
Ö Akın, R Krishnamurti, KP Lam (eds) Generative CAD Systems, 387-400
© 2004 Carnegie Mellon University. Printed in Singapore.

MAPPING DESIGN INFORMATION BY MANIPULATING
REPRESENTATIONAL STRUCTURES

RUDI STOUFFS1, RAMESH KRISHNAMURTI2 AND MICHAEL
CUMMING1
1Delft University of Technology
2Carnegie Mellon University

Abstract. Design problems require a multiplicity of viewpoints each
distinguished by particular interests and emphases. Alternative
viewpoints necessitate different representations of the same entity,
albeit a building or a building part, a shape or other complex attribute.
We argue that the exploration of alternative design views can be
supported by providing access to the representational structure and by
allowing the structure to be manipulated through incremental changes.
Hereto, we briefly describe the representational framework of sorts
and present its support for comparing representational structures and
mapping design information according to it. We illustrate the creation
and manipulation of structures and their comparison. We consider the
specification of design queries through the integration of data
functions into representational structures. We conclude with a
presentation of future work.

1 Introduction

Computational design relies on effective information models, for the creation
of design artifacts and for the querying of the characteristics of such
artifacts. Mäntylä stated in 1988 that these (geometric) representations must
adequately answer “arbitrary geometric questions algorithmically.” Without
emphasis on the geometric aspects, this remains as important today.
However, current computational design applications tend to focus on the
tools and operations for the creation and manipulation of design artifacts.
Techniques for querying receive less attention and are often constrained by
the data representation system and methods. Nevertheless, querying a design
is as much an intricate aspect of the design process as is creation and
manipulation.

Design is also a multi-disciplinary process, involving participants,
knowledge, and information from various domains. As such, design

R. STOUFFS, R. KRISHNAMURTI, M. CUMMING

388

problems require a multiplicity of viewpoints, each distinguished by
particular interests and emphases. For instance, an architect is concerned
with aesthetic and configurational aspects of a design; a structural engineer
is engaged by the structural members and their relationships; and a building
performance engineer is interested in the thermal, lighting, or acoustical
performance of the eventual design. Each of these views ⎯ derived from an
understanding of current problem solution techniques in these respective
domains ⎯ requires a different representation of the same (abstract) entity.
Even within the same task and by the same person, various representations
may serve different purposes defined within the problem context and the
selected approach. Especially in architectural design, the exploratory nature
of the design process invites a variety of approaches and representations.

Design views facilitate a visual inspection of design data and information.
Design queries support the analysis of existing design information in order
to derive new information that is not explicitly available in the information
structure. Design views can be understood to be discrete and domain-
specific; design queries on the other hand seem to indicate small incremental
steps transcending common, domain-specific views in search of information
that does not naturally form part of the design view. At the same time, the
result of a design query, possibly presented in the context of other design
information, may be seen to define a design view and, similarly, design
views may be expressed through design queries.

The distinction between discrete and incremental views can also be
related to the development of integrated data models. Integrated data models
span multiple disciplines and support different views. These allow for
various representations in support of different disciplines or methodologies
and enable information exchange between representations and collaboration
across disciplines. Examples are, among others, the ISO STEP standard for
the definition of product models (ISO, 1994) and the Industry Foundation
Classes (IFCs) of the International Alliance for Interoperability (IAI), an
object-oriented data model for product information sharing (Bazjanac,
1998). These efforts characterize an a priori and top-down approach: an
attempt is made at establishing an agreement on the concepts and
relationships which offer a complete and uniform description of the project
data, independent of any project specifics (Stouffs and Krishnamurti, 2001).
These efforts also mainly target software developers who can ensure
compatibility of their own representation corresponding to a particular
design view with the integrated data model.

Alternative modeling techniques consider a bottom-up, constructive
approach. These provide a more extensive degree of flexibility that allows
for the development of information models that are context, and thus project
specific. This flexibility may also enable incremental changes to existing

MAPPING DESIGN INFORMATION 389

representations supporting alternative design views. Woodbury et al. (1999)
adopt typed feature structures in order to represent partial information
models and use unification-based algorithms to support an incremental
modeling approach. Concept modeling (van Leeuwen and Fridqvist, 2003)
allows for the extensibility of conceptual schemas and for flexibility in
modeling information structures that differ from the conceptual schemas
these derive from. The SPROUT modeling language (Snyder and Flemming,
1999) allows for the specification of schematic descriptions that can be used
to generate computer programs that provably map data between different
applications.

This suggests that support can be provided for exploring alternative
design views by providing access to the representational structure and by
allowing the structure to be manipulated through incremental changes. In
this paper, we briefly describe the representational framework of sorts
(Stouffs and Krishnamurti 2002) and present its support for comparing
representational structures and mapping design information according to it.
We illustrate the creation and manipulation of structures and their
comparison. We consider the specification of design queries through the
integration of data functions into representational structures. We conclude
with a presentation of future work.

2 Defining sorts

Sorts (Stouffs and Krishnamurti, 2002) offer a constructive approach to
defining representational structures that enables these to be compared with
respect to scope and coverage and that presents a uniform approach to
dealing with and manipulating data constructs. Sorts are class structures
identified by compositions of properties (or attributes) (Stouffs et al, 1996).
Properties are named entities identified by a type specifying the set of
possible values. Exemplar types are labels and numeric values, and spatial
types such as points, line segments, plane segments, and volumes. Properties
are composed or grouped using one or more constructors; constructors are
devices for relating properties together. At this time, we consider two
constructors, resulting in either a subordinate composition of properties or a
disjunctively co-ordinate composition (see further for examples). Others may
be defined, as needed.

In the construction of sorts, every composition of properties is considered
a sort. Even a single property defines a sort. Thus, a sort is typically a
composition of other sorts. Comparing different sorts, therefore, requires a
comparison of the respective properties and their constructive relationships.
We denote a sort identified by a single property a primitive sort and all other
sorts composite sorts. A primitive sort necessarily has a name that is the
name assigned to the property. A composite sort can also have a name

R. STOUFFS, R. KRISHNAMURTI, M. CUMMING

390

assigned. Named sorts can be conceived to define object classes. However,
in contrast to the traditional product modeling approach, the collection of
properties of a class is not predefined. This allows class structures easily to
be modified, both by adding and removing properties, and by altering the
constructive relationships (see also Van Leeuwen et al, 2001). For this
purpose, we consider even property relationships and numeric data functions
as properties, such that these can be dealt with in the same way.

The attribute constructor, denoted ‘^’, specifies a subordinate
composition of sorts, under an attribute relationship. For example, a sort of
labeled plane segments is specified as a sort of plane segments, with one or
more labels assigned as attribute to each plane segment. Figure 1 illustrates
three alternative sorts derived from the same sort by composing this sort
with another sort under the attribute constructor. Consider a sort to represent
a drawing, denoted drawings. Consider a new sort with the purpose of
representing a collection of drawings where each drawing is distinguished by
some attribute information. If the distinguishing aspect is a name, we can
define the new sort named_drawings as follows:

labels : [Label]
named_drawings : drawings ^ labels (1)

Here, ‘:’ denotes the operation of semantic identification, i.e., assigning a
name to a sort, and ‘[Label]’ defines the type of the primitive sort. If the
distinguishing aspect is a point of reference for the respective drawing, the
resulting sort layouts can be defined as follows:

points : [Point]
layouts : drawings ^ points (2)

We may also combine both distinguishing aspects, for example, by assigning
the labels as attribute to the respective reference point, as follows:

 named_layouts : drawings ^ points ^ labels (3)

The sum constructor, denoted ‘+’, allows for disjunctively co-ordinate
compositions of sorts. For example, a sort of spatial elements may be
defined as the sum of a sort of points, a sort of line segments, a sort of plane
segments and a sort of volumes; then, a spatial element can be either a point,
line segment, plane segment or volume. Figure 2 illustrates a sort
representing a hierarchical tree structure of architectural concepts or
keywords. The representation is conceived as a tree structure in which each
keyword can have zero, one or more subordinate keywords. The sort
concepts, a sort of labels, represents the individual keywords:

 concepts : [Label] (4)

MAPPING DESIGN INFORMATION 391

named_drawings :

^

:

drawings

[Label]

layouts :

^

:

drawings

[Point]

labels points

:

^

drawings

points

named_layouts

^

labels

Figure 1: Diagrammatic definition of three sorts, named_drawings, layouts and
named_layouts, each derived from the sort drawings by combining this sort with

another sort under the attribute relationship

The subordinate relationship between keywords is expressed by the
attribute constructor on sorts. The resulting sort, named conceptstree, is
defined recursively:

 conceptstree : concepts + concepts ^ conceptstree (5)

The attribute constructor relates to each individual keyword (concepts) a
non-empty data form of subordinate keywords (conceptstree). The sum
constructor (‘+’) allows for the combination of keywords with (concepts ^
conceptstree) and without (concepts) attribute keywords. Thus, individual
keywords are assigned either to the sort concepts, or with an attribute data
form to the sort concepts ^ conceptstree. Figure 2 also presents an exemplar
data form corresponding to the sort conceptstree and expressed using the
Sorts Description Language; individual concepts, i.e., labels, are assigned
either to the sort concepts, or with an attribute form to the sort concepts ^
conceptstree.

An alternative view of a semantic structure (or architectural typology) is
in the form of a network or (semantic) map. A network structure
distinguishes itself from a simple hierarchical structure in that a subordinate
keyword may be shared by more than one keyword. Such a structure can be
extended from the structure in Figure 2 by allowing references to be
specified to keywords that are already defined elsewhere in the structure.
Such references can be represented using a property relationship sort that is
defined over the sort concepts and an equivalent sort conceptrefs:

 conceptrefs : concepts (6)

The property relationship sort distinguishes two named aspects, hasrefs
and isrefs, respectively corresponding to the relationship from concepts to
conceptrefs and vice versa:

 (hasrefs, isrefs) : [Property] (concepts, conceptrefs) (7)

R. STOUFFS, R. KRISHNAMURTI, M. CUMMING

392

conceptstree

+

^

[Label]

concepts

conceptstreeconcepts

:

:

form $concepts = conceptstree:
{ (concepts ̂conceptstree):
 { "theater"
 { concepts:
 { "infrastructure" },
 (concepts ̂conceptstree):
 { "construction"
 { concepts:
 { "load bearing structure",
 "material" },
 (concepts ^ conceptstree):
 { "enclosure"
 { concepts:
 { "roof",
 "facades" } } } },
 "format"
 { concepts:
 { "photo",
 "scale model",
 "text" },
 (concepts ^ conceptstree):
 { "view"
 { concepts:
 { "elevation",
 "axonometric view",
 "diagram",
 "section",
 "perspective",
 "plan",
 "site plan" } } } },
 ... } } } };

Figure 2: Diagrammatic definition of a recursive sort conceptstree representing a
hierarchical structure of architectural concepts, and the (partial) description of an

exemplar data form

These two aspects can be considered as two different views of the same sort.
Each aspect, however, is considered a distinct sort if used in the definition of
other sorts. In order to maintain consistency, each aspect must be specified
as an attribute to its respective sort of origin under the property relationship,
e.g., concepts ^ hasrefs and conceptrefs ^ isrefs. The first attribute sort,
concepts ^ hasrefs, allows for the specification of keywords with one or
more references to (subordinate) keywords that are elsewhere defined. The
second attribute sort, conceptrefs ^ isrefs, allows for the retrieval of all
keywords this subordinate keyword is referenced from. Both attribute sorts,
together with the sorts concepts and concepts ^ conceptsmap, recursively
define the sort conceptsmap under the sum constructor (Figure 3):

 conceptsmap : concepts + concepts ^ conceptsmap +
concepts ^ hasrefs + conceptrefs ^ isrefs (6)

MAPPING DESIGN INFORMATION 393

Thus, individual keywords are assigned to the sort concepts, with an
attribute data form (that is recursively defined) to the sort concepts ^
conceptsmap, or with an attribute data form of references to the sort
concepts ^ hasrefs. If a keyword has subordinate keywords of which some
but not all are defined elsewhere (and thus referenced here), then, this
keyword will be assigned to both the sorts concepts ^ conceptsmap and
concepts ^ hasrefs.

Figure 3 also presents an exemplar data form considering an architectural
typology for Ottoman mosques (Tunçer et al, 2002). Note that the data form
does not specify any data to the sort conceptrefs ^ isrefs, these are
automatically derived from the data to the sort concepts ^ hasrefs.

form $concepts = conceptsmap:
{ (concepts ̂conceptsmap):
 { "physical"
 { (concepts ^ conceptsmap):
 { "mosque"
 { (concepts ̂conceptsmap):
 { "structural"
 { (concepts ̂hasrefs):
 { #om-concepts-26 "arcade"
 { om-conceptrefs-5, om-conceptrefs-14,
 om-conceptrefs-19 } },
 (concepts ̂conceptsmap):
 { "arcade"
 { concepts:
 { "spandrel" },
 (concepts ̂hasrefs):
 { #om-concepts-11 "arch"
 { om-conceptrefs-2, om-conceptrefs-6,
 om-conceptrefs-16, om-conceptrefs-23 },
 #om-concepts-13 "dome"
 { om-conceptrefs-3, om-conceptrefs-7 } },
 (concepts ̂conceptsmap):
 { "arch"
 { concepts:
 { "tympanum" } },
 "column"
 { concepts:
 { "column base",
 "column capital" } },
 "dome"
 { (concepts ̂hasrefs):
 { #om-concepts-5 "crescent"
 { om-conceptrefs-1, om-conceptrefs-4,
 om-conceptrefs-29 } } } } },
 ... } } } } } } } };

conceptsmap

+

^ ^ ^

conceptsmap

concepts hasrefs

concepts

:

concepts

isrefsconceptrefs

[Label]

concepts : conceptrefs :

[Property]

(hasrefs, isrefs) :

concepts

Figure 3: Diagrammatic definition of a recursive sort conceptsmap representing a
(semantic) map of architectural concepts, and the (partial) description of an

exemplar data form

R. STOUFFS, R. KRISHNAMURTI, M. CUMMING

394

3 Mapping sorts

Sorts can be compared by matching their primitive sorts and constructive
relationships. Matches can be identified, roughly, as equivalent, similar and
convertible (Stouffs and Krishnamurti, 2002). This classification is
considered from the perspective of possible data loss and on the basis of
syntactic and semantic similarity. Two sorts are equivalent if these are
related under semantic identification, e.g., one is semantically derived from
the other. For example, the sorts concepts and conceptrefs (5) are equivalent.
Equivalent sorts are syntactically identical; this guarantees the exchange of
data without data loss, except for the loss of semantic identity. Two sorts are
denoted similar if these are similarly constructed from equivalent sorts. For
example, the sorts conceptstree (4) and concepts + concepts ^ conceptsmap
would be considered similar, if only the sorts conceptstree and conceptsmap
were similar. However, comparing the sorts conceptstree and conceptsmap
only results in a partial match: the sort conceptstree matches a part of the
sort conceptsmap, where the corresponding parts are similar under this
partial match.

The similarity of sorts relies on the existence of a semi-canonical form,
specifying a composition over sum of one or more sorts, each of which is a
composition over the attribute constructor of one or more primitive sorts.
Associative and distributive rules with respect to the constructors of sum and
attribute allow for a syntactical reduction of sorts to this semi-canonical
form (Stouffs and Krishnamurti, 2002), e.g.:

 a ^ (b ^ c) = a ^ b ^ c = (a ^ b) ^ c
 a + (b + c) = a + b + c = (a + b) + c
 a ^ (b + c) = a ^ b + a ^ c
 (a + b) ^ c = a ^ c + b ^ c (7)

The rules above are automatically applied to any sort structure; the
respective sorts are considered identical. However, these rules do not take
into account the operation of semantic identification. Consider, for example,
the following associative rules over the attribute constructor:

a ^ (d : b ^ c) → a ^ b ^ c
(d : a ^ b) ^ c → a ^ b ^ c (8)

Though syntactically identical, these sorts cannot be considered identical;
converting the left-hand-side into the right-hand-side would induce a loss of
semantic information. These rules are not automatically applied to the
specification of a sort, but only when comparing sorts based on their semi-
canonical form. Similarly, the following distributive rules serve the
reduction of sorts to their semi-canonical form for the comparison of sorts:

MAPPING DESIGN INFORMATION 395

 a ^ (d : b + c) → a ^ b + a ^ c
 (d : a + b) ^ c → a ^ b + a ^ c (9)

In general, if two sorts can be reduced to the same semi-canonical form,
then these sorts are considered similar. No data loss, except for the loss of
semantic identity, occurs when exchanging data between similar sorts. In the
case of a partial match, data exchange without data loss will apply from the
part to the whole if the parts are similar. In the opposite direction, the
occurrence of data loss is dependent on the actual data that is exchanged. For
example, converting data from conceptstree to conceptsmap involves no data
loss; a tree structure is a special instance of a network or map structure.
Converting data in the other way may involve data loss; the data lost in this
case is the identification of shared concepts even if each copy of these
concepts is fully expanded in a depth-first traversal.

If two sorts are constructed from the same equivalent sorts but cannot be
reduced to the same semi-canonical form, then, these are considered
convertible. For example, points ^ labels and labels ^ points are considered
convertible. Whether data loss occurs when data between convertible sorts is
exchanged depends on the specifics of the primitive sorts, in particular, their
behavioral specification (Stouffs and Krishnamurti, 2002).

Figure 4 illustrates two sorts built from the same primitive sorts using
only the attribute constructor, but considering the primitive sorts in a
different order. These primitive sorts are the sorts lights and beams, both of
labels, intensityvalues of numeric values, and intensity of numeric functions:

 lights : [Label]
beams : [Label]
intensityvalues : [Numeric]
intensity : [NumericFunction] (10)

Consider lighting design for a stage or TV studio: a number of lights are
selected and positioned, and placed on a stand or attached to a beam. Next,
electrical cables are strung in order to power the lights. When laying out
these cables, the intensity (wattage) of the lights on each beam has to be
considered. The use of numeric functions as a data type enables numeric
functional behavior to be integrated into data constructs. Numeric functions
specify both a functional description, a sort's property attribute as argument,
and a result value. The result value is automatically recomputed using the
functional description over the sort's property attribute each time the data
form is traversed, e.g., when visualizing the data. In the lighting example,
this property attribute is the numeric value of the intensityvalues entities (see
the exemplar data forms in Figure 4).

R. STOUFFS, R. KRISHNAMURTI, M. CUMMING

396

form $lights = lights_intensity2:
{ "beam1"
 { sum(intensityvalues.value)
 { "light1"
 { 100 },
 "light2"
 { 150 } } },
 "beam2"
 { sum(intensityvalues.value)
 { "light3"
 { 70 } } } };

form $lights = lights_intensity1:
{ sum(intensityvalues.value)
 { "beam1"
 { "light1"
 { 100 },
 "light2"
 { 150 } },
 "beam2"
 { "light3"
 { 70 } } } };

[NumericFunction]

lights_intensity1 :

^

:intensity

^

[Label]

:beams

[Numeric]

:intensityvalues

^

[Label]

:lights

[NumericFunction]

lights_intensity2 :

^

:intensity

^

[Label]

:beams

[Numeric]

:intensityvalues

^

[Label]

:lights

Figure 4: Diagrammatic definition of two sorts that are considered convertible, and
the description of corresponding data forms. Each data form is the result of

converting the other data form to this form's sort

The sort lights_intensity1 represents numeric functions that apply to
beams that have lights that have an intensity value; the sort lights_intensity2
represents beams that consider numeric functions that apply to lights that
have an intensity value:

 lights_intensity1 : intensity ^ beams ^ lights ^ intensityvalues
lights_intensity2 : beams ^ intensity ^ lights ^ intensityvalues (11)

The position of the numeric function in the structure defines its scope.
Consider the two data forms presented in Figure 4. On first inspection, these
seem to contain the same data, even if their organization is slightly different.
The design consists of two beams. The first one has two lights with intensity
values of 100 and 150, and the second has one light with an intensity value

MAPPING DESIGN INFORMATION 397

of 70. The numeric function is in both cases the sum function applied to the
numeric value of the intensityvalues entities, i.e., 100, 150 and 70. However,
in the first example, the scope of the single sum function is the entire design,
and the result of the function will be the sum of all three values, thus, 320. In
the second example, each beam possesses a sum function, the scope of which
is only the lights attached to this beam. The respective results will be 250
and 70.

Since the two sorts lights_intensity1 and lights_intensity2 are constructed
from the same primitive sorts, they are considered convertible. Converting
each data form according to the sort of the other data form will result in the
other form. Therefore, when converting data between the sorts
lights_intensity1 and lights_intensity2, data loss as such does not occur
because reconverting the data to the first sort results in the original data
form. At the same time, the data in both views is not identical.

4 Manipulating sorts

All examples considered above illustrate how incremental changes to
representational structures can yield alternative design views that offer new
functionality or answer design queries. Figure 1 presents three alternative
examples of how adding a new sort to an existing sort can expand the
functionality of this sort. In these examples, a collection of named drawings
or a layout of drawings is represented using a sort that is a composition of a
given sort for a single drawing and a sort of labels, points, or labeled points,
under the attribute constructor. The opposite action of removing a sort can
similarly be considered to support a different design view, in the case of the
examples, one drawing out of a collection of drawings. Figures 2 and 3
similarly illustrate two sorts where one can be considered as an extension of
the other. These sorts, conceptstree and conceptsmap, support related data
structures, the one hierarchical, the other a hierarchical structure with shared
nodes. This extension of conceptstree to conceptsmap requires the
specification of one new primitive sort, with the aspects hasrefs and isrefs,
as well as the semantic derivation of conceptrefs from concepts. Finally,
Figure 4 shows how a small change in the compositional structure, in this
case switching the position of two adjacent sorts in a series of attribute
relationships, can yield two different design views that answer two different
queries.

The same actions can also lead to more far-reaching changes. Merging
two sorts together under a sum or attribute relationship, selecting, and
extracting a part of a sort as a new sort, and altering the compositional
structure by redefining the hierarchical order, all can be considered as
incremental changes. The effect and reach of such change is very much
dependent on the complexity of the sorts involved. We still consider the

R. STOUFFS, R. KRISHNAMURTI, M. CUMMING

398

change incremental if it involves only a single action by the user. Merging a
sort into another requires the sort and its intended location in the other sort
to be identified. Depending on the compositional structure of both sorts near
the point of merging, changes in these respective structures may be
necessary in order to achieve a new structure that complies with the
definition and representation of a sort. Extracting a part of a sort requires
this part to be selected. The exact boundaries of this selection can be made
dependent on the need to minimize data loss through maximal compatibility.

Altering the compositional structure by redefining the hierarchical order
can be achieved by selecting an entity from the representational or data
structure in order to bring this to the top of the structure. We consider this
action to be an expression of focus. For example, object-oriented models
often adopt a hierarchical structure of functional objects at various levels of
detail, reflecting upon an increasingly narrower information focus. Similarly,
architectural design models are commonly organized by a hierarchical
classification of functional areas, such as buildings, floors, and zones, in that
order. The attribute relationship serves as a prime example, leading the focus
onto the object of the relationship, while the attribute expresses a qualifier
with respect to this object. For example, in an architectural design
description, spatial information is commonly considered more important
such that other information entities are assigned as properties to the relevant
spatial entities. Thus, expressing a focus onto the representational or data
structure can result in a transformation of the hierarchical structure that
raises the entity under focus towards the top of the structure.

Such a transformation can be achieved automatically by reversing
attribute relationships. For example, consider a primitive sort b in a
composition with sorts a and c under the attribute constructor. Then, the
following rule specifies a transformation that raises the entity b to the focus:

 a ^ b ^ c = (a ^ b) ^ c → (b ^ a) ^ c = b ^ a ^ c (12)

Since semantic identity cannot be maintained under such transformation,
reduction rules for the syntactical reduction of sorts to their semi-canonical
form can be used to assist in the above transformation.

From this, we can derive that incremental manipulations of
representational structures can support the exploration of alternative design
views. While each action may yield only a small step, a series of incremental
changes may lead the user from one desired design view to another and
enable design information to be mapped accordingly. Furthermore, these
incremental changes may give the user insight into the composition of the
representational structure and its data and into the potential for alternative
design views. We are currently developing a graphical interface to sorts that
allows for the creation of representational structures as sorts and of

MAPPING DESIGN INFORMATION 399

corresponding data forms. We envision its extension to support the
manipulations here described.

5 Conclusion

Both support of alternative design views and an expression of arbitrary
design questions require flexible design information models and
representations that can be modified and geared to the kinds of views and
queries. Then, exploring design views and design queries may be achieved
by manipulating the representational structure through incremental changes.
Such actions may also lead to a conceptual understanding of the
representational structure. Effective visualizations of the data structure,
combined with intuitive ways of manipulating this structure, can further
support such understanding.

Sorts enable the development of alternative representations of a same
entity or design; the comparison of representations with respect to scope and
coverage; and the mapping of data between representations, even if their
scopes are not identical. Alternative design representations can be defined as
variations on a given sort, by altering the constructive entities or the
composition. Comparing sorts not only yields a possible mapping but also
uncovers the potential for data loss when moving data from less restrictive to
more restrictive representations. As such, reorganizations can be guided in
order to maximize compatibility with the original representation and
minimize data loss.

Acknowledgements

This work is partly funded by the Netherlands Organization for Scientific Research
(NWO), grant nr. 016.007.007. The third author is funded by a grant from the
National Science Foundation, CMS-0121549, support for which is gratefully
acknowledged. Any opinions, findings, conclusions or recommendations presented
in this paper are those of the authors and do not necessarily reflect the views of the
Netherlands Organization for Scientific Research or the National Science
Foundation. The authors would like to thank the reviewers for their constructive
comments and Bige Tunçer for the development of the semantic structures presented
in Figures 1 and 2.

References

Bazjanac V (1998) Industry Foundation Classes: bringing software interoperability to the
building industry, The Construction Specifier 6/98, 47-54.

Groth, DP, and EL Robertson (1998) Architectural support for database visualization,
Proceedings of the 1998 Workshop on New Paradigms in Information Visualization and
Manipulation, ACM Press, New York, NY, 53-55.

ISO (1994) ISO 10303-1, overview and fundamental principles, International Standardization
Organization, Geneva.

R. STOUFFS, R. KRISHNAMURTI, M. CUMMING

400

Mäntylä, M (1988) An Introduction to Solid Modeling, Computer Science Press, Rockville,
Md.

Snyder J, and U Flemming (1999) Information sharing in building design in G Augenbroe,
C Eastman (eds), Computers in Building, Kluwer Academic, Boston, 165-183.

Stouffs R, and R Krishnamurti (2001) On the road to standardization in B de Vries, J van
Leeuwen, H Achten (eds), Computer Aided Architectural Design Futures 2001, Kluwer
Academic, Dordrecht, The Netherlands, 75-88.

Stouffs R and R Krishnamurti (2002) Representational flexibility for design in JS Gero (ed),
Artificial Intelligence in Design ’02, Kluwer Academic, Dordrecht, The Netherlands, 105-
128.

Stouffs R, R Krishnamurti and CM Eastman (1996) A formal structure for nonequivalent
solid representations in S Finger, M Mäntylä and T Tomiyama (eds), Proceedings of IFIP
WG 5.2 Workshop on Knowledge Intensive CAD II, International Federation for
Information Processing, Working Group 5.2, 269-289.

Tunçer B, R Stouffs and S Sariyildiz (2002) Document decomposition by content as a means
for structuring building project information, Construction Innovation 2(4), 229-248.

van Leeuwen JP, and S Fridqvist (2003) Object version control for collaborative design in
B Tunçer, S Özsariyildiz, S Sariyildiz (eds), E-Activities in Building Design and
Construction, Europia Productions, Paris, 129-139.

van Leeuwen J, A Hendrickx and S Fridqvist (2001) Towards dynamic information modeling
in architectural design, Proceedings of the CIB-W78 International Conference IT in
Construction in Africa, CSIR, Pretoria, South Africa, 19.1-19.14.

Woodbury R, A Burrow, S Datta and T Chang (1999) Typed feature structures and design
space exploration, Artificial Intelligence in Design, Engineering and Manufacturing
13(4), 287-302.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

