
 1

 Accepted to 3rd International Conference on Design and Decision Support Systems
 in Architecture and Urban Planning , Spa, Belgium, 18-21 August 1996

 NOT FOR QUOTATION

 The Extensibility and Applicability of Geometric Representations

 Rudi Stouffs
 Swiss Federal Institute of Technology Zurich

 Architecture and CAAD
 Zurich

 Switzerland

 Ramesh Krishnamurti
 Carnegie Mellon University
 Department of Architecture

 Pittsburgh, Pa.
 USA

 Abstract

 As designers pose new questions, within the context of computational design, that go beyond geometry
 and require other information to be included, there is, now more than ever, a need for extensible
 geometric representations. We believe that such can best be achieved using abstract data types defined
 over a set of basic operations, common to all data types. At the same time, we must consider the
 applicability of such a representation with respect to the functionalities of the application. In this
 paper, we explore these issues of extensibility and applicability as these relate to the questions of
 standardization and adaptability of representations. As a particular example, we consider an algebraic
 model, with a corresponding representation, that defines arithmetic operations that operate uniformly

 and consistently on geometries and on non-geometric attributes of various kinds.

 1 Introduction

 Design relies on effective models of geometry. Computational design of physical
 artifacts relies on solid models. Over the past twenty years, solid modeling has
 established itself as a major area of research. Several models and representations
 have been developed, based on a variety of representations, associated operations and
 underlying concepts. None, however, exists singly as a model of representation that
 applies to the solution of every problem. In the search for an appropriate solid model
 there is a consensus, namely, a solid model has to be complete. This means that the
 corresponding representation must be “adequate for answering arbitrary geometric
 questions algorithmically” (Mäntylä 1988). However, this statement becomes
 increasingly difficult to qualify as users and, in particular, designers pose new

 questions that go beyond geometry and require other information to be included.
 An interesting example is the ever increasing concern for performance issues
 in building or engineering design, where it is vital that extended representations and
 manipulations of design geometries are developed. These must include form and
 material properties, specified at various levels, in a hierarchical manner with dynamic

 2

 relationships. As an example, a wall may be composed of a number of material
 layers, each with fundamental thermal-performance related attributes like
 conductivity, thickness, specific heat, etc. The wall, as a composite entity, has
 thermal attributes like overall conductance, and, at a higher level, the building has an

 overall heat transfer value.
 In the design of a multi-purpose geometric modeling system, it is generally
 infeasible to foresee each and every attribute the designer may want to employ. One
 approach to this problem is to consider abstract data types defined over a set of basic
 operations, common to all data types. Then, any user-defined attribute can be added
 if it fits within one of these types. If the basic operations are straightforward, then,
 these data types may themselves be user-definable. However, this set of basic
 operations must support the functionality of the application. To determine this
 qualification is straightforward for simple applications. In the case of computer-
 aided design (CAD) systems, on the other hand, determining all operations that both
 underlie the functionality of the system and apply to these data types, is a non-trivial
 task (Schindewolf 1995). In general, these operations become far too many and often
 depend on the particular data or their semantics. In order for such a scheme to be
 successful, it is necessary to conceive of only a limited set of operations that apply to
 all data types, even if in a different fashion, and suffice to model the functionality of

 the system.
 In this paper, we consider these issues and their relative importance with
 respect to the efficacy of geometric representations. We consider the extensibility of
 a representation as its ability to allow for new, user-defined attributes and data types.
 We consider the applicability of a representation, with respect to the functionalities
 of the application, to denote its ability to provide these functionalities through a
 common interface of operations and queries over the data types of the representation.
 These issues of extensibility and applicability have received little research attention
 in comparison to other issues that also relate to the efficacy of a representation, such
 as efficiency and robustness. Furthermore, research in these latter issues has mostly
 led to solutions that are generally applicable to many representations. In contrast, we
 argue that the issues of extensibility and applicability are strongly depended on the
 particular representation. We explore these issues through a particular example. We
 consider an algebraic model, with corresponding representation, that offers a uniform
 and consistent approach for handling mixed-dimensional geometries and non-

 geometric elements and attributes.

 2 Motivation

 CAD systems provide prime examples of the development to include non-geometric
 information. Generally, these take a database approach to the problem, creating
 record structures for geometric entities that allow for the inclusion of non-spatial
 attributes, e.g., layer information, color, texture, and so on. In principle, the record
 structures present a static view of the world, where attributes are defined upon

 3

 construction of the database, or, software. While software users often are given the
 ability to extend these record structures with one’s own user-defined attributes, this
 alone does not allow for a dynamic, user-centered view of the world to be presented
 by the system. Beyond the establishment of these information holders − it is
 straightforward to attach attribute information to design objects through entries in the
 record structure − current systems provide no further support for even this user-
 modified view. Once an attribute is assigned to a design object, this information is
 fixed and remains unaltered under any modeling operations, unless through explicit

 and additional user action.
 Furthermore, we often want access to this design information from outside the
 particular application. In practice, a translation process provides third-party access to
 the information contained in the database. Generally, a translation between
 applications requires a two-step process, where the source application provides the
 information in a formatted file that can, subsequently, be read and interpreted by the
 destination application into its own data representation. The adopted file format can
 be considered expressing a more generalized representational model than the
 system’s internal representational structure. For enhanced efficiency and in order to
 remove any ambiguity that otherwise may arise, the information in the file is kept to a
 minimum: all general information is absent and instead is referenced. This results in
 a compact file, but, in the case of user-defined attributes, in a cryptic data
 representation. Therefore, when users decide to define their own attributes, they
 forfeit any standardization, as third parties are no longer able to interpret the
 translated data properly unless explicitly notified of the specific attribute additions.
 An example is provided by AutoCAD ’s DXF drawing interchange file format
 (Autodesk 1992), a popular data exchange format for visual and design applications.
 Attributes are assigned identification numbers and a few numbers are reserved for
 user-defined attributes. The DXF file contains only the identification number and
 value for each attribute – it does not contain any information that may allow for a

 proper interpretation of this data.
 In general, the problem is one of extensibility while maintaining some form of
 standardization. In the extreme, this concerns the design of an all-encompassing
 standard. It is obvious that the latter is practically infeasible, perhaps even
 impossible. By definition, a standard is a formalism that specifies general data
 classes and ways of manipulating this data. Whatever representation is defined, one
 can always find a piece of data that does not fit within the formalism. Nonetheless,
 when we view the problem in terms of extensions to existing data representations for
 dealing with user-designed attributes, a solution may prevail. By pushing the
 boundaries of such a solution, we may even come close to – without actually

 reaching – a solution for the extreme case.
 It suffices to consider a standard approach for manipulating non-standard
 information. Common data types can be recognized, and common operations that
 apply to them defined for each type. When the data to be represented fits one of
 these data types, the corresponding attribute(s) can be defined without any risk of loss
 of data integrity. When the same information, that is, the data types with their

 4

 corresponding operations, is made available to other software, these will also be able
 to represent and manipulate the same data, even if the attributes’ semantics are

 unknown to the software.
 In order to substantiate this claim, it is important that we make a distinction
 between manipulative operations that may change the value of an attribute, and
 evaluative operations that interpret the attribute but keep its value unchanged. The
 former can often be defined syntactically, that is, the result of an operation is
 dependent only on the attribute’s value and type. Evaluative operations mostly
 depend on the attribute’s semantics. For instance, the visualization of the attribute
 data, e.g., color or line thickness, is attribute specific; a presentation of the attribute’s
 name and (alphanumeric) value is not. Data integrity only relates to the correct
 application of manipulative operations. Therefore, we consider only these
 operations. That is, we consider a formalism or representation to be successful when
 the data of one program can be read, manipulated and rewritten by another program,
 even if it may not be able to visualize the data, or otherwise evaluate it. An

 evaluation of this new data may then be provided for by the original program.
 As an example, we consider an algebraic model that defines arithmetic
 operations on both geometries and non-geometric attributes of various kinds. This
 model presents a uniform and consistent approach for dealing with spatial objects
 including non-spatial elements and attributes, as well as geometries of mixed-
 dimensionality. We believe that this uniform approach provides the key for
 achieving an extensible yet standardized data representation for geometries and non-
 geometric attributes. At the same time, this model allows for powerful new ways of
 manipulating objects in the context of design exploration (Stouffs and Krishnamurti
 1994). Its uniform and consistent application to geometries of different
 dimensionality has been proven (Stouffs 1994); its application to attribute-weighted
 geometries has been explored for certain attribute types (Stiny 1980, 1992; Knight

 1989).

 3 Extensibility and Applicability

 Requicha (1980) presents a list of properties or characteristics for the evaluation and
 comparison of geometric representations (see also Mäntylä 1988). Some are formal
 properties, while others influence the design and implementation of a modeling or
 design environment in a practical way. Formal properties include the scope or
 expressive power of a representation, the closure of operations, the uniqueness,
 unambiguity and validity of the representations. It is straightforward to assess these
 properties for a given representation. As such, these serve as a primary basis for the

 qualification and comparison of geometric representations.
 Informal properties are generally harder to qualify or assess. These relate to
 issues of conciseness of the representation, ease of creation, and efficacy of the
 algorithms. The conciseness of a representation is often constrained by the efficacy
 of its algorithms because efficacy in this instance is related to the amount of

 5

 information that is available, its ready accessibility, and its organization. The ease of
 creation of representational instances or model objects is mainly related to the design
 and objective of the modeling environment and its interface, than to the geometric
 representation and its algorithms. For instance, a solid modeling environment may
 adopt a constructive modeling approach even though the representation is a boundary

 representation. Therefore, the issue of efficacy is often the most important.
 This representational efficacy relies on a combination of different properties
 that relate to the algorithms for creating, manipulating and transforming
 representations, such as correctness, efficiency, robustness and extensibility
 (Requicha 1980). The issue of correctness is straightforward but dependent on
 precise specifications. The issue of efficiency is prominent and has received much
 attention within the field of computational geometry. Generally, the efficiency for a
 boundary representation is less dependent on the particular representation than on the
 type of algorithms used. For example, algorithms for the algebraic model for
 geometries (Stouffs 1994) require little topological input in comparison to most other
 boundary representations that are often topologically complete. Even then, these can
 be specified with efficiencies comparable to some of the most efficient boundary
 representations (Stouffs 1994). The issue of robustness has also received fair
 attention (Hoffmann 1989). In contrast, the issue of extensibility, while it relates
 directly to the problem of standardization, has received little attention in such
 research. Standardization projects are generally guided by other issues that receive

 their prominence because of external interests.
 Another issue, and one that is mostly overlooked, is the applicability of a
 representation with respect to certain functionalities. This is basically an issue of
 scope, though in terms of the applicability of the algorithms describing the operations
 on the representation to common practices and functionalities in computational
 design environments or CAD systems. We denote this, in short, as applicability,
 even though we note that such applicability is dependent on the functionality of the
 environment that the representation is used in. The issue of applicability is as much
 related to the efficacy of the representation as the issues above, but differs in the fact
 that it also introduces aspects of specific functionality. Whereas most other issues
 have received much attention and research, and have resulted in solutions that are
 often generally applicable to many representations, the issues of extensibility and
 applicability have received little research and are, we argue, very dependent on the
 particular representation. These issues relate directly to the questions of
 standardization and adaptability of representations. As such, a commitment to these
 issues will not only facilitate the work of developers, but also extend software

 capabilities and user choices.
 Instead of attempting an evaluation or comparison of common
 representations, we examine a particular representational model, i.e., the algebraic
 model, that we believe is particularly suited to illustrate the importance and strength
 of both issues. Below, we present the model and its corresponding representation,
 explore and describe the extensibility and applicability of this representation in the

 context of computational design environments.

 6

 4 An Example

 For our purpose, the attractiveness of the algebraic model is its ability to include non-
 geometric attributes within the model. We can easily add constant, symbolic or
 numerical information to design objects by associating symbols, labels or properties
 with the corresponding geometries. Such augmented geometries allow for the
 exploration of new design problems and may improve upon the methodology for
 solving known problems. For example, highlighting points through the use of labels
 (i.e., labeled points) plays an important role in both spatial representation and
 manipulation. In the context of spatial manipulation through rules, these serve to
 guide the rule matching process through identification and classification of the rules,
 while these can also be viewed as semantic extensions to what are fundamentally

 syntactical expressions, i.e., rules.
 The applicability of this extensible model to geometric modeling and
 computational design relies on the existence of arithmetic operations that operate
 uniformly and consistently on geometries and non-spatial attributes. We argue that
 these arithmetic operations, together with the ability to augment geometries with non-
 geometric attributes, suffice to support the functionality of a CAD system or a
 computational design environment. We explore the application of the arithmetic
 operations on augmented geometries to common design interactions, such as creation,
 selection, and grouping or layering of design objects. First, we present the algebraic
 model and consider the supporting maximal element representation for augmented

 geometries (Krishnamurti 1992; Stouffs 1994).

 4.1 Extensibility and the Algebraic Model

 We propose an arithmetic model with operations of sum, difference and product on
 both geometries and non-spatial attributes, because the conceptual simplicity of these
 arithmetic operations makes an applicative extension to new data types
 straightforward. We limit the arithmetic model to an algebraic model based on a part
 relation. This part relation can be freely defined as long as it constitutes a partial
 order relation. For practical purposes, it is advantageous to define the part relation
 between elements of the same sort , i.e., geometries of the same dimensionality or
 attributes of the same type. We consider sorts as collections of design elements of a
 same type, where the boundary of each sort is given by the applicative boundary of
 the part relation that is defined over this sort. Thus, while a minimal classification of
 sorts may be specified from an algebraic and representational point of view, the final
 decision on a more in-depth classification may lie with the user or designer, allowing
 her to define attribute sorts corresponding to the requirements or intentions of the

 design.

 4.1.1 Sorts of Geometries
 An important aspect of computational design representation is the ability to represent
 geometries of different dimensionalities. Consider the example of building design,

 7

 where the final product is a composition of purely solid elements or building
 components. Yet, in the design and evaluation process, the dimensionality of each
 individual component is not essential for all purposes. Instead, an abstraction is often
 more valuable. In the structural evaluation of a design, for example, walls can be
 represented as planes with simple integral attributes - a true three-dimensional model
 would be too complicated, unless approximated. In general, even a single component
 may be multiply represented as elements of different dimensionalities, each element
 projecting information for a specific application, such as structural or performance

 evaluations in building design. (figure 1)
 Mixed-dimensional models have found recent support in solid modeling
 (Rossignac and Requicha 1991; Gursoz et al. 1991). However, these mixed-
 dimensional approaches come at the expense of intuition in operations and ease of
 conception, by adhering to Boolean Set operations in a Euclidean or point space.
 Instead, the algebraic approach provides an altogether new and different notion: a
 composite geometry. Under the algebraic model, geometries of different
 dimensionality coexist without interference; the components of a mixed-dimensional
 object are operated upon in parallel by the algebraic operations. This parallel
 construction allows for objects of varying disparity not only to coexist peacefully in a
 single (geometric modeling) world, but also to be conceived as one at the same time
 as being operated on quite differently, yet under a conceptually unified approach.
 Consequently, a composite geometry can be regarded either as composed of
 geometric components with different dimensionality or as consisting of multiple
 geometries that are coordinated or related. For example, consider a set of drawings
 from amongst plans, elevations and sections of a same building. Each drawing may
 be considered a spatial object, or, the set of drawings as a whole can be regarded as a
 composite object - its components may be visualized in the same, as in the case of a

 composite drawing, or in different spaces.

 4.1.2 Attribute Sorts
 Even when considering geometries of the same dimensionality, it may be important
 for these to coexist and be operated upon in parallel. Consider, for example, a

 Figure 1: A wall represented at once as a volume, planes and lines.

 8

 composite material composed of several regions with different material properties
 (Rossignac and Requicha 1991), e.g., a wall composed of a number of material
 layers. Such a decomposition into layers should not only be representable, but also
 preserved during manipulation. Commonly, this is not the case. In this respect, the
 algebraic model offers a straightforward solution: using non-geometric attributes to
 denote such properties as material, color, thermal-performance, etc. Here, different
 regions or layers are represented by elements with different-valued (material)
 attributes. The algebraic operations preserve this structure while operating
 simultaneously on all layers. These operations no longer obliterate the internal

 boundaries between these different regions. (figure 2)
 Attribute sorts may be conceived for many different applications and
 functionalities. It is straightforward to consider attributes for the representation of
 graphical information, e.g., line thicknesses and colors, some design knowledge, e.g.,
 sets of labels, and design evaluation data, e.g., numerical as well as non-numerical
 properties. The same or similar attribute sorts can also be used for other purposes.
 For example, label attributes also provide for some CAD functionality, such as
 grouping and layering. At the same time, we can also envision more advanced
 practices within the same conceptual framework. For example, one can assign
 functions to geometries for the deferred evaluation of physical aspects such as
 lighting, heating and cooling. In general, we can consider attribute sorts for any data

 on which we can define a partial or total ordering relation.

 4.1.3 Sorts as Algebras
 This part relation defines the set of all values for each sort as a partially ordered set or
 lattice with the consequent algebraic properties. As such, a sort defines an algebra
 that is ordered by a part relation and closed under the operations of sum, product and
 difference, and the similarity transformations (i.e., translation, rotation, reflection and
 scale) for sorts of geometries. Although, strictly speaking, the arithmetic operations
 can be arbitrarily (within limits) defined on the attribute values, a definition based on
 a part relation is most intuitive. As Stiny (1992) illustrates with line thicknesses, a
 single line drawn multiple times, every time with different thickness, appears as it

 Figure 2: A solid composition of walls as layers with different material properties.

 9

 was drawn once with the largest thickness, even though it assumes the same line with
 other thicknesses. If we consider the thickness of a line as a numeric value, the
 corresponding operation of sum would not be equivalent to the arithmetic sum
 operation, instead, would be defined as the least upper bound of the set of values, as
 specified by the ordering relation. The same reasoning holds for many other attribute
 sorts. On sets (of labels), obviously, we consider the set operations of union,
 intersection and difference as algebraic operations. For colors, a ranking may be
 specified that maps the colors to real values or, otherwise, a three-dimensional color
 coding (e.g., RGB or intensity, saturation and hue) may be considered with an
 appropriate part relation. Another example are functional attributes where the

 attribute’s value is a function defined as an element of some functional space.
 We adopt a maximal element representation for augmented geometries that
 supports this algebraic behavior. This canonical representation defines a (maximal)
 geometry as a set of disjoint spatial elements, each of which is connected. These
 disjoint elements are the maximal elements of the geometry. For instance, consider
 the algebra of points. A point is maximal if it is not coincident with any other point.
 Thus, the sum of two points is the set of both points if these are not coincident and is
 the single point otherwise (figure 3). The operation of sum combines two
 geometries, that are not necessarily maximal with respect to each other, into a single
 maximal geometry − this holds for geometries of all dimensionalities. Similarly, the
 results of the operations of product and difference are maximal if the operands are
 maximal. When considering geometries augmented with attributes, we associate with
 each spatial element a second element that is a value taken from the attribute sort.
 The result is a pair composed of a geometry and an attribute. Such pairs may be

 viewed as elements of a new, augmented, algebra.
 For example, consider labels as attributes. Then, we associate with each
 spatial element a label, or, a set of labels if we allow a single spatial element to have
 more than one label. We can consider algebraic operations on labeled geometries
 similar to these operations on simple geometries. Similar to the sum of two points,
 the sum of two labeled points equals the set of both labeled points if the points are
 not coincident. If these are coincident, the sum equals the single point with the sum,
 or set union, of both sets of labels (figure 3). The operations of product and
 difference apply in a similar way to labeled points, using the set operations of

 Figure 3: Exemplar applications of the operation of sum on augmented geometries.

 + = + =

 + = + =
 {a} {b} {a, b} {a} {b} {a} {b}

 + = + =

 10

 intersection and difference on sets of labels. Then, a labeled point is a part of another
 labeled point, if the points are coincident and the labels to the first point form a
 subset of the labels to the second point. This definition is intuitive. Similar
 definitions hold for augmented geometries of higher dimensionalities, except that
 when combining overlapping geometries with different attributes, the result is
 depended upon three parts: the difference of the first geometry with the second, the
 difference of the second geometry with the first, and the common part of both
 geometries. The attribute value of the common part is derived in the same way as for
 points. The other two parts receive their attribute value from the original geometry

 each is a part of (in the case of sum) (figure 3).

 4.1.4 Extensibility
 There exists indeterminately many possible and user-preferable attribute sorts.
 However, many of these can be expressed, syntactically, in an identical manner. That
 is, while their meaning may be different, their representational form may be identical,
 and the operations of sum, product and difference may be defined identically on this
 form. As an example of the latter, the operation of sum is often defined as the least
 upper bound of the set of operand values. Thus, we can envision a number of basic
 data types, e.g., numeric values and sets of labels, with corresponding arithmetic
 operations defined over each data type. These data types can serve as frameworks for
 different attribute sorts. If appropriate, different versions of the same data type can
 be envisioned with the arithmetic operations defined differently, in order to cope with
 a larger variety of different sorts. Then, when the user conceives a new attribute sort,
 the values of which fit into one of these data types, and the corresponding arithmetic
 operations operate as expected and preferred, this sort may be defined as an instance
 of the corresponding data type. We may also give users the opportunity to define
 their own data representation and/or arithmetic operations on a data representation,
 thereby creating a new data type that, subsequently, can be used as the framework for

 new attribute sorts.

 4.2 Applicability and Design Interactions

 We argue that the algebraic model for geometries augmented with attributes may be
 sufficient to support the functionality of most CAD systems. We consider the
 algebraic operations of sum, product and difference on augmented geometries
 together with the similarity transformations on geometries, to express this
 functionality. We also consider the distinguishing of sorts and compositions of sorts
 as algebras, thereby specifying a parallel but uniform application of the operations on
 elements of different algebras, for this purpose. Below, we explore this application to

 common computational design interactions and CAD functionalities.

 4.2.1 Creation and Selection
 Consider the most common operations of creation and deletion, selection and
 deselection of objects: A user may create a mental model consisting of two worlds,

 11

 one is the design, the other the selection. Selecting an object means moving it from
 the design world to the selection world, deselecting an object does the opposite. In
 both cases, an object is first removed from one world and subsequently inserted into
 the other. If we consider two algebras, one for the design and another for the
 selection, the operations can be translated into a difference in one algebra followed
 by a sum in the other. The operations of creation and deletion work in the same way,
 except for the fact that there is only one algebra involved, the other world is the

 empty space.
 This similarity between the operations of creation and deletion, on one hand,
 selection and deselection, on the other hand, is another strong advantage of the
 algebraic model. Fundamental to the algebraic model is that, under the part relation,
 every element of a sort specifies an indefinite set of elements that are each part of the
 original element. Applied to geometries, it means that any part of a spatial object is
 an object and can be manipulated as such; thus, users can deal with objects in
 indeterminate ways. This is quite distinct from the selection process in conventional
 CAD approaches where the only objects that are selectable correspond to those
 prescribed minimal entities that have been predefined in the data-structures. Under
 the algebraic model, in contrast, the part relation for geometries leads naturally to the
 concept of emergent geometries : spatial objects that are not a priori defined, but
 emerge under the part relation. Emergent geometries play an important role in design
 search and exploration (Mitchell 1993; Stiny 1993). Recent research suggests that
 phenomena of emergence can be used to explain, on the basis of continuity and
 articulate consistency, why descriptions of design are post-rationalized in that
 descriptions of design explain the precedents that justify the designs (Stiny 1994;
 Krishnamurti and Stouffs forthcoming). This fits and leads into issues of cognitive
 psychology, though not explored in this paper, are essential to an understanding of

 human (user) behavior in connection with design and CAD environments.
 Since, in CAD systems, the objects of manipulation are a priori defined in the
 data-structures, the selection of an object can be achieved by a straightforward search
 in the database, following a lead by the user, e.g., the position of the cursor at the
 moment of the activation of the search. The algebraic model does not impede such
 searches. However, since we consider an object as a definite description of
 indefinitely many parts, the action of selecting a part may include some more
 powerful means of describing what is to be selected. Since any part can be selected,
 in the extreme this may require the user to create the selection as an object that is a
 part of the design. Therefore, the operations of creation and selection may invoke the
 same action sequence in terms of describing the resulting object, whether it is a
 newly created object or a selected existing part. Thus, these operations may be
 presented to the user in a similar way as to emphasize the common dialogue in

 achieving these results, even if the results themselves are conceptually quite different.

 4.2.2 Layering and Grouping
 We consider another common aspect of CAD systems: layering of the data. Layering
 allows the user to introduce a classification of the data in terms of user-defined

 12

 concepts. Such a classification enables the user to hide or exclude data temporarily
 from the design and facilitates the searching of entities. The layering can be viewed
 as a differentiation between algebras: geometries only combine within the same
 algebra, algebras can be included or excluded in the visualization or editing, etc. Or
 these can be viewed as attributes such as labels. The result is slightly different.
 When considering layers as attribute values, it may seem intuitive to allow only for a
 single label (or layer) for each element. After all, most CAD systems do not allow a
 same object to exist in multiple layers at the same time. However, there is no notion
 of a layer ordering that can be used to define the algebraic operations on layer labels.
 If we want to restrict a spatial element to a single layer, considering different algebras

 for the different layers makes most sense.
 Next, consider what would happen if we allow a set of layer labels to be
 assigned to a geometry. This may be interpreted as identical copies of the same
 geometry existing in different layers, and can be represented as such to the user. In
 this case, the result to the user is identical as in the algebras version. Or, the
 geometry can be visualized to the user as belonging to multiple layers at the same
 time. In order to manipulate a single-layer copy, that is, a copy of the geometry with
 only a single label (or a singleton set of labels) assigned to it, we need to differentiate
 it from the other copies of the same geometry existing in the other layers. Under the
 algebraic model any part of a geometry is a geometry and can and ought to be
 manipulated upon as such. A single-layer copy is a part of a multi-layer geometry if
 the single label to the first element is a member of the set of labels to the second
 element. Selecting it includes taking the difference of the first element from the
 second. As such, the other copies remain as a single element of the algebra, but the

 single-layer copy is no longer a part of this geometry.
 Other grouping operations can be achieved in a similar way. Note that
 selection is also a form of grouping. Algebras and attributes can also be used to
 relate or coordinate different elements into a single entity. For example, when
 different views of a same object exist in different layers, e.g., a two-dimensional and
 three-dimensional version for the sake of visualizing 2D and 3D views, these may be

 coordinated so that selecting all views of a single object may be facilitated.

 5 Conclusion

 The issues of extensibility and applicability for geometric representations relate to the
 efficacy of these representations. In comparison to other aspects of efficacy, these
 issues have received little attention so far. However, we believe that, now more than
 ever, a commitment to address these issues is needed in order to support the quest for
 adaptable computational design environments. At the same time, the adoption of a
 uniform approach for handling distinct data sorts can ease the work of developers,
 giving them the opportunity to provide support for new and extended computational
 design functionalities. The algebraic model presented here is particularly supportive
 to achieve such. As an additional example, the same model may provide for a

 13

 powerful query language that allows a designer to retrieve design information that
 may not be explicitly available or provided (Stouffs and Krishnamurti 1996a). The
 support of the algebraic model for adaptability in knowledge intensive design and

 engineering is the focus of Stouffs and Krishnamurti (1996b).
 The algebraic model and the maximal element representation compare
 favorably with other geometric representation schemes on most comparative issues:
 the model extends to mixed-dimensional shapes, the algebraic operations are closed
 within the algebras defined and the asymptotic running times of the algorithms for
 the description and manipulation of shapes are comparable to similar algorithms for
 many geometric representations (Stouffs 1994). For example, Stouffs et al. (1995;
 also Stouffs and Krishnamurti forthcoming) compare its scope with other boundary
 representations to illustrate the issues of translation between representations.
 However, on its own, this comparison only places the maximal element
 representation on a par with established representations and does not give the merit a
 new representation scheme requires to become a prominent contender. On the other
 hand, we believe its value to the issues of extensibility and applicability may achieve

 this.

 6 Acknowledgment

 We would like to thank David Kurmann for his comments on an earlier version of
 this paper.

 7 References

 Autodesk. (1992) Drawing interchange and file formats, Chapter in AutoCAD
 Release 12 Customization Manual . Autodesk, Sausalito, Calif., pp. 243-284.

 Gursoz, E.L., Y. Choi and F.B. Prinz (1991) Boolean set operations on non-manifold
 boundary representation objects, Computer Aided Design 23 , pp. 33-39.

 Hoffmann, C.M. (1989) The problems of accuracy and robustness in geometric
 computation, Computer 22 , pp. 31-39, 41.

 Knight, T.W. (1989) Color grammars: designing with lines and colors, Environment
 and Planning B: Planning and Design 16 , pp. 417-449.

 Krishnamurti, R. (1992) The maximal representation of a shape, Environment and
 Planning B: Planning and Design 19 , pp. 267-288.

 Krishnamurti, R. and R. Stouffs (forthcoming) Spatial change: continuity,
 reversibility and emergent shapes, To appear in Environment and Planning B:

 Planning and Design .
 Mäntylä, M. (1988) An Introduction to Solid Modeling . Computer Science Press,

 Rockville, Md.

 14

 Mitchell, W.J. (1993) A computational view of design creativity, in Gero, J.S. and
 Maher, M.L. (eds.), Modeling Creativity and Knowledge-Based Creative

 Design . Lawrence Erlbaum, Hillsdale, N.J., pp. 25-42.
 Requicha, A.A.G. (1980) Representations for rigid solids: theory, methods and

 systems, Computing Surveys 12 , pp. 437-464.
 Rossignac, J.R. and A.A.G. Requicha (1991) Constructive non-regularized geometry,

 Computer Aided Design 23 , pp. 21-32.
 Schindewolf, M.W. (1995) (CADKEY Inc.) Personal conversation with the first

 author.
 Stiny, G. (1980) Introduction to shape and shape grammars, Environment and

 Planning B: Planning and Design 7 , pp. 343-351.
 Stiny, G. (1992) Weights, Environment and Planning B: Planning and Design 19 , pp.

 413-430.
 Stiny, G. (1993) Emergence and continuity in shape grammars, in Flemming, U. and
 Van Wyk, S. (eds.), CAAD Futures ‘93 . North-Holland, Amsterdam, pp. 37-

 54.
 Stiny, G. (1994) Shape rules: closure, continuity and emergence, Environment and

 Planning B: Planning and Design 21 , pp. s49-s78.
 Stouffs, R. (1994) The Algebra of Shapes, Ph.D. Dissertation, Department of

 Architecture, Carnegie Mellon University, Pittsburgh, Pa.
 Stouffs, R. and R. Krishnamurti (1994) An algebraic approach to shape computation
 (a position paper), in Workshop notes of Reasoning with Shapes in Design.
 Artificial Intelligence in Design ‘94 , Swiss Federal Institute of Technology

 (EPFL), Lausanne, Switzerland, pp. 50-55.
 Stouffs, R. and R. Krishnamurti (1996a) On a query language for weighted
 geometries, In Third Canadian Conference on Computing in Civil and

 Building Engineering , Montreal, 26-28 August 1996.
 Stouffs, R. and R. Krishnamurti (1996b) An architecture for adaptability for
 knowledge intensive design and engineering, Submitted to Knowledge

 Intensive CAD Second Workshop , Pittsburgh, Pa., 16-18 September 1996.
 Stouffs, R. and R. Krishnamurti (forthcoming) An algebraic approach to comparing
 representations, Manuscript, Architecture and CAAD, Swiss Federal Institute
 of Technology, Zurich and Dept. of Architecture, Carnegie Mellon

 University, Pittsburgh, Pa.
 Stouffs, R., R. Krishnamurti, C.M. Eastman and H. Assal (1995) Non-“standard”
 solid representations, Technical Report, Dept. of Architecture, Carnegie
 Mellon University, Pittsburgh, Pa. and School of Architecture and Urban

 Planning, University of California, Los Angeles.

