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We discuss technical issues related to implementing a general interpreter for shape 
grammars directed at describing building styles, including a graph-like data struc-
ture and the concept of computation-friendly grammars. 

Introduction 

We are investigating how to determine the interior layout of buildings 
given three pieces of information: its footprint; a reasonably complete set 
of exterior features; and a shape grammar that describes the building style 
and hence, the building [1].  We have developed an approach that relies on 
the fact that, when applied exhaustively, a shape grammar generates, as a 
tree, the entire layout space of a style. The approach begins with estimating 
a partial layout, by resolving constraints on the input features. From this 
estimation, further spatial and topological constraints are extracted. These 
constraints are then used to prune the layout tree. The layouts that remain 
correspond to the desired outcomes. 

Spaces (rooms) are central to buildings; whence, to shape grammars that 
describe building styles. Such grammars generally start with a rough lay-
out; details, such as openings and staircases, are added at a subsequent 
stage. There are two main ways of generating a layout: space subdivision, 
e.g., as in the rowhouse grammar (see sequel), and space aggregation, e.g., 
as in the Queen Anne grammar [2]. Combination of the two ways is possi-
ble. Consequently, here, shape rules tend to add a room, partition a room, 
additionally to refine a partial layout by inserting features such as doors, 
staircases, etc. 
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Thus, pruning a layout tree, effectively, is to find a tree node with layout 
equal to the partial layout estimation, and continue to apply the subsequent 
shape rules. Such a node is typically internal, although it could be, luckily, 
the root node. In each case, the approach essentially requires a parametric 
shape grammar interpreter that caters to a variety of building types; for 
layout determination, it would be impractical to implement individual in-
terpreters for each grammar. 

A general parametric shape grammar interpreter is an unresolved topic 
of research [3].  However, shape grammars that capture corpora of conven-
tional building types – that is, composed of rectangular spaces bounded 
within a rectangular form – belong to a special subset. Informally, here, 
shape rules are parametrically specified in such a way as to make imple-
mentation tractable. Such parametric grammars do not rely on emergent or 
ambiguous shapes. Markers tend to drive shape rule application. Moreover, 
parameterization is limited to just a few kinds of variables, for example, 
the height or width of a space, or the ratio of partitioning a space. 

The implementation of an interpreter is non-trivial. In this paper, we de-
scribe a graph-like data structure to support a general interpreter for a par-
ticular class of shape grammars. We consider counter-computational hin-
drances that commonly occur in shape grammars designed in the 
traditional manner, leading to the concept of computation-friendly shape 
grammars. This is illustrated by two grammars developed for nineteenth-
century rowhouses located in the Federal Hill district, Baltimore [4].  

Transformations of Shape Rules 

Shape rules apply under a transformation [5]. Unless stated otherwise, the 
allowable transformations are taken to be affine, that is, preserving paral-
lelism. However, the more commonly used transformations are similari-
ties, which preserve angles. These are Euclidean transformations with uni-
form scale The Euclidean transformations, namely, translation, rotation, 
reflection, and glide reflection, preserve distance. See Table 1. 

For shape rule application under arbitrary non-affine transformations, 
shapes have to be defined parametrically [5]. For example, in Figure 1, to 
apply shape rule (a) to shape (b), the rule has to be considered as a para-
metric schema. Depending on the allowable transformations, the applica-
tion of shape rule (a) to shape (c) can be considered to be either parametric 
or non-parametric. If the allowable transformations are similarities, the 
shape rule has to be parametric; if affine, then the shape rule can be ap-
plied under anamorphic (non-uniform) scale, in which case it can be con-
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sidered to be non-parametric. Such distinctions are important for computa-
tional implementation. As discussed later, a computation-friendly shape 
grammar must specify the allowable transformations for the shape rules. 

Table 1 Types of allowable transformations 

 Transla-
tion 

Rotation Reflec-
tion 

Glide re-
flection 

Uniform 
scale 

Anamor-
phic scale 

Shear/ 
Strain 

Euclidean Yes Yes Yes Yes No No No 
Similarity Yes Yes Yes Yes Yes No No 
Affine Yes Yes Yes Yes Yes Yes Yes 

Fig. 1. A shape rule example 

Data Structure for Layouts with Rectangular Spaces 

The interpreter needs a data structure to represent layouts with rectangular 
spaces; that is, a data structure that contains both topological information 
of the spaces as well as the concrete geometry (for now, 2D) data of the 
layout including walls, doors, windows, staircases, etc. It needs to support 
viewing the layout as whole, viewing the layout from a particular room 
with its neighborhood, or simply focusing on a particular room itself. 
Moreover, the data structure needs to support Euclidean as well as both 
uniform and anamorphic scale transformations. 

A graph-like data structure 

A graph-like data structure has been designed to specify such rectangular 
spaces.  A rectangular space (usually a room) is a space defined by a set of 
walls in a way that the space is considered to be rectangular by the human 
vision system. As shown in Figure 2, among other variations, such a space 
can be defined by four walls jointed to each other, four disjointed walls, 
three walls, or framed by four corners. 
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Fig. 2. Examples of rectangular spaces and graph-like data structures 

There is a boundary node for each corner of the rectangular space, as 
well as a node for each endpoint of a wall. These nodes are connected by 
either a wall edge (solid line) or an empty edge (dotted line). A central 
node represents the room corresponding to the space, and connects to the 
four corners by diagonal edges (dashed lines).  It is needed for manipulat-
ing boundary nodes of room units, such as dividing a wall through node in-
sertions, creating an opening in a wall by changing the opening’s edge type 
to empty, and so on.  More information about a room is recorded in the 
room node, e.g., a staircase within the space. Windows and doors are as-
signed as attributes of wall edges. Further, unlike traditional graph data 
structures, the angle at each corner is set to be a right angle. A node has at 
most eight neighbors. A set of such graph units can be combined to repre-
sent complex layouts comprising rectangular spaces. 

Transformations with the graph-like structure 

Under the assumption that the target layout comprises only rectangular 
spaces, the allowable transformations are Euclidean with uniform and 
anamorphic scaling. As shape rule application is marker-driven, translation 
is automatically handled. The graph-like data structure is capable of easily 
handling uniform and anamorphic scaling, by firstly matching room 
names, then markers on corner nodes, and lastly, by comparing possible 
room ratio requirements. 

As a result, only rotations and reflections remain to be considered. As 
the spaces are rectangular, rotations are limited to multiples of 90° and re-
flections are about either the horizontal or vertical. Moreover, a vertical re-
flection can be viewed as a combination of a horizontal reflection and a 
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a combination of horizontal reflections and rotations. Consequently, the 
following transformations are all we actually need to consider: 
• R0: default; no rotation, with possible translation and/or scale. 
• R90, R180, R270: a rotation through 90°, 180°, and 270°, respectively, 

with possible translation and/or scale. 
• RR0, RR90, RR180, RR270: (first a rotation of 0°, 90°, 180°, or 270°, 

followed by a horizontal reflection) horizontal reflection, vertical reflec-
tion, and their combinations. 

Fig. 3. Transformation of the graph-like data structure 

As shown in Figure 3, transformations can be implemented on the data 
structure by index manipulation. Each of the eight possible neighbors of a 
node is assigned an index from 0 to 7; indices are then transformed simply 
by modulo arithmetic. For example, index+2 (modulo 8), rotates counter-
clockwise neighbor vertices through 90°. Other rotations and reflections 
are likewise achieved. By viewing the original neighbor relationship for 
each node with the transformed indices, we obtain the same transformation 
of the whole graph. Moreover, we need manipulate only the interior layout 
instead of the left side of the shape rule. This gives the same result, and is 
much simpler to achieve. Thus, we only need to consider how to apply 
shape rules with the default transformation, which is automatically appli-
cable to the configuration under different possible transformations. 

Common Functions for the Graph-like Data Structure 

With the graph-like data structure, a layout is represented by an eight-way 
doubly linked list formed by nodes and edges. Shape rule application ma-
nipulates this structure, and a set of common functions shared by the shape 
rules can be identified. The functions are implemented in an object-
oriented fashion. 

rotation. Hence, any combination of reflections and rotations is equivalent to 
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Design of classes 

LNodeCorner and LNodeRoom classes represent a corner node and a room 
node, respectively. Other nodes are represented by LNode class.  All edges 
are represented by Edge class with an attribute representing different edge 
types.  Theoretically, knowing the handle to a node or edge is sufficient in 
order to traverse the entire layout. For easy manipulation, an InteriorLay-
out class is defined to represent an interior layout configuration. There are 
several different ways to view an InteriorLayout object: i) as a layout with 
certain status marker, ii) as a list of rooms (room nodes), and iii) as a list of 
nodes and edges. Different views are useful under different contexts. For 
example, it is convenient to use view iii) to display the underlying layout: 
drawing all edges as well as the associated components first, and then 
drawing all nodes as well as associate components. To accommodate these 
different views, the InteriorLayout maintains the following fields: 
• A status marker 
• Name: for display and debugging purpose 
• A hashmap of a room name to a list of room nodes: for fast retrieval of 

one or more room nodes with a given name 
• A list of room nodes for the entire layout 
• A list of all nodes for the entire layout 
• A list of all edges for the entire layout 
• A hashmap of attributes to values for other status values particular for a 

special shape grammar 

Examples of common functions 

Examples of common manipulations include finding a room with a 
given name, finding the north neighbor(s) of a given room, finding the 
shared wall of two given rooms, etc. The sequel describes the algorithm 
and pseudo code for these examples. 

Finding room(s) with a given name 

In the data structure, a room node represents a room. An InteriorLayout 
object maintains a hashmap of room names to lists of room nodes. Thus, 
finding room(s) with a given name is simply to query the hashmap with the 
room name as input. 

 

findRoomNodes(Name) 
Query the name-to-rooms hashmap with parameter Name. 
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Finding the north neighbor(s) of a given room 

Finding the north neighbor(s) of a given room is a special case of finding 
neighbor(s) of a given room. It turns out all that finding neighbor functions 
in the other three directions can be implemented as finding the north 
neighbor(s) under a certain transformation. For example, the east neigh-
bor(s) of a given room is the same as the north neighbor(s) of the given 
room under a R90 transformation. 

Fig. 4. Different cases of north neighbor(s) of a room 

A room may have zero, one, or more north neighbors (Figure 4), which 
can be represented by a list of room nodes. Intuitively, to find the north 
neighbor(s) of A, we could start by finding A’s north-east corner node, 
nodeNE, and north-west corner node, nodeNW.  Then, we traverse through 
each corner node from nodeNE (inclusive) to nodeNW (exclusive) along 
the westerly direction to find its north-west neighbors. All north-west 
neighbors found are the desired room nodes. For example, in Figure 4c, the 
north neighbors found are B, and C. However, as shown in Figure 4d, this 
intuitive algorithm will miss the rightmost neighbor room when the nod-
eNE is on the south edge of that neighbor room, and is not the end node. 
Therefore, we need to modify the intuitive algorithm to have the correct 
start node and end node to loop through. 

It can be proven that the nodeNW is always the correct end node as a 
north neighbor B has to overlap with room A, which means room B must 
has a south-east corner node, nodeSE, at the right side of nodeNW (Figure 
5a), or is nodeNW (Figure 4c).  Otherwise, B is not a north neighbor of A. 

The starting node can be either nodeNE, or a node to the right of nod-
eNE (Figure 5b). If nodeNE is not the start node, then it has neither north-
west nor south-west neighbors, since having either neighbor means that 
nodeNE is the correct start point (Figure 5c), which is a contradiction. 
However, the reverse is not true; as shown in Figure 5d, nodeNE has nei-
ther a north-west nor south-west neighbor, but nodeNE is still the correct 
start node.  That is, the only condition for a node, nodeSE, to the right of 
nodeNE, to be the correct start node, it must have a north-west neighbor.  
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Therefore, under the condition that nodeNE has no north-west and south-
west neighbor, the algorithm searches for the first node, which is to the 
right of the nodeNE with a north-west neighbor. If such a node is found, it 
is the real start node. If a null neighbor is found, nodeNE is still the correct 
start node. The pseudo code is given below. 

Fig. 5. The start and end node for finding neighbor room(s) 

 

findNorthNeighbors(A, T) 
(all operations related to directions are under transformation T) 
endNode ← north-west neighbor of A  
nodeNE ← north-east neighbor of A  
startNode ← nodeNE 
if nodeNE has neither north-west nor north-east neighbor 

search for a right neighbor, node, of nodeNE, with a north-west neigh-
bor 

if found, startNode ← node 
go through each node in between startNode (inclusive) and end-

Node (exclusive), and get all north-west neighbors, neighbors 
return neighbors 

findEastNeighbors(A)  // Other neighbors are likewise defined 
return findNorthNeighbors(A, R90) 
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Finding the shared wall of two given rooms 

In the data structure, the shared wall of two given rooms is represented as a 
list of nodes connected by edges; the simplest form of a shared wall is 
given by two nodes connected by an edge. For two given input room 
nodes, A and B, in general, A and B may not be neighboring rooms at all. 
If, however, A and B are real neighbors, B can be in any one of four direc-
tions from A. Therefore, it is necessary for the algorithm to test all four 
sides of A; for each particular side, it is simply to test whether B is in the 
north neighbors under a given transformation T. If B is determined as a 
neighbor of A at a given side, the exact start node, wStart, and end node, 
wEnd, need to be further determined. The edge from the north-east node, 
nodeNE, to the north-west node, nodeNW, of room A under transformation 
T is guaranteed to be the wall of room A, but not necessarily the wall of 
room B (Figure 6a). As a result, wStart may be actually a node to the right 
of nodeNE. This node is found by traversing from nodeNE to nodeNW, 
testing whether B is its north-west neighbor or not. Similarly, wEnd may 
be actually a node to the left of nodeNW. This node is found by traversing 
from nodeNW to nodeNE and testing whether B is its north-east neighbor 
or not. The pseudo code is given below. 

 

findWallShared(A, B) 
transformations ← {R0, R90, R180, R270} 
for each transformation in transformations 

results ← findNorthWallShared(A, B, transformation) 
if results is not null 

return {results, transformation} 
return null 

findNorthWallShared(A, B, transformation) 
if B not in neighbors ← findNorthNeighbors(A, transformation) 

return null 
nodeNE ← north-east neighbor of A 
nodeNW ← north-west neighbor of A 
wStart ← null 
wEnd ← null 
for each node, node, from nodeNE to nodeNW 

if north-west neighbor of node is A 
wStart ← node, and break 

if wStart is null, then wStart ← nodeNE (Figure 6b) 
for each node, node, from nodeNW to nodeNE 

if north-east neighbor of node is B 
wEnd ← node, and break 
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if wEnd is null 
wEnd ← nodeNW (Figure 6b) 

return {wStart, wEnd} 

Fig. 6. Finding wStart and wEnd 

Computation-Friendly Shape Grammar 

It is claimed that, in design, ambiguity serves a positive and deliberate 
function [6]. In principle, shape grammars can be devised to take advan-
tage of ambiguity in creating novel designs [5]. However, ambiguity, in 
general, is inherently counter-computable, and the level of ambiguity has 
to been controlled for any computational implementation to be tractable. 

Traditionally, a shape grammar is designed to simply and succinctly de-
scribe the underlying building style, with little consideration on how the 
grammar can be implemented. For example, as is often found in the litera-
ture, descriptions of the form “If the back or sides are wide enough, rule 2 
can be used…” are inherently counter-computable. As a result, in order to 
translate into programming code, shape rules have to be specified in a 
computation-friendly way: that is, shape rules need to be quantitatively 
specified; moreover, there is enough precision in the specification to disal-
low generation of ill-dimensioned configurations. For a general shape 
grammar interpreter, this requires the underlying shape rules to follow a 
certain computation-friendly framework. In the following, the concept of 
computation-friendly is further elaborated upon through comparing two 
shape grammars for the same rowhouse corpus. 
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A traditional rowhouse grammar 

The Baltimore rowhouse grammar, developed by Casey Hickerson, con-
sists of 52 shape rules that generate first floor configurations with features 
of stairs, fireplaces, windows, exterior doors and interior doors. Rules are 
organized into phases, progressing from the major configurations that con-
strain the design process to minor configurations that follow logically from 
other configurations, namely: I) Block generation: rules 1~4; II) Space 
generation: rules 5~7; III) Stair generation: rules 8~17; IV) Fireplace gen-
eration: rules 18~22; V) Space modification: rules 23~24; VI)  Front door 
and window generation: rules 25~29; VII) Middle and back door and win-
dow generation: rules 30~39; and VIII) Interior door generation: rules 
40~52. 

Rules are marked as required (req) or optional (opt).  Required rules 
must be applied if applicable while optional rules may be applied at the in-
terpreter’s discretion. The decision whether to apply an optional rule di-
rectly impacts the overall design.  In effect, the final design is determined 
by the set of optional rules that were applied. Whenever a rule is applied, it 
must be applied exhaustively; that is, the rule must be applied to every 
subshape that matches the rule’s left-hand-shape.  Finally, rules must be 
applied in sequence: after Rule x has been applied exhaustively, only Rules 
x+1 and greater may be applied. 

Like other shape grammars, labels are used in two ways: to control 
where shape rules may apply, and to ensure that mutually exclusive rules 
cannot be applied to the same design. Spaces and stairs are labeled with 
two or three characters that indicate the general location of the space or 
stair within the house. For instance, Rfb indicates a Room in the front 
block of the house that is oriented toward the back, a dining room. Wall 
labels are always of the form x(y) where x is a label for a space that the 
wall bounds (or P in the case of certain perimeter walls) and y is a one let-
ter code indicating the side of the space the wall defines.  For example, the 
front wall of the room labeled Rfb is labeled Rfb(f). Within some rules, 
variables are used to match more than one label: the character * matches 
any string of characters while the string {x|y} matches the strings x or y.  
Boolean global labels are used to ensure that mutually exclusive rules are 
not applied with default value false. Due to space limitation, only the rules 
from phases I, II, III (all but the last) and V are shown here (Figure 7).  A 
sample derivation is given in Figure 8. 
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Fig. 7. Rules from four phases of the traditionally defined rowhouse grammar 
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Phase I: Block Generation 

The four rules (1~4): i) generate the front block; ii) mirror the front block; 
iii) generate the back block; and iv) generate the middle block. 

Phase II: Space Generation 

The four rules (5~7) generate: i) a hallway in the front block; ii) two 
spaces within the front block; and iii) two spaces within the back block. 

Phase III: Stair Generation 

There are 10 rules (8~17): i) generate stair at the back wall of a single-
space front block; ii) generate stair between the two spaces of a double-
space front block; iii) modify the stair generated by Rule 9 if it runs the en-
tire house width; iv) generate partial width stair in the front hallway; 
v) generate full-width stair in the front hallway; vi) generate stair in the 
middle block; vii) generate stair at the front of a single-space back block; 
viii) generate partial-width stair between the two spaces of a double-space 
back block; ix) generate full-width stair between the two spaces of a dou-
ble-space back block; and x) generate accessory stair on the back wall of 
the back room of a back block. 

Phase V: Space Modification 

There are two rules, 23 and 24: i) modify the back room of a front block if 
the front hallway does not adjoin the middle or back block; and ii) generate 
a service stair behind a partial-width stair in the front hallway. 

 

 
Fig. 8. Derivation of 236 East Montgomery Street 
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A new version of the rowhouse grammar 

In many aspects, the above grammar is not computation-friendly. In par-
ticular, the conditions that apply to shape rules are not specified. In order 
to implement the rowhouse grammar, a new computation-friendly version 
of the grammar has to be developed. To focus on how to make a tradition-
ally designed shape grammar computation-friendly, we consider only a 
subset of the corpus, namely, working-class rowhouses, excluding large, 
luxurious rowhouses, which are considered in the original grammar. Un-
like their luxurious counterparts, working-class rowhouses usually have a 
unique set of staircases on the first floor. Table 2 is a summary of all of the 
cases under consideration, with the corresponding desired generated lay-
outs obtained by the new version of the grammar. Note that the mechanism 
of generating fireplace is essentially identical to generating interior doors 
or staircases.  Therefore, we omit the shape rules for generating fireplaces. 
Moreover, for layout determination, as the feature inputs include windows 
and exterior doors, rules relating to generating windows and exterior doors 
are not considered here. Table 3 shows the new shape rules; again, for rea-
sons of space limitation, rules relating to interior doors have been omitted. 

Table 2 Baltimore rowhouses under consideration and desired generated layouts 

    
21 East Wheeling 

Street 
43 East Hamburg 

Street 
821 South Charles 

Street 
1029 South Hanover 

Street 

    
401 Grindall Street  1028 Patapsco 

Street 
14 West Cross 

Street 
3 East Montgomery 

Street 
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Table 3 New computation-friendly rowhouse shape rules 

0 

 

On pre-processing the building feature input, 
the initial shape is a list of rectangular blocks, 
which is a decomposition of the footprint, as 
well as 2D bounds for windows and doors, 
which have been assigned to the rectangular 
blocks. Lines are either X- or Y-axis aligned. 
The line at the bottom corresponds to the 
front of the building. The column on the left 
shows two typical examples 

1 

 

Precondition: 2 rectangular blocks 
Transformation: N/A 
This rule assigns names to the front and back 
blocks. 

2 

 

Precondition: 2 rectangular blocks 
Transformation: N/A 
This rule assigns names to the front and back 
blocks. 

  
817 and 819 South 

Charles Street 
208 East Montgomery 

Street 
236 East Montgomery 

Street 
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3 

 

Transformation: N/A 
Blocks of row houses are either left- or right- 
aligned with a straight line.  
This information is captured by the attribute, 
isRightSideStraight.   
This rule sets the Boolean attribute,  
isRightSideStraight. 

4 

 

Transformation: N/A 
This rule sets the Boolean attribute,  
isFrontDoorRight. 

5 

 

Precondition: 2 rectangular blocks with the 
height (h) of the front block ≥ 29'-4''. 
Transformation: N/A 
This rule divides the front block into two pub-
lic rooms and a staircase room. 

6 

 

Precondition: 2 rectangular blocks with the 
height (h) of the front block between 17'-4'' 
and 29'-4''. 
Transformation: N/A 
This rule divides the front block into two 
equal rooms. 

7 

 

Precondition: 3 rectangular blocks, and the 
height of the back block (h1) is greater than 
the front block (h2). 
Transformation: N/A 
This rule divides the back block into two 
rooms. 

8 

 

Precondition: 3 rectangular blocks, and the 
height of the back block (h1) is smaller than 
the front block (h2). 
Transformation: N/A 
This rule divides the front block into two 
rooms. 
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9 

 

Precondition: ‘Rfs’ exists, and is three-bay  
(2 windows and 1 door). 
Transformation: N/A 
This rule adds to the front block a hall way 
centered the front door. 

10 

 

Precondition: ‘Rff’ exists, and is three-bay  
(2 windows and 1 door). 
Transformation: N/A 
This rule adds to the front block a hall way 
centered about the front door. 

11 

 

Explicit condition: No staircase. ‘Rfs’ exists. 
Implicit condition: No ‘SfS,’ ‘Rfb’ and ‘Hm.’   
Width of front block is ≤ 18'.  
Kitchen area is ≤ 130 feet2.  
Transformation: N/A 
This rule adds a front staircase with dimen-
sion 4' × 6'. 

12 

 

Precondition: No staircase. ‘SfS’ exists. 
Transformation: N/A 
Add a staircase to room ‘SfS.’  

13 

 

Explicit condition: No staircase. ‘Rfb’ and 
‘Rff’ exist and are neighbors. 
Implicit condition: No ‘SfS.’  
Width of front block is ≤ 18'. 
Overall condition: stairFront is false. ‘Rfb’ 
exist. No ‘SfS.’ Width of front block is ≤ 18'.  
Transformation: N/A 
Add a staircase to room ‘Rfb.’ 

14 

 

Explicit condition: No staircase. ‘Hf’ exists.  
Implicit condition: No ‘SfS.’   
Width of front block is > 18'. 
Transformation: N/A 
Add a front staircase to the hallway at the 
side next to exterior. 

15 

 

Explicit condition: No staircase. stairFront is 
false. ‘Hm’ exists.  
Implicit condition: No ‘SfS.’  
Width of front block is ≤ 18'.  No ‘Rfb.’ 
Transformation: N/A 
Add a middle staircase to room ‘Hm.’ 
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16 

 

Explicit condition: No staircase. ‘Rbs’ exists. 
Implicit condition: No ‘SfS,’ ‘Rfb,’ and ‘Hm.’   
Width of front block is ≤ 18'.   
Kitchen area is > 130 feet2.  
Transformation: N/AAdd a back staircase to 
room ‘Rbs.’ 

 
The new shape grammar comprises five phases: block (mass) generation 

(rule 1~4), space generation (rule 5~10), stair generation (rule 11~16), 
space modification (rule 17~20), and interior door generation (rule 21~25); 
rules 17-25 are not shown due rto space limitations. 

A significant difference between the new and original shape grammars 
is that every shape rule of the new shape grammar quantitatively specifies 
the conditions that apply. For example, this condition can be the number of 
spaces in terms of blocks (rules 1 and 2), a value in a specific range (rules 
5 and 6), and a relationship of two or more values (rules 7 and 8). Some 
conditions are straightforward. Others require not only reasoning based on 
common design knowledge, but also certain threshold values, statistically 
determined. The following illustrates the complexity, using as exemplar, 
the rules for generating staircases. 

Firstly, rules (rule 11~16) are not necessarily exclusive to one another. 
For example, both rules 11 and 16 can apply to the layouts where no ex-
clusive condition has been specified as to when to apply each rule. As 
stated previously, we currently only consider working-class row houses, 
each with a unique staircase on its first floor. Therefore, for each layout, 
only one of the shape rules for generating staircases applies. 

Secondly, if there is a staircase room SfS, then rule 12 has to apply. As a 
result, an implicit condition for Rule 11, 13, 14, 15, and 16 is that the cur-
rent layout has no staircase room SfS. 

Rule 14 adds a staircase to a hallway. Obviously, the hallway needs to 
be wide enough to hold the staircase, hence the width of the front block. 
From the samples (Figure 9), 18 feet is a good threshold value to distin-
guish whether or not rule 14 can apply. To ensure the exclusive application 
of rule 14, an implicit condition for rules 11, 13, 15 and 16 is that the 
width of the front block is smaller or equal to 18 feet. 

If in the left side of rules 11, 13, 15, and 16, there is an Rfb room, then 
rule 13 should be applied to add a staircase there. So, an implicit condition 
for rule 11, 15 and 16 is that there is no Rfb room.  If in the left side of 
rules 11, 15, and 16, there is a middle block Hm, then rule 15 should be 
applied to add a staircase in the middle block. Thus, an implicit condition 
for rules 11 and 16 is that there is no Hm room. 
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Fig. 9. Quantifying the shape rules generating staircases 

It remains to distinguish between rules 11 and 16. The implicit condi-
tions added by rules 12, 13, 14, and 15 can be summarized as: if there are 
only a Rfs room (the front block) and a Rbs room (the back block) in the 
current layout, then rules 11 and 16 can be applied. Rule 16 adds a stair-
case to an Rbs room, which is actually a kitchen. Therefore, the kitchen 
space has to be large enough to hold a staircase as well as function as a 
kitchen. From the samples, the average area of kitchens without a staircase 
is 127.7 feet2, and the minimum is 92.8 feet2. The area of a staircase is 
about 26~30 feet2. The kitchen area of the case (by using rule 11) is 94.4 
feet2, and the kitchen area of the case (by using rule 16) is 165.5 feet2. The 
average of these two cases is about 130 feet2, which is close to the average 
of kitchens without staircases. So, 130 feet2 is used as the threshold value. 
As a result, an added condition for rule 16 is that the area of kitchen is 
greater than 130 feet2. An additional condition for rule 11 is that the area of 
the kitchen is smaller or equal to 130 feet2.  Table 4 gives a summary of 
implicit conditions to make rules for generating staircases exclusive. 

Table 4 Implicit conditions to make staircase rules exclusive 

 Rule 12 Rule 14 Rule 13 Rule 15 Rule 11 Rule 16 
Rule 12 With ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’ 
Rule 14  Front block 

width > 18' 
Front block 
width ≤ 18' 

Front block 
width ≤ 18' 

Front block  
width ≤ 18' 

Front block  
width ≤ 18' 

Rule 13   With ‘Rfb’ No ‘Rfb’ No ‘Rfb’ No ‘Rfb’ 
Rule 15    With ‘Hm’ No ‘Hm’ No ‘Hm’ 
Rule 16     Kitchen 

≤ 130 ft2 
Kitchen 
> 130 ft2 
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Discussion  

The graph-like data structure has the capacity to support the desired inter-
preter, while, at the same time, necessarily requiring the shape rules to be 
computation-friendly. To ensure that shape rules from a variety of sources 
are interpretable, a framework for specifying computation-friendly shape 
grammars needs to be further developed.  

Rule application is a process of traversing an underlying layout tree. 
This requires an ‘undo’ mechanism that enables backtracking to a previous 
partial configuration. Brute force cloning of configurations prior to apply-
ing a rule is both computationally expensive and complex, particularly as 
elements of a layout may need to reference one another.  One possibility is 
to use dancing links [7] to realize this undo functionality; by incorporating 
features such as windows, doors, and even staircases as nodes linked to the 
graph units, the entire graph structure can be represented using an eight-
way doubly linked list.  Another possibility is to design an ‘undo’ counter-
part for each shape rule, which gets applied during backtracking. 

The research reported in this paper was funded in part by the US Army 
Corps of Engineers/CERL, whose support is gratefully acknowledged.  
The work of Casey Hickerson in developing the first Baltimore rowhouse 
grammar is also acknowledged. 
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