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Abstract: This paper offers an analysis of current standardization efforts, including a 
classification of their approaches and an evaluation of their advantages and 
disadvantages with respect to different contexts. In focusing on the design 
context, a syntactic approach to standardization is recommended, and 
exemplified with a concept for representational flexibility termed sorts. 

1. INTRODUCTION 

Effective digital representations for design have been a topic of research 
since Sutherland’s Sketchpad (Sutherland, 1963) marked the beginning of 
CAD research. Early efforts into purely geometric representations led to the 
establishment of geometric modeling as a research field, presenting us, 
amongst others, with polygon-based and NURBS-based three-dimensional 
representations that currently form the basis of most modeling applications. 
More recently, product modeling research has taken a much wider view of 
design representations, considering geometric design as only one aspect in 
the product design process and focusing on design as a collaborative process 
between a variety of actors and experts from many different design 
disciplines. These different disciplines are concerned with different aspects 
of the final product and require different representations to work with. 
Furthermore, different actors adopt different design techniques and 
methodologies, demanding alternative design representations for the same 
product aspect. Integrating these different design views into a single product 
model, or supporting information exchange between alternative 
representations, possibly in coordination with a central product model, is far 
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from straightforward, as current research into product models, such as ISO 
STEP (ISO, 1994), illustrates. 

In architectural and building design, this problem is even more 
prominent, as design methodologies are varied and diverse, the actors in a 
collaborative building project are numerous and from a large body of 
disciplines, and not least, both the project and team are potentially unique 
from project to project. Furthermore, the building industry is fragmented and 
characterized by a large number of small- and medium-sized companies, 
making it even harder to impose common models or processes for 
information exchange. As a result, information exchange in the building 
industry has long been, and still is, dominated by a data exchange format, 
DXF, that is mostly concerned with geometric information and which was 
designed for use with a single commercial application, AutoCAD™. At the 
same time, many efforts exist and have existed to conceive a common 
product model for building design, for example, within the STEP 
developments, by the International Alliance for Interoperability (Bazjanac, 
1998), and more recently in XML (Tolman and Böhms, 2000, aecXML, 
1999). Despite the many efforts, little real progress has been made, both in 
agreeing on common models for various building design aspects, and in 
convincing the building industry to adopt such models on a general level. 

This paper offers an analysis of current standardization efforts, including 
a classification of their approaches and an evaluation of their advantages and 
disadvantages with respect to different contexts. In focusing on the design 
context, a syntactic approach (e.g., O’Brien, 2000, Stouffs and Krishnamurti, 
1997) to standardization is recommended, and exemplified with a concept 
for representational flexibility termed sorts. 

1.1 Data exchange 

Between and within disciplines, building partners use a variety of 
different applications and tools based on many distinct data formats. This 
diversity of data formats makes supporting information and data sharing 
within a building project a complex and difficult task. Various approaches to 
facilitate data exchange among partners exist, based on a number of different 
techniques and technologies. The most obvious approach is to develop a 
specific utility for translating data between two given formats. Despite 
attempts at developing alternative approaches, this is still the most widely 
used. The advantages are clear: the single purpose supports a focused 
development towards a highly effective and efficient tool that emphasizes 
the nature of either or both formats or the specifics of the context in which 
the utility will perform its task. Such a utility may be used stand-alone or 
integrated into an application that uses either data format, e.g., in the form of 
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an import or export functionality, or into a system that offers multiple 
translation facilities. 

Most often, such specific utilities serve data sharing in conjunction with a 
standard or pseudo-standard. Consider DXF, a data exchange format 
developed for the purpose of AutoCAD™’s own translation needs between 
subsequent versions of the software. This format was adopted by the CAD 
software industry as a pseudo-standard for CAD data exchange. By 
integrating import and export functionalities from and to DXF into every 
CAD application, the format serves as a standard for data sharing among 
CAD applications. The most obvious advantage of such a standard is the fact 
that each application needs to support translation only between a single pair 
of data formats, that is, from the proprietary format to the standard and back. 
However, pseudo-standards are ill suited to this task. As these were never 
developed for this task, they neither reflect the nature of the proprietary 
format nor the context of the exchange. For example, DXF supports neither 
NURBS, a popular geometric representation for curved surfaces, nor 
textures, making it ill suited for sharing advanced 3D modeling data. 

General standards for exchanging building data may overcome these 
limitations. However, standards are difficult to develop, as these require a 
broad consensus among industry members. Particularly in the building 
industry, such consensus is hard to achieve. Many reasons can be thought of. 
Most commonly, the fragmented nature of the building industry and the 
uniqueness of each building project (Buckley, Zarli, et al., 1998) are 
mentioned as primary reasons for this failure to achieve a standard for data 
sharing among project partners. Equally, neither has hope yet faded. New 
approaches based on advances in software technology have resulted in 
renewed and increased efforts and in better chances of achieving such a 
standard. Object technologies (e.g., Bazjanac, 1998, van Nederveen, 2000) 
and XML (e.g., Tolman and Böhms, 2000, aecXML, 1999) have served as 
the catalysts for these activities. 

2. STANDARDIZATION APPROACHES 

2.1 A-priori versus a-posteriori 

Different approaches can be distinguished in standardization efforts. 
Generally, these adopt an a-priori approach: an attempt is made, before or at 
the onset of the project, at establishing an agreement on the concepts and 
their relationships which offer a complete and uniform description of the 
project data. If this collection of concepts and relationships is conceived of 
independent of the project specifics, i.e., its context, then the approach can 
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be additionally denoted as top-down. The STEP effort is a prime example of 
a top-down, a-priori approach, offering a methodology for developing 
product models and for the exchange of these product models, including its 
application to various industry domains. 

The alternative is a bottom-up approach, where the project participants 
attempt to establish such a conceptualization from practice, based on the 
project specifics, at the onset of the project. Object trees (van Nederveen, 
2000) are an example of an a-priori, bottom-up approach. Primarily aimed at 
the construction planning phase, object trees serve to improve electronic 
communication between participants of different disciplines in large-scale 
construction projects by offering them a methodology for developing 
representational object trees corresponding to concept hierarchies of 
construction aspects and elements, and their attributes. The methodology 
requires all participants to concur on the concepts and attributes involved; in 
return, it presents them with a unified framework for relating activities and 
for data exchange among participants. It is specifically suited for the 
construction and construction planning phases of large-scale projects in 
which the advantages of the conceptual and representational framework far 
outweigh the disadvantages of the need for an a-priori consensus.  

Focusing on the design phase, it is debatable whether an a-priori 
approach, even if successful in the future, will support the variety and 
flexibility it intends to enable. Conceivably, it may further restrict creativity 
and individuality by imposing a common product model that caters only to 
an a-priori defined collection of views. For one, new design and analysis 
techniques or methodologies may be conceived and developed requiring new 
and different design representations that lie outside of the scope of the 
product model. Secondly, diversity in design approaches within the same 
discipline may not be, as a whole, supported by the same model. Lastly, even 
within the same design process, a single actor may choose to adopt different 
design representations for different purposes at various stages of this 
process. 

Thus, there is a need to offer both flexibility in representations that 
allows a designer to adapt a representation to her intentions and needs, and 
representational dynamism that enables representations to be reconfigured 
throughout the design process in order to reflect the task at hand. This calls 
for an a-posteriori approach where users are empowered to define their own 
representations within their design activities and are provided with the tools 
to, subsequently, communicate the corresponding data into alternative 
representations as adopted by the other project participants. 
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2.2 Semantic versus syntactic 

In the process of establishing a common product model, two steps – 
semantic and syntactic – can be considered. The former refers to the 
conceptual development, the latter to the translation of this conceptualization 
into a representational structure for practical use. Standardization efforts 
tend to focus on one of these steps. For example, the LexiCon effort was 
primarily concerned with a formal vocabulary for the storage and exchange 
of information in the construction industry, although representational 
development is now under way (Woestenenk, 1998, 2000). 

 Semantic development in any standardization effort may serve as the 
starting point for different syntactic developments. For instance, the STEP 
effort includes the specification of representational structures; other 
standardization efforts consider adopting the STEP semantics, or even part 
of the technology, in order to offer alternative syntactical expressions. An 
international consortium has been founded within the building industry that 
aims to define an object-oriented data model as a basis for project 
information sharing in the industry. These efforts of the named International 
Alliance for Interoperability (IAI) have resulted in a specification of Industry 
Foundation Classes (IFCs) defining a building object model shared by all 
IFC-compliant applications (Bazjanac, 1998). The IFC product model was 
developed using the EXPRESS modeling language developed in the STEP 
effort, and shares many concepts with the STEP product model developed 
for the building industry. Recently, the IAI also supports the aecXML 
Working Group, which started working on an extension of XML, a universal 
format for structured documents and data for the Web, in order to facilitate 
data exchange in the building industry (aecXML, 1999). The E-Construct 
project is also concerned with the development of an XML extension, named 
bcXML, to support e-commerce in the building industry (Tolman and 
Böhms, 2000). It builds upon the LexiCon semantics defined for projects and 
adopts the LexiCon tool for the purpose of a user interface to the data 
structures. 

XML can be considered as an alternative to object technology in order to 
develop representational structures corresponding to conceptual product 
models. However, XML is more than a technology; it is a meta-language 
that serves to define markup languages for specific purposes. By specifying 
a grammatical structure of markup tags and their composition, a markup 
language is defined that can be shared with others. When project partners 
can agree on the tags, they can exchange data described in any markup 
language based on these tags, even if their own markup language differs in 
scope or composition. As such, XML may be considered as a syntactic 
standard (O’Brien, 2000). XML can also be considered as an alternative 
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modeling language to the EXPRESS technology of STEP. XML has the 
advantage that it is readable both by humans and by the computer. Markup 
languages based on XML can easily be adapted or extended to one’s own 
specific purposes or needs. Thus, XML structures can easily be defined 
corresponding to a conceptual product model and such structures can be 
compared between different models. In fact, it may be quite ironic to 
consider product model standards as structures fixed in XML (O’Brien, 
2000). 

3. REPRESENTATIONAL FLEXIBILITY 

While these standardization efforts have more or less the same aim, their 
strategies are quite different each with distinct advantages and disadvantages 
in supporting flexibility in data formats for varying purposes and needs. The 
necessity for the support of data exchange reflects a desire to use alternative 
design representations that enable a particular expression, analysis, or 
organization. Translation utilities can support data exchange between the 
standard and proprietary data formats. However, there is a limit to what can 
effectively be catered for in this fashion. Advances in methodologies, 
techniques, and technologies repeatedly require new representations of the 
same building component or building aspect. Standards, however, are 
necessarily based on current knowledge, uses, and needs. The difficulty in 
establishing a standard and having it adopted as a basis for data sharing 
among all or most software applications on the market almost inhibits any 
subsequent changes in order to update it to new requirements – unless, such 
flexibility is built into the technology. 

The IFC effort attempts to overcome this difficulty by adopting an 
object-oriented approach and envisioning an evolving object model. Objects 
encompass both data and access to this data, possibly including operations 
on the data. Applications can use this model, or parts of it, to define the 
underlying representation, or incorporate a translation from and to this model 
into their functionality. When the model is altered through a modification or 
extension of the object functionality or the development of new object 
classes, a corresponding adaptation of the applications may not be necessary, 
unless one wants to make use of the additional functionality provided in the 
model. In this manner, a single model can respond to advances in knowledge 
and technology. At the same time, however, this model still depends on a 
consensus and, as such, will not be able to support the entire spectrum of 
alternative design representations that can suit particular users or specific 
situations in the building process. Furthermore, access to this model is only 
available to software developers and, as a result, a designer will, in most 
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cases, be restricted to those representations that are provided by the software 
applications on the market rather than be able to exploit the potential of a 
truly flexible standard. 

The Lexicon model suggests an alternative approach. Though as part of a 
semantic model, it considers a semi-syntactic approach in which concepts 
are unambiguously defined by their constituent attributes (Woestenenk, 
1998). These attributes then comprise the primitive concepts that define the 
semantic vocabulary of this model. Taking this descriptive approach one step 
further, the attributes themselves can be described syntactically, leading to a 
purely syntactic description of the concepts as compositions of primitive 
data types. Within a formal structure, these syntactical descriptions may be 
compared independently of their conceptual meanings, thus allowing for 
synonym concepts. XML offers such a formal framework. As such, XML 
allows for an a-posteriori and syntactic standardization approach, providing 
all participants with the ability to define or adopt their own data model in 
XML, and considering ways of translating these different models between 
one another at a later stage, using tools developed for this purpose. 

3.1 A framework for representational flexibility 

XML is particularly suited to structure otherwise unstructured 
information, such as textual data, and to organize information available over 
the Web. However, it does not provide any information on how to 
manipulate the data and, as such, is ill suited to represent detailed graphical 
or geometrical data. Instead, a framework for supporting representational 
flexibility may be conceived of by borrowing from the different approaches 
in order to combine their respective advantages. From XML, it may inherit a 
foundation consisting of an extensible vocabulary of data components that 
can be composed hierarchically into a representational language. From the 
IFC effort, it may borrow the object-oriented approach, defining the data 
components as objects that encapsulate both the data structure and the 
operations defined on these structures. The symbiosis of these two 
approaches requires that the compositional operators be defined so that any 
compositional structure offers the same functionality as each component 
object separately. Hereto, a behavior can be defined for every component 
and structure as a collection of common operations on these structures for 
creation or deletion, or the merging of structures under some formal 
operations. Through a careful definition of the compositional operators, 
structures may derive their behavior from their components in accordance to 
the compositional relationship. 

Similar to the IFC approach, a language specification can be derived on 
two levels. A first syntactic level specifies the vocabulary of primitive object 
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classes and their respective behaviors. This behavior, in itself, does not 
provide any meaning to the object class. In fact, a same data structure may 
define two or more object classes if as many different behaviors can be said 
to apply, for different purposes. On a second level, a selection of object 
classes is defined and, individually, named in order to express a semantic 
concept. These named classes can, subsequently, be composed into a 
hierarchical structure in order to define an appropriate representational 
schema. In contrast to the IFC approach, this semantic concept can be 
specified by the user and the representational structure composed 
accordingly. Alternative representations can be defined by altering the 
compositional structure or the selection of component classes. As each 
representation defines the same common operations, these can be reasonably 
plugged into an applicative interface for manipulation. 

Comparing different representations requires a comparison of the 
component classes and of the overall compositional structures. At the same 
time, the expressive power of a representational framework is defined by its 
vocabularies of primitive object classes and compositional relationships. By 
carefully selecting the vocabulary of compositional relationships, users can 
be given the necessary freedom and flexibility to develop or adopt 
representations that serve their intentions and needs. At the same time, these 
can be formally compared with respect to scope and coverage in order to 
support information exchange. Such a comparison will not only yield a 
possible mapping, but also uncover potential data loss when moving data 
from less restrictive to more restrictive representations. Translation services 
can be provided based on both semantic identity and syntactic similarity. 

4. SORTS 

We are developing such a framework for representational flexibility, 
named sorts. Conceptually, a sort may define a set of similar data entities, 
e.g., a class of objects or the set of tuples solving a system of equations 
(Stouffs and Krishnamurti, 1998). Representationally, elementary data types 
define primitive sorts. These combine to composite sorts under formal 
compositional operations (Stouffs and Krishnamurti, 1997). The operation of 
sum allows for disjunctively co-ordinate compositions of sorts, where each 
sort may be – though not necessarily – represented in the data form; an 
attribute relationship provides for (recursively) subordinate compositions of 
sorts in both one-to-many and one-to-one instantiations. Other compositional 
operations can also be considered, such as an array- or grid-like composition 
of sorts. The result is a constructive, hierarchical description of sorts as 
compositions of other sorts, where each leaf node specifies a primitive data 
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type and every other node defines a compositional operation on its operand 
children nodes  (figure 1). 

concepttree

+

^ ^ ^

[Label]

concepts concepttree
concepts hasrefs

concepts

:

:
concepts

isrefsconceptrefs :

[Property]

(hasrefs, isrefs) :

concepts conceptrefs

sort conceptrefs : (concepts : [Label]);
sort (hasrefs, isrefs) : [Property] (concepts, conceptrefs);
sort concepttree : concepts ^ concepttree + concepts ^ hasrefs + concepts + conceptrefs ^ isrefs

 

Figure 1. Textual and graphical definition of a recursive concepttree sort. A concepttree may 
include multiple instances of a single concept, with one instance defined and referenced by all 

other instances.  ‘+’ and ‘^’ denote the operations of sum and attribute, respectively. ‘:’ 
denotes the naming of a sort. ‘Label’ and ‘Property’ are primitive sorts; the latter defines a 

property relationship sort between two given sorts. 

The definition of a sort includes a specification of the operational 
behavior of its members and collections, denoted as forms. The behavioral 
specification enables a uniform handling of forms of different sorts, on the 
proviso that the universe of all forms of a sort is closed under the respective 
operations. Primitive sorts have their behaviors assigned in order to achieve 
a desired effect, e.g., discrete behaviors for points and labels, an interval 
behavior for line segments, and an ordinal behavior for weights such as 
thickness or tones. On the other hand, a composite sort receives its behavior 
from its component sorts, based on its compositional relationships (Stouffs 
and Krishnamurti, 1997). The formal relationships between sorts enable the 
comparison and mapping of sorts as representational structures; the 
behavioral specification of sorts supports the mapping of information 
structures onto different sorts, such that the resulting information structures 
conform to the definition of the respective sorts or representations. 

The concept of sorts only specifies a common syntax, allowing for 
different vocabularies and languages to be created, and providing the means 
to develop translation facilities between these. For example, a point may be 
specified with any number of coordinates depending on its dimensionality, 
its coordinates may constitute integers, reals or rationals, these may be 
bounded in space, etc. Sorts can be defined accordingly and, based on their 
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compositional structures, compared and related. For example, the operation 
of sum specifies a subsumption relationship on sorts, where one sort may 
match a part of another sort, under sum (Stouffs and Krishnamurti, 1997). 
Compositional structures under the attribute relationship, if not equal, may 
be fully (or partially) convertible: the attribute relationship is associative 
though not commutative. Based on the result of this comparison, translation 
support can be provided for and data loss monitored. For example, partial 
conversions always result in data loss; complete conversions may result in 
data loss depending on the behavioral categories of the constituent sorts. 

Alternative design representations can be defined as variations on a given 
sort, by altering the components or the composition. As an example, 
consider a representation for a collection of drawings given a sort that 
defines a single drawing. By specifying an attribute composition with a sort 
of labels, a named collection of drawings is enabled similar to a set of layers 
in a CAD application. Alternatively, by specifying an attribute composition 
with a sort of points or rectangles, a layout can be represented for these 
drawings (figure 2). One step further, this sort can be modified to enable 
drawings to relate to parts within other drawings, allowing for detailing 
relationships to be specified in this layout. 

named_drawings : drawings ^ (labels : [Label])
layouts : drawings ^ (points : [Point])
named_layouts : drawings ^ points ^ labels

named_drawings :

^

:

drawings

[Label]

layouts :

^

:

drawings

[Point]

labels points

:

^

drawings

points

named_layouts

^

labels

 

Figure 2. Sort definitions for named drawings, layouts of drawings, and named layouts of 
drawings, given a sort for a drawing. 

As such, there is no imposition of concepts beyond the purely syntactical, 
and the alphabet of building blocks can be readily extended at all times. No 
language thus created ever needs to be static. Firstly, a vocabulary may be 
extended from the existing alphabet or by using newly developed building 
blocks. Secondly, representations may be updated by reconfiguring the 
existing composition of sorts or by extending it using additional component 
sorts. Far from having to redevelop the data structure and the applicative 
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operations, the concept of sorts aims to provide almost continuous support to 
evolving representations, providing for an environment that supports 
exploration and trial, even with respect to the representation. 
Representational structures can be compared and mapped, data can be 
readily converted to new and extended (or condensed) representations, and 
procedural operations remain applicative if such flexibility has been 
considered. 

4.1 Example 

Consider design information in the form of design constraints and related 
information, e.g., for a steel-framed building project (figure 3). This 
information may be stored in a database organized by type, i.e., constraints, 
variables, authors, constraint solvers, and other data entities (e.g., images, 
drawings or explanatory texts), with entities linked as appropriate (figure 
4a). This presents an organizationally clean and efficient way of storing 
design information into a relational database. However, this organization is 
ill adapted to practical uses. While a representational organization may be 
dictated by efficiency in data retrieval and management, an effective 
visualization of the same data depends on user preferences and the task at 
hand. More important than the distinction between an efficient 
representation and an effective visualization, is the understanding that 
different partners in a collaborative environment adopt different views, 
specify different preferences and use different techniques, while visualizing 
and manipulating essentially the same information. In the example of the 
steel-framed building project, the set of design constraints is the result of a 
collaboration between architect, structural engineer and contractor, to name 
just a few. 

  

Figure 3. Design problem from a building project: the dimensioning of holes in steel beams.  

An alternative visualization of the same project information may take 
into account the origins of these information entities, that is, for each author 
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the author’s constraints, the constraint solver used, and other data entities 
provided by this author are specified (figure 4b). Each constraint specifies 
the variables that are affected by this constraint, and these variables, in turn, 
link back to the constraints that are defined over these, effectively linking 
constraints from different authors. Other links, e.g., between constraints and 
other data entities, can also be maintained and presented. 

All

Constraints
Variables

Authors
Solvers

Data

Constraints

Variables

Authors

Solvers Data

Constraints

Authors

Solvers DataVariables

Constraints

 

Figure 4. Three different organizational schemes for the same project information: a) by type, 
b) by author, and c) by design constraint. 

Such an organization provides the user with an overview over the 
different authors’ (or domains’) contributions. One step further, the effective 
support of an actual design session may require the design itself, i.e., the 
design constraints, to form the centerpiece of the visual environment. Other 
information can be linked from the appropriate constraints in order to clarify 
each constraint’s context and role in the design. A corresponding 
representation places the author’s constraints at the top level (figure 4c). 
Every constraint specifies the variables affected, the author’s constraint 
solver, and the data related to this constraint. Each variable, in turn, specifies 
the constraints from other authors that are defined over this variable, and 
each of these constraints specifies its author. Other links between 
information entities are additionally provided. This representation allows the 
author to directly access information related to each constraint. It also 
enables the user to evaluate the effect of altering a constraint on the design 
and whether such a change may interfere with other constraints specified by 
the partners in the collaboration. 

As the example attempts to illustrate, sorts enable the development of 
different design views from a same data structure for different users and 
purposes. In the context of Web presentation, sorts can be adopted to prepare 
the retrieved information appropriately for presentation. Links and 
connections between information entities are treated as attributes to either or 
both entities. This approach allows for a uniform and flexible method of 
presenting information. Figure 5 shows snapshots from a VRML 
visualization for the steel-framed building project. 
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Figure 5. Snapshots of a VRML visualization for the steel-framed building project according 
to the first and last schemes of figure 4, respectively, a) a set of design constraints and b) 

related image entities, and c) views of the architect’s and d) engineer’s constraints. All VRML 
presentations are generated using an implementation of sorts. 

5. CONCLUSION 

New technologies, i.e., object technologies and XML, are fueling new 
interest in standardizing product models for the building industry. However, 
these same technologies, together with the Internet, reflect a strive for 
flexibility that stands in contrast to the concept of an all-encompassing 
standard. XML offers an example of how data exchange can be supported 
independently of the product models that are applied. Sorts attempts to 
achieve the same flexibility but with increased support for geometrical data 
and for the comparison of sorts and the translation of data between different 
sorts. 

The concept of sorts aims to provide almost continuous support to 
evolving representations, providing for an environment that supports 
exploration and trial, even with respect to the representation. By specifying 
only a common syntax, it allows for different vocabularies and languages to 
be created, and provides the means to develop translation facilities between 
these. There is no imposition of concepts beyond the purely syntactical, and 
the alphabet of building blocks can be readily extended at all times. 
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