

On the road to standardization

Rudi Stouffs and Ramesh Krishnamurti1
Delft University of Technology
1Carnegie Mellon University

Key words: Information exchange, Standardization, Representations

Abstract: This paper offers an analysis of current standardization efforts, including a
classification of their approaches and an evaluation of their advantages and
disadvantages with respect to different contexts. In focusing on the design
context, a syntactic approach to standardization is recommended, and
exemplified with a concept for representational flexibility termed sorts.

1. INTRODUCTION

Effective digital representations for design have been a topic of research
since Sutherland’s Sketchpad (Sutherland, 1963) marked the beginning of
CAD research. Early efforts into purely geometric representations led to the
establishment of geometric modeling as a research field, presenting us,
amongst others, with polygon-based and NURBS-based three-dimensional
representations that currently form the basis of most modeling applications.
More recently, product modeling research has taken a much wider view of
design representations, considering geometric design as only one aspect in
the product design process and focusing on design as a collaborative process
between a variety of actors and experts from many different design
disciplines. These different disciplines are concerned with different aspects
of the final product and require different representations to work with.
Furthermore, different actors adopt different design techniques and
methodologies, demanding alternative design representations for the same
product aspect. Integrating these different design views into a single product
model, or supporting information exchange between alternative
representations, possibly in coordination with a central product model, is far

76 CAAD Futures 2001

from straightforward, as current research into product models, such as ISO
STEP (ISO, 1994), illustrates.

In architectural and building design, this problem is even more
prominent, as design methodologies are varied and diverse, the actors in a
collaborative building project are numerous and from a large body of
disciplines, and not least, both the project and team are potentially unique
from project to project. Furthermore, the building industry is fragmented and
characterized by a large number of small- and medium-sized companies,
making it even harder to impose common models or processes for
information exchange. As a result, information exchange in the building
industry has long been, and still is, dominated by a data exchange format,
DXF, that is mostly concerned with geometric information and which was
designed for use with a single commercial application, AutoCAD™. At the
same time, many efforts exist and have existed to conceive a common
product model for building design, for example, within the STEP
developments, by the International Alliance for Interoperability (Bazjanac,
1998), and more recently in XML (Tolman and Böhms, 2000, aecXML,
1999). Despite the many efforts, little real progress has been made, both in
agreeing on common models for various building design aspects, and in
convincing the building industry to adopt such models on a general level.

This paper offers an analysis of current standardization efforts, including
a classification of their approaches and an evaluation of their advantages and
disadvantages with respect to different contexts. In focusing on the design
context, a syntactic approach (e.g., O’Brien, 2000, Stouffs and Krishnamurti,
1997) to standardization is recommended, and exemplified with a concept
for representational flexibility termed sorts.

1.1 Data exchange

Between and within disciplines, building partners use a variety of
different applications and tools based on many distinct data formats. This
diversity of data formats makes supporting information and data sharing
within a building project a complex and difficult task. Various approaches to
facilitate data exchange among partners exist, based on a number of different
techniques and technologies. The most obvious approach is to develop a
specific utility for translating data between two given formats. Despite
attempts at developing alternative approaches, this is still the most widely
used. The advantages are clear: the single purpose supports a focused
development towards a highly effective and efficient tool that emphasizes
the nature of either or both formats or the specifics of the context in which
the utility will perform its task. Such a utility may be used stand-alone or
integrated into an application that uses either data format, e.g., in the form of

On the road to standardization 77

an import or export functionality, or into a system that offers multiple
translation facilities.

Most often, such specific utilities serve data sharing in conjunction with a
standard or pseudo-standard. Consider DXF, a data exchange format
developed for the purpose of AutoCAD™’s own translation needs between
subsequent versions of the software. This format was adopted by the CAD
software industry as a pseudo-standard for CAD data exchange. By
integrating import and export functionalities from and to DXF into every
CAD application, the format serves as a standard for data sharing among
CAD applications. The most obvious advantage of such a standard is the fact
that each application needs to support translation only between a single pair
of data formats, that is, from the proprietary format to the standard and back.
However, pseudo-standards are ill suited to this task. As these were never
developed for this task, they neither reflect the nature of the proprietary
format nor the context of the exchange. For example, DXF supports neither
NURBS, a popular geometric representation for curved surfaces, nor
textures, making it ill suited for sharing advanced 3D modeling data.

General standards for exchanging building data may overcome these
limitations. However, standards are difficult to develop, as these require a
broad consensus among industry members. Particularly in the building
industry, such consensus is hard to achieve. Many reasons can be thought of.
Most commonly, the fragmented nature of the building industry and the
uniqueness of each building project (Buckley, Zarli, et al., 1998) are
mentioned as primary reasons for this failure to achieve a standard for data
sharing among project partners. Equally, neither has hope yet faded. New
approaches based on advances in software technology have resulted in
renewed and increased efforts and in better chances of achieving such a
standard. Object technologies (e.g., Bazjanac, 1998, van Nederveen, 2000)
and XML (e.g., Tolman and Böhms, 2000, aecXML, 1999) have served as
the catalysts for these activities.

2. STANDARDIZATION APPROACHES

2.1 A-priori versus a-posteriori

Different approaches can be distinguished in standardization efforts.
Generally, these adopt an a-priori approach: an attempt is made, before or at
the onset of the project, at establishing an agreement on the concepts and
their relationships which offer a complete and uniform description of the
project data. If this collection of concepts and relationships is conceived of
independent of the project specifics, i.e., its context, then the approach can

78 CAAD Futures 2001

be additionally denoted as top-down. The STEP effort is a prime example of
a top-down, a-priori approach, offering a methodology for developing
product models and for the exchange of these product models, including its
application to various industry domains.

The alternative is a bottom-up approach, where the project participants
attempt to establish such a conceptualization from practice, based on the
project specifics, at the onset of the project. Object trees (van Nederveen,
2000) are an example of an a-priori, bottom-up approach. Primarily aimed at
the construction planning phase, object trees serve to improve electronic
communication between participants of different disciplines in large-scale
construction projects by offering them a methodology for developing
representational object trees corresponding to concept hierarchies of
construction aspects and elements, and their attributes. The methodology
requires all participants to concur on the concepts and attributes involved; in
return, it presents them with a unified framework for relating activities and
for data exchange among participants. It is specifically suited for the
construction and construction planning phases of large-scale projects in
which the advantages of the conceptual and representational framework far
outweigh the disadvantages of the need for an a-priori consensus.

Focusing on the design phase, it is debatable whether an a-priori
approach, even if successful in the future, will support the variety and
flexibility it intends to enable. Conceivably, it may further restrict creativity
and individuality by imposing a common product model that caters only to
an a-priori defined collection of views. For one, new design and analysis
techniques or methodologies may be conceived and developed requiring new
and different design representations that lie outside of the scope of the
product model. Secondly, diversity in design approaches within the same
discipline may not be, as a whole, supported by the same model. Lastly, even
within the same design process, a single actor may choose to adopt different
design representations for different purposes at various stages of this
process.

Thus, there is a need to offer both flexibility in representations that
allows a designer to adapt a representation to her intentions and needs, and
representational dynamism that enables representations to be reconfigured
throughout the design process in order to reflect the task at hand. This calls
for an a-posteriori approach where users are empowered to define their own
representations within their design activities and are provided with the tools
to, subsequently, communicate the corresponding data into alternative
representations as adopted by the other project participants.

On the road to standardization 79

2.2 Semantic versus syntactic

In the process of establishing a common product model, two steps –
semantic and syntactic – can be considered. The former refers to the
conceptual development, the latter to the translation of this conceptualization
into a representational structure for practical use. Standardization efforts
tend to focus on one of these steps. For example, the LexiCon effort was
primarily concerned with a formal vocabulary for the storage and exchange
of information in the construction industry, although representational
development is now under way (Woestenenk, 1998, 2000).

 Semantic development in any standardization effort may serve as the
starting point for different syntactic developments. For instance, the STEP
effort includes the specification of representational structures; other
standardization efforts consider adopting the STEP semantics, or even part
of the technology, in order to offer alternative syntactical expressions. An
international consortium has been founded within the building industry that
aims to define an object-oriented data model as a basis for project
information sharing in the industry. These efforts of the named International
Alliance for Interoperability (IAI) have resulted in a specification of Industry
Foundation Classes (IFCs) defining a building object model shared by all
IFC-compliant applications (Bazjanac, 1998). The IFC product model was
developed using the EXPRESS modeling language developed in the STEP
effort, and shares many concepts with the STEP product model developed
for the building industry. Recently, the IAI also supports the aecXML
Working Group, which started working on an extension of XML, a universal
format for structured documents and data for the Web, in order to facilitate
data exchange in the building industry (aecXML, 1999). The E-Construct
project is also concerned with the development of an XML extension, named
bcXML, to support e-commerce in the building industry (Tolman and
Böhms, 2000). It builds upon the LexiCon semantics defined for projects and
adopts the LexiCon tool for the purpose of a user interface to the data
structures.

XML can be considered as an alternative to object technology in order to
develop representational structures corresponding to conceptual product
models. However, XML is more than a technology; it is a meta-language
that serves to define markup languages for specific purposes. By specifying
a grammatical structure of markup tags and their composition, a markup
language is defined that can be shared with others. When project partners
can agree on the tags, they can exchange data described in any markup
language based on these tags, even if their own markup language differs in
scope or composition. As such, XML may be considered as a syntactic
standard (O’Brien, 2000). XML can also be considered as an alternative

80 CAAD Futures 2001

modeling language to the EXPRESS technology of STEP. XML has the
advantage that it is readable both by humans and by the computer. Markup
languages based on XML can easily be adapted or extended to one’s own
specific purposes or needs. Thus, XML structures can easily be defined
corresponding to a conceptual product model and such structures can be
compared between different models. In fact, it may be quite ironic to
consider product model standards as structures fixed in XML (O’Brien,
2000).

3. REPRESENTATIONAL FLEXIBILITY

While these standardization efforts have more or less the same aim, their
strategies are quite different each with distinct advantages and disadvantages
in supporting flexibility in data formats for varying purposes and needs. The
necessity for the support of data exchange reflects a desire to use alternative
design representations that enable a particular expression, analysis, or
organization. Translation utilities can support data exchange between the
standard and proprietary data formats. However, there is a limit to what can
effectively be catered for in this fashion. Advances in methodologies,
techniques, and technologies repeatedly require new representations of the
same building component or building aspect. Standards, however, are
necessarily based on current knowledge, uses, and needs. The difficulty in
establishing a standard and having it adopted as a basis for data sharing
among all or most software applications on the market almost inhibits any
subsequent changes in order to update it to new requirements – unless, such
flexibility is built into the technology.

The IFC effort attempts to overcome this difficulty by adopting an
object-oriented approach and envisioning an evolving object model. Objects
encompass both data and access to this data, possibly including operations
on the data. Applications can use this model, or parts of it, to define the
underlying representation, or incorporate a translation from and to this model
into their functionality. When the model is altered through a modification or
extension of the object functionality or the development of new object
classes, a corresponding adaptation of the applications may not be necessary,
unless one wants to make use of the additional functionality provided in the
model. In this manner, a single model can respond to advances in knowledge
and technology. At the same time, however, this model still depends on a
consensus and, as such, will not be able to support the entire spectrum of
alternative design representations that can suit particular users or specific
situations in the building process. Furthermore, access to this model is only
available to software developers and, as a result, a designer will, in most

On the road to standardization 81

cases, be restricted to those representations that are provided by the software
applications on the market rather than be able to exploit the potential of a
truly flexible standard.

The Lexicon model suggests an alternative approach. Though as part of a
semantic model, it considers a semi-syntactic approach in which concepts
are unambiguously defined by their constituent attributes (Woestenenk,
1998). These attributes then comprise the primitive concepts that define the
semantic vocabulary of this model. Taking this descriptive approach one step
further, the attributes themselves can be described syntactically, leading to a
purely syntactic description of the concepts as compositions of primitive
data types. Within a formal structure, these syntactical descriptions may be
compared independently of their conceptual meanings, thus allowing for
synonym concepts. XML offers such a formal framework. As such, XML
allows for an a-posteriori and syntactic standardization approach, providing
all participants with the ability to define or adopt their own data model in
XML, and considering ways of translating these different models between
one another at a later stage, using tools developed for this purpose.

3.1 A framework for representational flexibility

XML is particularly suited to structure otherwise unstructured
information, such as textual data, and to organize information available over
the Web. However, it does not provide any information on how to
manipulate the data and, as such, is ill suited to represent detailed graphical
or geometrical data. Instead, a framework for supporting representational
flexibility may be conceived of by borrowing from the different approaches
in order to combine their respective advantages. From XML, it may inherit a
foundation consisting of an extensible vocabulary of data components that
can be composed hierarchically into a representational language. From the
IFC effort, it may borrow the object-oriented approach, defining the data
components as objects that encapsulate both the data structure and the
operations defined on these structures. The symbiosis of these two
approaches requires that the compositional operators be defined so that any
compositional structure offers the same functionality as each component
object separately. Hereto, a behavior can be defined for every component
and structure as a collection of common operations on these structures for
creation or deletion, or the merging of structures under some formal
operations. Through a careful definition of the compositional operators,
structures may derive their behavior from their components in accordance to
the compositional relationship.

Similar to the IFC approach, a language specification can be derived on
two levels. A first syntactic level specifies the vocabulary of primitive object

82 CAAD Futures 2001

classes and their respective behaviors. This behavior, in itself, does not
provide any meaning to the object class. In fact, a same data structure may
define two or more object classes if as many different behaviors can be said
to apply, for different purposes. On a second level, a selection of object
classes is defined and, individually, named in order to express a semantic
concept. These named classes can, subsequently, be composed into a
hierarchical structure in order to define an appropriate representational
schema. In contrast to the IFC approach, this semantic concept can be
specified by the user and the representational structure composed
accordingly. Alternative representations can be defined by altering the
compositional structure or the selection of component classes. As each
representation defines the same common operations, these can be reasonably
plugged into an applicative interface for manipulation.

Comparing different representations requires a comparison of the
component classes and of the overall compositional structures. At the same
time, the expressive power of a representational framework is defined by its
vocabularies of primitive object classes and compositional relationships. By
carefully selecting the vocabulary of compositional relationships, users can
be given the necessary freedom and flexibility to develop or adopt
representations that serve their intentions and needs. At the same time, these
can be formally compared with respect to scope and coverage in order to
support information exchange. Such a comparison will not only yield a
possible mapping, but also uncover potential data loss when moving data
from less restrictive to more restrictive representations. Translation services
can be provided based on both semantic identity and syntactic similarity.

4. SORTS

We are developing such a framework for representational flexibility,
named sorts. Conceptually, a sort may define a set of similar data entities,
e.g., a class of objects or the set of tuples solving a system of equations
(Stouffs and Krishnamurti, 1998). Representationally, elementary data types
define primitive sorts. These combine to composite sorts under formal
compositional operations (Stouffs and Krishnamurti, 1997). The operation of
sum allows for disjunctively co-ordinate compositions of sorts, where each
sort may be – though not necessarily – represented in the data form; an
attribute relationship provides for (recursively) subordinate compositions of
sorts in both one-to-many and one-to-one instantiations. Other compositional
operations can also be considered, such as an array- or grid-like composition
of sorts. The result is a constructive, hierarchical description of sorts as
compositions of other sorts, where each leaf node specifies a primitive data

On the road to standardization 83

type and every other node defines a compositional operation on its operand
children nodes (figure 1).

concepttree

+

^ ^ ^

[Label]

concepts concepttree
concepts hasrefs

concepts

:

:
concepts

isrefsconceptrefs :

[Property]

(hasrefs, isrefs) :

concepts conceptrefs

sort conceptrefs : (concepts : [Label]);
sort (hasrefs, isrefs) : [Property] (concepts, conceptrefs);
sort concepttree : concepts ^ concepttree + concepts ^ hasrefs + concepts + conceptrefs ^ isrefs

Figure 1. Textual and graphical definition of a recursive concepttree sort. A concepttree may
include multiple instances of a single concept, with one instance defined and referenced by all

other instances. ‘+’ and ‘^’ denote the operations of sum and attribute, respectively. ‘:’
denotes the naming of a sort. ‘Label’ and ‘Property’ are primitive sorts; the latter defines a

property relationship sort between two given sorts.

The definition of a sort includes a specification of the operational
behavior of its members and collections, denoted as forms. The behavioral
specification enables a uniform handling of forms of different sorts, on the
proviso that the universe of all forms of a sort is closed under the respective
operations. Primitive sorts have their behaviors assigned in order to achieve
a desired effect, e.g., discrete behaviors for points and labels, an interval
behavior for line segments, and an ordinal behavior for weights such as
thickness or tones. On the other hand, a composite sort receives its behavior
from its component sorts, based on its compositional relationships (Stouffs
and Krishnamurti, 1997). The formal relationships between sorts enable the
comparison and mapping of sorts as representational structures; the
behavioral specification of sorts supports the mapping of information
structures onto different sorts, such that the resulting information structures
conform to the definition of the respective sorts or representations.

The concept of sorts only specifies a common syntax, allowing for
different vocabularies and languages to be created, and providing the means
to develop translation facilities between these. For example, a point may be
specified with any number of coordinates depending on its dimensionality,
its coordinates may constitute integers, reals or rationals, these may be
bounded in space, etc. Sorts can be defined accordingly and, based on their

84 CAAD Futures 2001

compositional structures, compared and related. For example, the operation
of sum specifies a subsumption relationship on sorts, where one sort may
match a part of another sort, under sum (Stouffs and Krishnamurti, 1997).
Compositional structures under the attribute relationship, if not equal, may
be fully (or partially) convertible: the attribute relationship is associative
though not commutative. Based on the result of this comparison, translation
support can be provided for and data loss monitored. For example, partial
conversions always result in data loss; complete conversions may result in
data loss depending on the behavioral categories of the constituent sorts.

Alternative design representations can be defined as variations on a given
sort, by altering the components or the composition. As an example,
consider a representation for a collection of drawings given a sort that
defines a single drawing. By specifying an attribute composition with a sort
of labels, a named collection of drawings is enabled similar to a set of layers
in a CAD application. Alternatively, by specifying an attribute composition
with a sort of points or rectangles, a layout can be represented for these
drawings (figure 2). One step further, this sort can be modified to enable
drawings to relate to parts within other drawings, allowing for detailing
relationships to be specified in this layout.

named_drawings : drawings ^ (labels : [Label])
layouts : drawings ^ (points : [Point])
named_layouts : drawings ^ points ^ labels

named_drawings :

^

:

drawings

[Label]

layouts :

^

:

drawings

[Point]

labels points

:

^

drawings

points

named_layouts

^

labels

Figure 2. Sort definitions for named drawings, layouts of drawings, and named layouts of
drawings, given a sort for a drawing.

As such, there is no imposition of concepts beyond the purely syntactical,
and the alphabet of building blocks can be readily extended at all times. No
language thus created ever needs to be static. Firstly, a vocabulary may be
extended from the existing alphabet or by using newly developed building
blocks. Secondly, representations may be updated by reconfiguring the
existing composition of sorts or by extending it using additional component
sorts. Far from having to redevelop the data structure and the applicative

On the road to standardization 85

operations, the concept of sorts aims to provide almost continuous support to
evolving representations, providing for an environment that supports
exploration and trial, even with respect to the representation.
Representational structures can be compared and mapped, data can be
readily converted to new and extended (or condensed) representations, and
procedural operations remain applicative if such flexibility has been
considered.

4.1 Example

Consider design information in the form of design constraints and related
information, e.g., for a steel-framed building project (figure 3). This
information may be stored in a database organized by type, i.e., constraints,
variables, authors, constraint solvers, and other data entities (e.g., images,
drawings or explanatory texts), with entities linked as appropriate (figure
4a). This presents an organizationally clean and efficient way of storing
design information into a relational database. However, this organization is
ill adapted to practical uses. While a representational organization may be
dictated by efficiency in data retrieval and management, an effective
visualization of the same data depends on user preferences and the task at
hand. More important than the distinction between an efficient
representation and an effective visualization, is the understanding that
different partners in a collaborative environment adopt different views,
specify different preferences and use different techniques, while visualizing
and manipulating essentially the same information. In the example of the
steel-framed building project, the set of design constraints is the result of a
collaboration between architect, structural engineer and contractor, to name
just a few.

Figure 3. Design problem from a building project: the dimensioning of holes in steel beams.

An alternative visualization of the same project information may take
into account the origins of these information entities, that is, for each author

86 CAAD Futures 2001

the author’s constraints, the constraint solver used, and other data entities
provided by this author are specified (figure 4b). Each constraint specifies
the variables that are affected by this constraint, and these variables, in turn,
link back to the constraints that are defined over these, effectively linking
constraints from different authors. Other links, e.g., between constraints and
other data entities, can also be maintained and presented.

All

Constraints
Variables

Authors
Solvers

Data

Constraints

Variables

Authors

Solvers Data

Constraints

Authors

Solvers DataVariables

Constraints

Figure 4. Three different organizational schemes for the same project information: a) by type,
b) by author, and c) by design constraint.

Such an organization provides the user with an overview over the
different authors’ (or domains’) contributions. One step further, the effective
support of an actual design session may require the design itself, i.e., the
design constraints, to form the centerpiece of the visual environment. Other
information can be linked from the appropriate constraints in order to clarify
each constraint’s context and role in the design. A corresponding
representation places the author’s constraints at the top level (figure 4c).
Every constraint specifies the variables affected, the author’s constraint
solver, and the data related to this constraint. Each variable, in turn, specifies
the constraints from other authors that are defined over this variable, and
each of these constraints specifies its author. Other links between
information entities are additionally provided. This representation allows the
author to directly access information related to each constraint. It also
enables the user to evaluate the effect of altering a constraint on the design
and whether such a change may interfere with other constraints specified by
the partners in the collaboration.

As the example attempts to illustrate, sorts enable the development of
different design views from a same data structure for different users and
purposes. In the context of Web presentation, sorts can be adopted to prepare
the retrieved information appropriately for presentation. Links and
connections between information entities are treated as attributes to either or
both entities. This approach allows for a uniform and flexible method of
presenting information. Figure 5 shows snapshots from a VRML
visualization for the steel-framed building project.

On the road to standardization 87

Figure 5. Snapshots of a VRML visualization for the steel-framed building project according
to the first and last schemes of figure 4, respectively, a) a set of design constraints and b)

related image entities, and c) views of the architect’s and d) engineer’s constraints. All VRML
presentations are generated using an implementation of sorts.

5. CONCLUSION

New technologies, i.e., object technologies and XML, are fueling new
interest in standardizing product models for the building industry. However,
these same technologies, together with the Internet, reflect a strive for
flexibility that stands in contrast to the concept of an all-encompassing
standard. XML offers an example of how data exchange can be supported
independently of the product models that are applied. Sorts attempts to
achieve the same flexibility but with increased support for geometrical data
and for the comparison of sorts and the translation of data between different
sorts.

The concept of sorts aims to provide almost continuous support to
evolving representations, providing for an environment that supports
exploration and trial, even with respect to the representation. By specifying
only a common syntax, it allows for different vocabularies and languages to
be created, and provides the means to develop translation facilities between
these. There is no imposition of concepts beyond the purely syntactical, and
the alphabet of building blocks can be readily extended at all times.

88 CAAD Futures 2001

6. ACKNOWLEDGMENTS

The research on sorts is partly funded by the Netherlands Organization for
Scientific Research (NWO), grant nr. 016.007.007. The example from the
steel-framed building project was part of a project funded by the Swiss
National Science Foundation, grant nr. 5003-045357, while the first author
was working at the Chair for Architecture and CAAD at ETH Zurich. This
project constituted a collaboration between ETH Zurich, EPF Lausanne, and
various partners from the Swiss building industry.

7. REFERENCES

aecXML, 1999, AecXML: A framework for electronic communications for the AEC
industries, IAI aecXML Domain Committee. http://www.aecxml.org/technical/

Bazjanac, V., 1998, “Industry Foundation Classes: Bringing software interoperability to the
building industry”, The Construction Specifier, 6/98, p. 47-54.

Buckley, E., A. Zarli, C. Reynolds, and O. Richaud, 1998, “Business objects in construct IT”,
in: R. Amor (ed.) Product and Process Modelling in the Building Industry, Building
Research Establishment, Watford, England, p. 117-130.

 ISO, 1994, ISO 10303-1, Overview and fundamental principles, International Standardization
Organization, Geneva, Switzerland.

O’Brien, M.J. and N. Al-Biqami, 2000, “XML, flexibility and systems integration”, in: G.
Gudnason (ed.) Construction Information Technology 2000, Vol. 2, Icelandic Building
Research Institute, Reykjavik, Iceland, p. 656-661.

Stouffs, R. and R. Krishnamurti, 1998, “An algebraic approach to comparing representations”,
in: J. Barallo (ed.) Mathematics & Design 98, The University of the Basque Country, San
Sebastian, Spain, p. 105-114.

Stouffs, R. and R. Krishnamurti, 1997, “Sorts: a concept for representational flexibility”, in:
R. Junge (ed.) CAAD Futures 1997, Kluwer Academic, Dordrecht, The Netherlands, p.
553-564.

Stouffs, R., R. Krishnamurti, and C.M. Eastman, 1996, “A formal structure for nonequivalent
solid representations”, in: S. Finger, M. Mäntylä and T. Tomiyama (eds.) Proceedings of
IFIP WG 5.2 Workshop on Knowledge Intensive CAD II, International Federation for
Information Processing, Working Group 5.2, p. 269-289.

Tolman, F.P. and H.M. Böhms, 2000, “Electronic business in the building-construction
industry: preparing or the new Internet”, in: G. Gudnason (ed.) Construction Information
Technology 2000, Vol. 2, Icelandic Building Research Institute, Reykjavik, Iceland, p.
928-936.

van Nederveen, G.A., 2000, Object trees: improving electronic communication between
participants of different disciplines in large-scale construction projects, Delft University
of Technology, Delft, The Netherlands.

Woestenenk, K., 1998, “A common construction vocabulary”, in: R. Amor (ed.) Product and
Process Modelling in the Building Industry, Building Research Establishment, Watford,
England, p. 561-568.

Woestenenk, K., 2000, “Implementing the LexiCon for practical use”, in: G. Gudnason (ed.)
Construction Information Technology 2000, Vol. 2, Icelandic Building Research Institute,
Reykjavik, Iceland, p. 1049-1057.

