective parameters according to their signature is needed to
ensure the validity of these properties. Every instance parameter must have a signature that
is also assigned to one of the characteristic parameters, though multiple instance parameters
may share the same signature, and not every characteristic parameter must have
corresponding instance parameters. Thus, the set of instance parameters defines a
subdomain with respect to the set of characteristic parameters. We define the domain of a
sort as the domain of its set of characteristic parameters.

Domains play an important role when composing sorts. Specifically, whether a unique
representation exists for a composite sort depends on the relationship between the domains
of the operand sorts. If no unique representation exists, then, we specify the syntactical
composition of the operand representations under sum or cartesian product as a
representation for the sort. In this case, each partial representation has its own domain,
which is a subdomain of the overall domain. We distinguish between exclusive and
inclusive subdomains. In a composition under sum, each subdomain specifies a subset of
individuals of the sort, that is, any individual exists exclusively in one of the subdomains.
We denote such subdomains as exclusive. In a composition under cartesian product,



instead, each subdomain specifies a component of all individuals. We denote such
subdomains as inclusive. In general, subdomains may form a hierarchy of exclusions and
inclusions. Otherwise, when a unique representation exists for a sort, we say it has a unique
domain. Note that exclusive subdomains can be identical. For example, an individual of the
sort of lines and circles is either a line or a circle, and there is no single system of equations
that represents both lines and circles as simultaneous solutions. 

5.  Subsorts under Unique Domains

Let a and b be sorts with unique domains, a =  and b = .

Consider the product of a and b, a ⋅ b . Since the system of characteristic equations is
the same for all individuals of a, respectively, b, it follows that a ⋅ b ≠ 0 only if a, b and
a ⋅ b all have an equivalent system of characteristic equations. This implies identical
characteristic parameters and domains for a and b. However, the instance parameters must
not be identical, but only identifiable, as the following example illustrates. Consider the sort
of quadrilaterals and its subsort of squares. Both representations share equivalent
characteristic equations expressing these figures as four connected line segments. In two
dimensions, a general quadrilateral requires eight instance parameters, representing the
coordinates of the four corner points. On the other hand, a square requires as little as four
instance parameters, e.g., representing the coordinates of any two corner points. The
characteristic equations are identical in all other respects. We can also consider
characteristic equations for squares using eight distinct instance parameters to represent the
coordinates of all four corner points, while defining instance equations that relate these
eight parameters and specify equal length line segments and identical angles between
consecutive sets of corner points.

Thus, if the domains are identical, the instance parameters identifiable and,
subsequently, the characteristic equations are identical, then, we denote these equations as
equivalent. Note that degenerate cases also exist, where certain characteristic equations
become either identical or trivial as a result of the instance equations specified on these. We
will not consider such cases here. We write Ac ≡ Bc to denote the equivalency of systems of
characteristic equations Ac and Bc. We adopt the same notation when identifying instance
parameters, e.g., Ai ≡ Bi.

We have the following requirements on the sorts a and b for a ⋅ b = c ≠ 0:
i. the representational domains of a and b are identical, i.e., Cc = Ac = Bc;
ii. the instance parameters of a and b are identifiable, i.e., Ci = (Ai ≡ Bi);
iii. the characteristic equations of a and b are equivalent, i.e., Cc = (Ac ≡ Bc);
The instance equations of c = a ⋅ b are a composition of the instance equations of a and b
under the logical connective ∧ (and). If the instance equations of a and b exclude each
other, then, a ⋅ b = 0. We write the following reduction rules:

 ⋅  → ; [2a]

 ⋅  → 0, otherwise. [2b]
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The difference of two sorts is dependent on the existence of a common subsort to both
sorts. That is, a − b = a if a ⋅ b = 0. If a and b have identical domains and equivalent
characteristic equations, then, the instance equations of c are a composition of the instance
equations of a and the negation of the instance equations of b, under the logical connective
∧ . The resulting reduction rules are:

 −  → ; [3a]

 −  → , otherwise. [3b]

For the sum of two sorts, both sorts are subsorts. If a and b have identical domains and
equivalent characteristic equations, then, the instance equations of c are a composition of
the instance equations of a and b under the logical connective ∨  (or). Otherwise, we
maintain the expression a + b as a representation for c. The single reduction rule is:

 +  → [4]

6.  Power-sorts over Unique Domains

Whenever a composition of sorts with unique domains is reduced to a unique
representation, the respective instance parameters of the operand sorts must be either
identified or distinguished. In the case of cartesian product, we consider each individual of
the resulting sort as composed of two components, one from either operand sort. Thus, we
must necessarily distinguish the instance parameters. This may be achieved through a
renaming of these parameters, if necessary. We distinguish four cases dependent on the
relationship between the operands’ domains:
i. the domains are identical;
ii. the domains are disjoint;
iii. the domains overlap and there is a classification of the characteristic equations such

that the respective subdomains are either identical or disjoint;
iv. the domains overlap and no such classification exists.
The resulting representations for the four cases are given below. The union of sets of
instance parameters always implies a distinguishing of these parameters. 

In case i the domains are identical. Therefore, we distinguish the instance parameters
and join the respective sets under union, in order to denote the two components of each
individual of the resulting sort. This results in two distinct systems of characteristic
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equations defined over the same characteristic parameters. We then combine these under
the connective ∨ . Because instance parameters must adhere to both systems of instance
equations, these are combined under the connective ∧ . In case ii the domains are disjoint.
Again, we join the sets of instance parameters, under union, to denote the two components
of each individual. Similarly, we combine both systems of instance equations under the
connective ∧ . Since the domains are disjoint, we join both sets of characteristic parameters
under union and combine the systems of characteristic equations under the connective ∧.
The systems are defined over disjoint domains; these must be satisfied simultaneously.

For case iii, we consider a classification of the characteristic equations such that the
respective subdomains are either identical or disjoint. This allows us to adopt the results of
cases i and ii. As the domains overlap, the sets of characteristic parameters Ac and Bc must
have a common subset, i.e., Ac ∩ Bc ≠ ∅ . Consider a classification of these sets into the
subsets Ac ∩ Bc, Ac \ Bc and Bc \ Ac. If a classification of the characteristic equations over
identical and disjoint subdomains exists, then, such a classification must also exist,
necessarily, over the domains corresponding to Ac ∩ Bc, Ac \ Bc and Bc \ Ac. Any other such
classification can always be reduced to the above one by combining the appropriate
subclasses. Let  denote the subsystem of characteristic equations from Ac over the
characteristic parameters of Ac ∩ Bc, and similarly for  from Bc. Let  denote the
subsystem of remaining characteristic equations from Ac, and similarly for  from Bc.
Then, case i specifies the combination of the systems  and , while case ii specifies
all other combinations. Thus, the resulting expression for the system of characteristic
equations for the resulting sort is (  ∨  ) ∧   ∧  . The corresponding set of
characteristic parameters is (Ac ∩ Bc) ∪  (Ac \ Bc) ∪  (Bc \ Ac) = Ac ∪  Bc. Similarly, the
resulting set of instance parameters is Ai ∪  Bi as this is identical for both cases. Also, the
resulting system of instance equations is Ai ∧  Bi. Note that both cases i and ii may be
considered special cases of case iii. Finally, in case iv, we adopt the expression a × b as a
representation for c.

A single reduction rule remains for cartesian product of sorts with unique domains: 

 ×  → [5]

with Ac ≡  ∧   and Bc ≡  ∧  , while  ∧   is defined over (Ac \ Bc) ∪  (Bc \
Ac) and  ∨   is defined over Ac ∩ Bc.

We expand the operation of power sum into an infinite sum of cartesian products:

a⊕ = , with a1 = a and an = a × an−1. an =  is a composition under

cartesian product over sorts with identical domain; case i applies. Let  denote the

union of n times Ai, upon distinguishing all parameters. Let  and  denote

the respective compositions of characteristic and instance equations. Since the resulting

system of characteristic equations is different for each n, no further reduction applies to a⊕ .
The following reduction rules result:
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a⊕  → [6]

 → [7]

7.  A Semi-canonical Form

If no unique representation exists for a sort, we consider a semi-canonical representational
form using algebraic sum and cartesian product over at most two levels. The top level is a
composition over sum of one or more subsorts, each of which is a composition over
cartesian product, at the second level, of subsorts with unique domains. Naturally, either or
both levels may be absent depending on the particular sort. In order to achieve this semi-
canonical form, we consider additional reduction rules that use distributive properties to
reorganize the algebraic operations. Product and difference are distributed until these apply
to sorts with unique domains, or are eliminated. Cartesian product distributes over sum, and
all three operations of cartesian product, sum and product are associative as well as
commutative.

(a + b) × c → (a × c) + (b × c) [8]
(a + b) ⋅ c → (a ⋅ c) + (b ⋅ c) [9]
(a + b) − c → (a − c) + (b − c) [10]
c − (a + b) → (c − a) + (c − b) [11]
While the operation of cartesian product distributes over the operation of sum ([8]),

the opposite does not hold. As an example, consider the sorts of points, colors and labels.
The sort of all points with either a color or a label assigned is identical to the sort of all
colored and all labeled points. We write points × (colors + labels) = (points × colors) +
(points × labels). However, no such derivation holds for the sort of all colored points and
all labels, (points × colors) + labels. Similarly, product and difference do not generally
distribute over cartesian product. Only in special cases may we consider some form of
distribution:

(a × b) ⋅ (c × d) → (a ⋅ c) × (b ⋅ d) if a ⋅ c ≠ 0 and b ⋅ d ≠ 0; [12a]
(a × b) ⋅ c → 0, otherwise. [12b]
(a × b) − (c × d) → (a − c) × (b − d) if a − c ≠ 0 and b − d ≠ 0; [13a]
(a × b) − c → a × b and [13b]
c − (a × b) → c, otherwise. [13c]
(a × c) + (b × c) → (a + b) × c if a + b has a unique domain, i.e., [4] applies. [14]
Rule [14], the inverse of rule [8], applies only in the special case that a + b has a

unique domain, while this domain overlaps with the domain of c, but no classification of
the characteristic equations with respective identical and disjoint domains exists. Consider c
any three-dimensional geometry. Let a and b be the sorts of rectangles and rhombs in two
dimensions. Such combinations of 2D and 3D geometries are commonplace in CAD
libraries. The resulting sort is best represented as the cartesian product of the sort of
rectangles and rhombs with c. If a or b is a subsort of the other, then, the resulting
expression simplifies to a × c or b × c, respectively.
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8.  A Part Relation on Sorts

The algebraic operations of sum, difference, product, cartesian product and power sum are
closed within the universe of sorts.  It can easily be shown that this universe defines an
algebra under the operations of sum and difference, based on a subsumption relation, ≤, that
is a partial order relation. The reduction rules for sorts give us an insight into when one
sort is a subsort of another.

Let D denote the universe of sorts.  According to the semi-canonical form, let D0
denote the set of sorts with unique domains, D1 the set of sorts with inclusive subdomains,
and D2 the set of sorts with exclusive subdomains.  D0, D1 and D2 specify a classification
of the universe of sorts D.  Based on syntactical considerations, we can expect a sort a ∈  Di
to be a part of a sort b ∈  Dj only if i ≤ j.  We can find the necessary support for this
proposition in the reduction rules for representational expressions.  We have that a ≤ b if
and only if a + b = b, a ⋅ b = a and a − b = 0.  The reduction rules for sum ([4] and [14])
give us an insight into the cases when a + b = b.  Assume a ∈  Di and b ∈  Dj.  We show that
a + b ∈  Dk with k ≥ max{i,j} always holds, even after reduction, on condition that a and b
are in semi-canonical form.  Initially, we have a + b ∈  D2.  Rule [4] reduces this to D0, but
only if both a and b belong to D0, and similar for rule [14] and D1.  No other computations
reduce an expression over sum to either D0 or D1.  This proves the conjecture, i ≤ j.  It also
follows that if b ∈  D0, necessarily a ∈  D0, and similar if b ∈  D1, a ∈  D1.  Thus, for a ∈  Di
to be a part of b ∈  Dj, j must either be equal to i or equal to 2.

This same result can also be derived from rules [2a], [9] and [12a], which specify the
reduction of product in a representational expression.  Or, we can use these to determine the
exact conditions for a ≤ b.  For example, rule [2a] specifies for subsorts within D0 that a ⋅ b
= a if and only if the sorts a and b have identical domains, equivalent characteristic
equations, and the instance equations of b form a subsystem of the instance equations of a.

9.  Conclusion

Sorts present an abstraction of representations that provide us with an algebraic approach
for comparing representations. The goal of this work is to lay the foundation for a multi-
way communication system based on sorts, providing the ability to identify when and
where exact translation is possible. Stouffs et al (1996) present a vocabulary of data classes,
subclasses and subsumption relations for solid representations and consider the coverage of
a solid model in terms of the range of possible shape subclasses it can depict. Stouffs and
Krishnamurti (1997) present an implementation of sorts with an emphasis on the
representation of information for the World-Wide Web.
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