
A Technique for Implementing a Computation-
Friendly Shape Grammar Interpreter

Kui Yue and Ramesh Krishnamurti
Carnegie Mellon University, USA

We discuss technical issues related to implementing a general interpreter for shape
grammars directed at describing building styles, including a graph-like data struc-
ture and the concept of computation-friendly grammars.

Introduction

We are investigating how to determine the interior layout of buildings
given three pieces of information: its footprint; a reasonably complete set
of exterior features; and a shape grammar that describes the building style
and hence, the building [1]. We have developed an approach that relies on
the fact that, when applied exhaustively, a shape grammar generates, as a
tree, the entire layout space of a style. The approach begins with estimating
a partial layout, by resolving constraints on the input features. From this
estimation, further spatial and topological constraints are extracted. These
constraints are then used to prune the layout tree. The layouts that remain
correspond to the desired outcomes.

Spaces (rooms) are central to buildings; whence, to shape grammars that
describe building styles. Such grammars generally start with a rough lay-
out; details, such as openings and staircases, are added at a subsequent
stage. There are two main ways of generating a layout: space subdivision,
e.g., as in the rowhouse grammar (see sequel), and space aggregation, e.g.,
as in the Queen Anne grammar [2]. Combination of the two ways is possi-
ble. Consequently, here, shape rules tend to add a room, partition a room,
additionally to refine a partial layout by inserting features such as doors,
staircases, etc.

© Springer Science + Business Media B.V. 2008
J.S. Gero and A.K. Goel (eds.), Design Computing and Cognition ’08, 61

 K. Yue, R. Krishnamurti 62

Thus, pruning a layout tree, effectively, is to find a tree node with layout
equal to the partial layout estimation, and continue to apply the subsequent
shape rules. Such a node is typically internal, although it could be, luckily,
the root node. In each case, the approach essentially requires a parametric
shape grammar interpreter that caters to a variety of building types; for
layout determination, it would be impractical to implement individual in-
terpreters for each grammar.

A general parametric shape grammar interpreter is an unresolved topic
of research [3]. However, shape grammars that capture corpora of conven-
tional building types – that is, composed of rectangular spaces bounded
within a rectangular form – belong to a special subset. Informally, here,
shape rules are parametrically specified in such a way as to make imple-
mentation tractable. Such parametric grammars do not rely on emergent or
ambiguous shapes. Markers tend to drive shape rule application. Moreover,
parameterization is limited to just a few kinds of variables, for example,
the height or width of a space, or the ratio of partitioning a space.

The implementation of an interpreter is non-trivial. In this paper, we de-
scribe a graph-like data structure to support a general interpreter for a par-
ticular class of shape grammars. We consider counter-computational hin-
drances that commonly occur in shape grammars designed in the
traditional manner, leading to the concept of computation-friendly shape
grammars. This is illustrated by two grammars developed for nineteenth-
century rowhouses located in the Federal Hill district, Baltimore [4].

Transformations of Shape Rules

Shape rules apply under a transformation [5]. Unless stated otherwise, the
allowable transformations are taken to be affine, that is, preserving paral-
lelism. However, the more commonly used transformations are similari-
ties, which preserve angles. These are Euclidean transformations with uni-
form scale The Euclidean transformations, namely, translation, rotation,
reflection, and glide reflection, preserve distance. See Table 1.

For shape rule application under arbitrary non-affine transformations,
shapes have to be defined parametrically [5]. For example, in Figure 1, to
apply shape rule (a) to shape (b), the rule has to be considered as a para-
metric schema. Depending on the allowable transformations, the applica-
tion of shape rule (a) to shape (c) can be considered to be either parametric
or non-parametric. If the allowable transformations are similarities, the
shape rule has to be parametric; if affine, then the shape rule can be ap-
plied under anamorphic (non-uniform) scale, in which case it can be con-

 Computation-Friendly Shape Grammar Interpreter 63

sidered to be non-parametric. Such distinctions are important for computa-
tional implementation. As discussed later, a computation-friendly shape
grammar must specify the allowable transformations for the shape rules.

Table 1 Types of allowable transformations

 Transla-
tion

Rotation Reflec-
tion

Glide re-
flection

Uniform
scale

Anamor-
phic scale

Shear/
Strain

Euclidean Yes Yes Yes Yes No No No
Similarity Yes Yes Yes Yes Yes No No
Affine Yes Yes Yes Yes Yes Yes Yes

Fig. 1. A shape rule example

Data Structure for Layouts with Rectangular Spaces

The interpreter needs a data structure to represent layouts with rectangular
spaces; that is, a data structure that contains both topological information
of the spaces as well as the concrete geometry (for now, 2D) data of the
layout including walls, doors, windows, staircases, etc. It needs to support
viewing the layout as whole, viewing the layout from a particular room
with its neighborhood, or simply focusing on a particular room itself.
Moreover, the data structure needs to support Euclidean as well as both
uniform and anamorphic scale transformations.

A graph-like data structure

A graph-like data structure has been designed to specify such rectangular
spaces. A rectangular space (usually a room) is a space defined by a set of
walls in a way that the space is considered to be rectangular by the human
vision system. As shown in Figure 2, among other variations, such a space
can be defined by four walls jointed to each other, four disjointed walls,
three walls, or framed by four corners.

 K. Yue, R. Krishnamurti 64

Fig. 2. Examples of rectangular spaces and graph-like data structures

There is a boundary node for each corner of the rectangular space, as
well as a node for each endpoint of a wall. These nodes are connected by
either a wall edge (solid line) or an empty edge (dotted line). A central
node represents the room corresponding to the space, and connects to the
four corners by diagonal edges (dashed lines). It is needed for manipulat-
ing boundary nodes of room units, such as dividing a wall through node in-
sertions, creating an opening in a wall by changing the opening’s edge type
to empty, and so on. More information about a room is recorded in the
room node, e.g., a staircase within the space. Windows and doors are as-
signed as attributes of wall edges. Further, unlike traditional graph data
structures, the angle at each corner is set to be a right angle. A node has at
most eight neighbors. A set of such graph units can be combined to repre-
sent complex layouts comprising rectangular spaces.

Transformations with the graph-like structure

Under the assumption that the target layout comprises only rectangular
spaces, the allowable transformations are Euclidean with uniform and
anamorphic scaling. As shape rule application is marker-driven, translation
is automatically handled. The graph-like data structure is capable of easily
handling uniform and anamorphic scaling, by firstly matching room
names, then markers on corner nodes, and lastly, by comparing possible
room ratio requirements.

As a result, only rotations and reflections remain to be considered. As
the spaces are rectangular, rotations are limited to multiples of 90° and re-
flections are about either the horizontal or vertical. Moreover, a vertical re-
flection can be viewed as a combination of a horizontal reflection and a

 Computation-Friendly Shape Grammar Interpreter 65

a combination of horizontal reflections and rotations. Consequently, the
following transformations are all we actually need to consider:
• R0: default; no rotation, with possible translation and/or scale.
• R90, R180, R270: a rotation through 90°, 180°, and 270°, respectively,

with possible translation and/or scale.
• RR0, RR90, RR180, RR270: (first a rotation of 0°, 90°, 180°, or 270°,

followed by a horizontal reflection) horizontal reflection, vertical reflec-
tion, and their combinations.

Fig. 3. Transformation of the graph-like data structure

As shown in Figure 3, transformations can be implemented on the data
structure by index manipulation. Each of the eight possible neighbors of a
node is assigned an index from 0 to 7; indices are then transformed simply
by modulo arithmetic. For example, index+2 (modulo 8), rotates counter-
clockwise neighbor vertices through 90°. Other rotations and reflections
are likewise achieved. By viewing the original neighbor relationship for
each node with the transformed indices, we obtain the same transformation
of the whole graph. Moreover, we need manipulate only the interior layout
instead of the left side of the shape rule. This gives the same result, and is
much simpler to achieve. Thus, we only need to consider how to apply
shape rules with the default transformation, which is automatically appli-
cable to the configuration under different possible transformations.

Common Functions for the Graph-like Data Structure

With the graph-like data structure, a layout is represented by an eight-way
doubly linked list formed by nodes and edges. Shape rule application ma-
nipulates this structure, and a set of common functions shared by the shape
rules can be identified. The functions are implemented in an object-
oriented fashion.

rotation. Hence, any combination of reflections and rotations is equivalent to

 K. Yue, R. Krishnamurti 66

Design of classes

LNodeCorner and LNodeRoom classes represent a corner node and a room
node, respectively. Other nodes are represented by LNode class. All edges
are represented by Edge class with an attribute representing different edge
types. Theoretically, knowing the handle to a node or edge is sufficient in
order to traverse the entire layout. For easy manipulation, an InteriorLay-
out class is defined to represent an interior layout configuration. There are
several different ways to view an InteriorLayout object: i) as a layout with
certain status marker, ii) as a list of rooms (room nodes), and iii) as a list of
nodes and edges. Different views are useful under different contexts. For
example, it is convenient to use view iii) to display the underlying layout:
drawing all edges as well as the associated components first, and then
drawing all nodes as well as associate components. To accommodate these
different views, the InteriorLayout maintains the following fields:
• A status marker
• Name: for display and debugging purpose
• A hashmap of a room name to a list of room nodes: for fast retrieval of

one or more room nodes with a given name
• A list of room nodes for the entire layout
• A list of all nodes for the entire layout
• A list of all edges for the entire layout
• A hashmap of attributes to values for other status values particular for a

special shape grammar

Examples of common functions

Examples of common manipulations include finding a room with a
given name, finding the north neighbor(s) of a given room, finding the
shared wall of two given rooms, etc. The sequel describes the algorithm
and pseudo code for these examples.

Finding room(s) with a given name

In the data structure, a room node represents a room. An InteriorLayout
object maintains a hashmap of room names to lists of room nodes. Thus,
finding room(s) with a given name is simply to query the hashmap with the
room name as input.

findRoomNodes(Name)
Query the name-to-rooms hashmap with parameter Name.

 Computation-Friendly Shape Grammar Interpreter 67

Finding the north neighbor(s) of a given room

Finding the north neighbor(s) of a given room is a special case of finding
neighbor(s) of a given room. It turns out all that finding neighbor functions
in the other three directions can be implemented as finding the north
neighbor(s) under a certain transformation. For example, the east neigh-
bor(s) of a given room is the same as the north neighbor(s) of the given
room under a R90 transformation.

Fig. 4. Different cases of north neighbor(s) of a room

A room may have zero, one, or more north neighbors (Figure 4), which
can be represented by a list of room nodes. Intuitively, to find the north
neighbor(s) of A, we could start by finding A’s north-east corner node,
nodeNE, and north-west corner node, nodeNW. Then, we traverse through
each corner node from nodeNE (inclusive) to nodeNW (exclusive) along
the westerly direction to find its north-west neighbors. All north-west
neighbors found are the desired room nodes. For example, in Figure 4c, the
north neighbors found are B, and C. However, as shown in Figure 4d, this
intuitive algorithm will miss the rightmost neighbor room when the nod-
eNE is on the south edge of that neighbor room, and is not the end node.
Therefore, we need to modify the intuitive algorithm to have the correct
start node and end node to loop through.

It can be proven that the nodeNW is always the correct end node as a
north neighbor B has to overlap with room A, which means room B must
has a south-east corner node, nodeSE, at the right side of nodeNW (Figure
5a), or is nodeNW (Figure 4c). Otherwise, B is not a north neighbor of A.

The starting node can be either nodeNE, or a node to the right of nod-
eNE (Figure 5b). If nodeNE is not the start node, then it has neither north-
west nor south-west neighbors, since having either neighbor means that
nodeNE is the correct start point (Figure 5c), which is a contradiction.
However, the reverse is not true; as shown in Figure 5d, nodeNE has nei-
ther a north-west nor south-west neighbor, but nodeNE is still the correct
start node. That is, the only condition for a node, nodeSE, to the right of
nodeNE, to be the correct start node, it must have a north-west neighbor.

 K. Yue, R. Krishnamurti 68

Therefore, under the condition that nodeNE has no north-west and south-
west neighbor, the algorithm searches for the first node, which is to the
right of the nodeNE with a north-west neighbor. If such a node is found, it
is the real start node. If a null neighbor is found, nodeNE is still the correct
start node. The pseudo code is given below.

Fig. 5. The start and end node for finding neighbor room(s)

findNorthNeighbors(A, T)
(all operations related to directions are under transformation T)
endNode ← north-west neighbor of A
nodeNE ← north-east neighbor of A
startNode ← nodeNE
if nodeNE has neither north-west nor north-east neighbor

search for a right neighbor, node, of nodeNE, with a north-west neigh-
bor

if found, startNode ← node
go through each node in between startNode (inclusive) and end-

Node (exclusive), and get all north-west neighbors, neighbors
return neighbors

findEastNeighbors(A) // Other neighbors are likewise defined
return findNorthNeighbors(A, R90)

 Computation-Friendly Shape Grammar Interpreter 69

Finding the shared wall of two given rooms

In the data structure, the shared wall of two given rooms is represented as a
list of nodes connected by edges; the simplest form of a shared wall is
given by two nodes connected by an edge. For two given input room
nodes, A and B, in general, A and B may not be neighboring rooms at all.
If, however, A and B are real neighbors, B can be in any one of four direc-
tions from A. Therefore, it is necessary for the algorithm to test all four
sides of A; for each particular side, it is simply to test whether B is in the
north neighbors under a given transformation T. If B is determined as a
neighbor of A at a given side, the exact start node, wStart, and end node,
wEnd, need to be further determined. The edge from the north-east node,
nodeNE, to the north-west node, nodeNW, of room A under transformation
T is guaranteed to be the wall of room A, but not necessarily the wall of
room B (Figure 6a). As a result, wStart may be actually a node to the right
of nodeNE. This node is found by traversing from nodeNE to nodeNW,
testing whether B is its north-west neighbor or not. Similarly, wEnd may
be actually a node to the left of nodeNW. This node is found by traversing
from nodeNW to nodeNE and testing whether B is its north-east neighbor
or not. The pseudo code is given below.

findWallShared(A, B)
transformations ← {R0, R90, R180, R270}
for each transformation in transformations

results ← findNorthWallShared(A, B, transformation)
if results is not null

return {results, transformation}
return null

findNorthWallShared(A, B, transformation)
if B not in neighbors ← findNorthNeighbors(A, transformation)

return null
nodeNE ← north-east neighbor of A
nodeNW ← north-west neighbor of A
wStart ← null
wEnd ← null
for each node, node, from nodeNE to nodeNW

if north-west neighbor of node is A
wStart ← node, and break

if wStart is null, then wStart ← nodeNE (Figure 6b)
for each node, node, from nodeNW to nodeNE

if north-east neighbor of node is B
wEnd ← node, and break

 K. Yue, R. Krishnamurti 70

if wEnd is null
wEnd ← nodeNW (Figure 6b)

return {wStart, wEnd}

Fig. 6. Finding wStart and wEnd

Computation-Friendly Shape Grammar

It is claimed that, in design, ambiguity serves a positive and deliberate
function [6]. In principle, shape grammars can be devised to take advan-
tage of ambiguity in creating novel designs [5]. However, ambiguity, in
general, is inherently counter-computable, and the level of ambiguity has
to been controlled for any computational implementation to be tractable.

Traditionally, a shape grammar is designed to simply and succinctly de-
scribe the underlying building style, with little consideration on how the
grammar can be implemented. For example, as is often found in the litera-
ture, descriptions of the form “If the back or sides are wide enough, rule 2
can be used…” are inherently counter-computable. As a result, in order to
translate into programming code, shape rules have to be specified in a
computation-friendly way: that is, shape rules need to be quantitatively
specified; moreover, there is enough precision in the specification to disal-
low generation of ill-dimensioned configurations. For a general shape
grammar interpreter, this requires the underlying shape rules to follow a
certain computation-friendly framework. In the following, the concept of
computation-friendly is further elaborated upon through comparing two
shape grammars for the same rowhouse corpus.

 Computation-Friendly Shape Grammar Interpreter 71

A traditional rowhouse grammar

The Baltimore rowhouse grammar, developed by Casey Hickerson, con-
sists of 52 shape rules that generate first floor configurations with features
of stairs, fireplaces, windows, exterior doors and interior doors. Rules are
organized into phases, progressing from the major configurations that con-
strain the design process to minor configurations that follow logically from
other configurations, namely: I) Block generation: rules 1~4; II) Space
generation: rules 5~7; III) Stair generation: rules 8~17; IV) Fireplace gen-
eration: rules 18~22; V) Space modification: rules 23~24; VI) Front door
and window generation: rules 25~29; VII) Middle and back door and win-
dow generation: rules 30~39; and VIII) Interior door generation: rules
40~52.

Rules are marked as required (req) or optional (opt). Required rules
must be applied if applicable while optional rules may be applied at the in-
terpreter’s discretion. The decision whether to apply an optional rule di-
rectly impacts the overall design. In effect, the final design is determined
by the set of optional rules that were applied. Whenever a rule is applied, it
must be applied exhaustively; that is, the rule must be applied to every
subshape that matches the rule’s left-hand-shape. Finally, rules must be
applied in sequence: after Rule x has been applied exhaustively, only Rules
x+1 and greater may be applied.

Like other shape grammars, labels are used in two ways: to control
where shape rules may apply, and to ensure that mutually exclusive rules
cannot be applied to the same design. Spaces and stairs are labeled with
two or three characters that indicate the general location of the space or
stair within the house. For instance, Rfb indicates a Room in the front
block of the house that is oriented toward the back, a dining room. Wall
labels are always of the form x(y) where x is a label for a space that the
wall bounds (or P in the case of certain perimeter walls) and y is a one let-
ter code indicating the side of the space the wall defines. For example, the
front wall of the room labeled Rfb is labeled Rfb(f). Within some rules,
variables are used to match more than one label: the character * matches
any string of characters while the string {x|y} matches the strings x or y.
Boolean global labels are used to ensure that mutually exclusive rules are
not applied with default value false. Due to space limitation, only the rules
from phases I, II, III (all but the last) and V are shown here (Figure 7). A
sample derivation is given in Figure 8.

 K. Yue, R. Krishnamurti 72

Fig. 7. Rules from four phases of the traditionally defined rowhouse grammar

 Computation-Friendly Shape Grammar Interpreter 73

Phase I: Block Generation

The four rules (1~4): i) generate the front block; ii) mirror the front block;
iii) generate the back block; and iv) generate the middle block.

Phase II: Space Generation

The four rules (5~7) generate: i) a hallway in the front block; ii) two
spaces within the front block; and iii) two spaces within the back block.

Phase III: Stair Generation

There are 10 rules (8~17): i) generate stair at the back wall of a single-
space front block; ii) generate stair between the two spaces of a double-
space front block; iii) modify the stair generated by Rule 9 if it runs the en-
tire house width; iv) generate partial width stair in the front hallway;
v) generate full-width stair in the front hallway; vi) generate stair in the
middle block; vii) generate stair at the front of a single-space back block;
viii) generate partial-width stair between the two spaces of a double-space
back block; ix) generate full-width stair between the two spaces of a dou-
ble-space back block; and x) generate accessory stair on the back wall of
the back room of a back block.

Phase V: Space Modification

There are two rules, 23 and 24: i) modify the back room of a front block if
the front hallway does not adjoin the middle or back block; and ii) generate
a service stair behind a partial-width stair in the front hallway.

Fig. 8. Derivation of 236 East Montgomery Street

 K. Yue, R. Krishnamurti 74

A new version of the rowhouse grammar

In many aspects, the above grammar is not computation-friendly. In par-
ticular, the conditions that apply to shape rules are not specified. In order
to implement the rowhouse grammar, a new computation-friendly version
of the grammar has to be developed. To focus on how to make a tradition-
ally designed shape grammar computation-friendly, we consider only a
subset of the corpus, namely, working-class rowhouses, excluding large,
luxurious rowhouses, which are considered in the original grammar. Un-
like their luxurious counterparts, working-class rowhouses usually have a
unique set of staircases on the first floor. Table 2 is a summary of all of the
cases under consideration, with the corresponding desired generated lay-
outs obtained by the new version of the grammar. Note that the mechanism
of generating fireplace is essentially identical to generating interior doors
or staircases. Therefore, we omit the shape rules for generating fireplaces.
Moreover, for layout determination, as the feature inputs include windows
and exterior doors, rules relating to generating windows and exterior doors
are not considered here. Table 3 shows the new shape rules; again, for rea-
sons of space limitation, rules relating to interior doors have been omitted.

Table 2 Baltimore rowhouses under consideration and desired generated layouts

21 East Wheeling

Street
43 East Hamburg

Street
821 South Charles

Street
1029 South Hanover

Street

401 Grindall Street 1028 Patapsco

Street
14 West Cross

Street
3 East Montgomery

Street

 Computation-Friendly Shape Grammar Interpreter 75

Table 3 New computation-friendly rowhouse shape rules

0

On pre-processing the building feature input,
the initial shape is a list of rectangular blocks,
which is a decomposition of the footprint, as
well as 2D bounds for windows and doors,
which have been assigned to the rectangular
blocks. Lines are either X- or Y-axis aligned.
The line at the bottom corresponds to the
front of the building. The column on the left
shows two typical examples

1

Precondition: 2 rectangular blocks
Transformation: N/A
This rule assigns names to the front and back
blocks.

2

Precondition: 2 rectangular blocks
Transformation: N/A
This rule assigns names to the front and back
blocks.

817 and 819 South

Charles Street
208 East Montgomery

Street
236 East Montgomery

Street

 K. Yue, R. Krishnamurti 76

3

Transformation: N/A
Blocks of row houses are either left- or right-
aligned with a straight line.
This information is captured by the attribute,
isRightSideStraight.
This rule sets the Boolean attribute,
isRightSideStraight.

4

Transformation: N/A
This rule sets the Boolean attribute,
isFrontDoorRight.

5

Precondition: 2 rectangular blocks with the
height (h) of the front block ≥ 29'-4''.
Transformation: N/A
This rule divides the front block into two pub-
lic rooms and a staircase room.

6

Precondition: 2 rectangular blocks with the
height (h) of the front block between 17'-4''
and 29'-4''.
Transformation: N/A
This rule divides the front block into two
equal rooms.

7

Precondition: 3 rectangular blocks, and the
height of the back block (h1) is greater than
the front block (h2).
Transformation: N/A
This rule divides the back block into two
rooms.

8

Precondition: 3 rectangular blocks, and the
height of the back block (h1) is smaller than
the front block (h2).
Transformation: N/A
This rule divides the front block into two
rooms.

 Computation-Friendly Shape Grammar Interpreter 77

9

Precondition: ‘Rfs’ exists, and is three-bay
(2 windows and 1 door).
Transformation: N/A
This rule adds to the front block a hall way
centered the front door.

10

Precondition: ‘Rff’ exists, and is three-bay
(2 windows and 1 door).
Transformation: N/A
This rule adds to the front block a hall way
centered about the front door.

11

Explicit condition: No staircase. ‘Rfs’ exists.
Implicit condition: No ‘SfS,’ ‘Rfb’ and ‘Hm.’
Width of front block is ≤ 18'.
Kitchen area is ≤ 130 feet2.
Transformation: N/A
This rule adds a front staircase with dimen-
sion 4' × 6'.

12

Precondition: No staircase. ‘SfS’ exists.
Transformation: N/A
Add a staircase to room ‘SfS.’

13

Explicit condition: No staircase. ‘Rfb’ and
‘Rff’ exist and are neighbors.
Implicit condition: No ‘SfS.’
Width of front block is ≤ 18'.
Overall condition: stairFront is false. ‘Rfb’
exist. No ‘SfS.’ Width of front block is ≤ 18'.
Transformation: N/A
Add a staircase to room ‘Rfb.’

14

Explicit condition: No staircase. ‘Hf’ exists.
Implicit condition: No ‘SfS.’
Width of front block is > 18'.
Transformation: N/A
Add a front staircase to the hallway at the
side next to exterior.

15

Explicit condition: No staircase. stairFront is
false. ‘Hm’ exists.
Implicit condition: No ‘SfS.’
Width of front block is ≤ 18'. No ‘Rfb.’
Transformation: N/A
Add a middle staircase to room ‘Hm.’

 K. Yue, R. Krishnamurti 78

16

Explicit condition: No staircase. ‘Rbs’ exists.
Implicit condition: No ‘SfS,’ ‘Rfb,’ and ‘Hm.’
Width of front block is ≤ 18'.
Kitchen area is > 130 feet2.
Transformation: N/AAdd a back staircase to
room ‘Rbs.’

The new shape grammar comprises five phases: block (mass) generation

(rule 1~4), space generation (rule 5~10), stair generation (rule 11~16),
space modification (rule 17~20), and interior door generation (rule 21~25);
rules 17-25 are not shown due rto space limitations.

A significant difference between the new and original shape grammars
is that every shape rule of the new shape grammar quantitatively specifies
the conditions that apply. For example, this condition can be the number of
spaces in terms of blocks (rules 1 and 2), a value in a specific range (rules
5 and 6), and a relationship of two or more values (rules 7 and 8). Some
conditions are straightforward. Others require not only reasoning based on
common design knowledge, but also certain threshold values, statistically
determined. The following illustrates the complexity, using as exemplar,
the rules for generating staircases.

Firstly, rules (rule 11~16) are not necessarily exclusive to one another.
For example, both rules 11 and 16 can apply to the layouts where no ex-
clusive condition has been specified as to when to apply each rule. As
stated previously, we currently only consider working-class row houses,
each with a unique staircase on its first floor. Therefore, for each layout,
only one of the shape rules for generating staircases applies.

Secondly, if there is a staircase room SfS, then rule 12 has to apply. As a
result, an implicit condition for Rule 11, 13, 14, 15, and 16 is that the cur-
rent layout has no staircase room SfS.

Rule 14 adds a staircase to a hallway. Obviously, the hallway needs to
be wide enough to hold the staircase, hence the width of the front block.
From the samples (Figure 9), 18 feet is a good threshold value to distin-
guish whether or not rule 14 can apply. To ensure the exclusive application
of rule 14, an implicit condition for rules 11, 13, 15 and 16 is that the
width of the front block is smaller or equal to 18 feet.

If in the left side of rules 11, 13, 15, and 16, there is an Rfb room, then
rule 13 should be applied to add a staircase there. So, an implicit condition
for rule 11, 15 and 16 is that there is no Rfb room. If in the left side of
rules 11, 15, and 16, there is a middle block Hm, then rule 15 should be
applied to add a staircase in the middle block. Thus, an implicit condition
for rules 11 and 16 is that there is no Hm room.

 Computation-Friendly Shape Grammar Interpreter 79

Fig. 9. Quantifying the shape rules generating staircases

It remains to distinguish between rules 11 and 16. The implicit condi-
tions added by rules 12, 13, 14, and 15 can be summarized as: if there are
only a Rfs room (the front block) and a Rbs room (the back block) in the
current layout, then rules 11 and 16 can be applied. Rule 16 adds a stair-
case to an Rbs room, which is actually a kitchen. Therefore, the kitchen
space has to be large enough to hold a staircase as well as function as a
kitchen. From the samples, the average area of kitchens without a staircase
is 127.7 feet2, and the minimum is 92.8 feet2. The area of a staircase is
about 26~30 feet2. The kitchen area of the case (by using rule 11) is 94.4
feet2, and the kitchen area of the case (by using rule 16) is 165.5 feet2. The
average of these two cases is about 130 feet2, which is close to the average
of kitchens without staircases. So, 130 feet2 is used as the threshold value.
As a result, an added condition for rule 16 is that the area of kitchen is
greater than 130 feet2. An additional condition for rule 11 is that the area of
the kitchen is smaller or equal to 130 feet2. Table 4 gives a summary of
implicit conditions to make rules for generating staircases exclusive.

Table 4 Implicit conditions to make staircase rules exclusive

 Rule 12 Rule 14 Rule 13 Rule 15 Rule 11 Rule 16
Rule 12 With ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’ No ‘SfS’
Rule 14 Front block

width > 18'
Front block
width ≤ 18'

Front block
width ≤ 18'

Front block
width ≤ 18'

Front block
width ≤ 18'

Rule 13 With ‘Rfb’ No ‘Rfb’ No ‘Rfb’ No ‘Rfb’
Rule 15 With ‘Hm’ No ‘Hm’ No ‘Hm’
Rule 16 Kitchen

≤ 130 ft2
Kitchen
> 130 ft2

 K. Yue, R. Krishnamurti 80

Discussion

The graph-like data structure has the capacity to support the desired inter-
preter, while, at the same time, necessarily requiring the shape rules to be
computation-friendly. To ensure that shape rules from a variety of sources
are interpretable, a framework for specifying computation-friendly shape
grammars needs to be further developed.

Rule application is a process of traversing an underlying layout tree.
This requires an ‘undo’ mechanism that enables backtracking to a previous
partial configuration. Brute force cloning of configurations prior to apply-
ing a rule is both computationally expensive and complex, particularly as
elements of a layout may need to reference one another. One possibility is
to use dancing links [7] to realize this undo functionality; by incorporating
features such as windows, doors, and even staircases as nodes linked to the
graph units, the entire graph structure can be represented using an eight-
way doubly linked list. Another possibility is to design an ‘undo’ counter-
part for each shape rule, which gets applied during backtracking.

The research reported in this paper was funded in part by the US Army
Corps of Engineers/CERL, whose support is gratefully acknowledged.
The work of Casey Hickerson in developing the first Baltimore rowhouse
grammar is also acknowledged.

References

1. Yue K, Hickerson C, Krishnamurti R (2008) Determining the interior layout
of buildings describable by shape grammars. CAADRIA'08, Chiang Mai,
Thailand

2. Flemming U (1987) More than the sum of parts: the grammar of Queen Anne

3. Chau HH, Chen X, McKay A, Pennington A (2004) Evaluation of a 3D shape
grammar implementation. in JS Gero (ed), Design Computing and Cogni-

4. Hayward ME (1981) Urban vernacular architecture in nineteenth-century Bal-
timore. Winterthur Porfolio 16(1): 33-63

5. Stiny G (2006) Shape: Talking about seeing and doing. MIT Press, Cam-
bridge

6. Fish J (1996) How sketches work: A cognitive theory for improved system
design. PhD Thesis, Loughborough University

7. Knuth DE (2000) Dancing links. in J Davies, B Roscoe and J Woodcock
(eds), Millennial Perspectives in Computer Science, Palgrave Macmillan,
Basingstoke, pp. 187-214

houses. Environment and Planning B 14: 323-350

tion'04. Kluwer Academic Publishers, Dordrecht, pp. 357-37

