
57
Spatial Grammars:
Motivation, Comparison, and New Results

Ramesh Krishnamurti
Rudi Stouffs

Department of Architecture
Carnegie Mellon University
Pittsburgh, PA 15213 USA

The paper starts by giving a motivation for studying grammars in design and is
based on considerations of style, discovery, and constructive techniques. This
paper goes on to survey a variety of spatial grammar formalisms from an
implementation standpoint. For each formalism, the salient computational issues
pertaining to rule application are discussed. Two aspects of shape grammars are
considered in detail: (a) the conditions for reversibility of shape rules, and (b) the
recognition of planar shapes. An outline of subshape detection in U23 is given.

Keywords: spatial grammars, shape rules, shape recognition.

1 Introduction

Spatial grammars excite some and appall others.
Spatial grammars have been in vogue for some time now, though its adherents are

few in number. This may be due, in part, to a different understanding of the role and
usefulness of grammars in design research, and in part, to the difficulty of the
computational issues that arise in grammars. In this paper, we suggest an alternative
motivation for grammars in design, briefly survey some of the spatial grammar
formalisms and present some new results on shape grammar computation.

Several authors have provided sound reasons for the usefulness of grammars in
design research (e.g., Stiny, 1980b; Earl, 1986; Flemming, 1987; Coyne et al., 1990;
Mitchell, 1990). Still, there remain those who are skeptical (e.g., Snodgrass and Coyne,
1990; Fleisher, 1992), though for misplaced reasons.

One source of the misconceptions associated with spatial grammars can be
attributed directly to the word ‘grammar,’ which conveys a linguistic association in that
spatial grammars ought to somehow be able to act as a reference by means of which
designs can be analyzed, understood and specified in lexical, semantic, pragmatic,
epistemic terms accompanied by all the ambiguity, superfluidity and indirection that one
associates with common language. The unsurprising failure of spatial grammars in
succeeding in this endeavour is chalked up as a ‘win’ for opponents of grammar systems.
Grammars are just formal devices first used in logic by Post (1943); later, in natural
language processing by Chomsky (1957), who coined the term; and more recently and
U. Flemming and S. Van Wyk (eds.), CAAD Futures ‘93, pp. 57-75.
© 1993 Elsevier Science Publishers B.V. Printed in the Netherlands.

58 Ramesh Krishnamurti and Rudi Stouffs
originally, by Stiny (1980a) in design. Grammars should only be interpreted in their strict
technical sense.

A second source of misconception has been, unfortunately, provided by some
proponents and relates to the generative nature of grammars. The argument they advance
is that by applying a given set of rules within some formal grammar one can crank out
‘new’ designs; a similar argument is raised by opponents in describing spatial grammars
as being against creativity.

It is not the purpose of this paper to debate fully the merits and demerits of spatial
grammars or to discuss other misconceptions. The above observations serve merely to
illustrate a point. An answer to such criticisms might be better understood if one first
distinguishes between design and designing. A design is simply the end of some process
and may well be the beginning of another. An architect produces a plan, that a builder
constructs, that an interior designer decorates, that a child by placing a toy or two gives
character.

Designing, on the other hand, is the means to an end. The choice of any particular
approach to designing is personal, though this choice may be influenced by the
environment in which one is situated. The mistake is to presume that a characterization
of the means extends naturally to a characterization of the ends or vice versa. Thus, one
finds statements in the literature such as design is predictive, design is reflective action,
design is search, design is constraint resolution, design is puzzle-making, design is
hermeneutical, design is dialogue, design is grammatical, design is geometrical, design is
object-oriented, design is optimization, design is knowledge-based … we could go on ad
infinitum and ad nauseam. The plain fact is that none of these statements are true and all
of them are true. Unlike theories in the natural sciences, approaches to designing are not
competing theories though some may complement others.1 Each approach has its pros
and cons. The role of computer-aided design, seems to us, is not to vilify any particular
theory of designing, but rather to question the assumptions that each makes, the
restrictions that each imposes, and the ease or difficulty with which each facilitates the
very act of designing. As Ömer Akin (1986) rightly remarked: “There are probably as
many definitions of design as there are designers… ,” each merely posits a particular,
perhaps shared, view of designing. Equally, it is the responsibility of proponents and not
just opponents, to question any theory that is put forward to an audience of design
researchers.

So why do we like grammars? What motivates us?
There are several reasons. Firstly, spatial grammars have been successful in

analyzing styles of designs. It is conceivable that as humans we are inclined to repeatedly
rely on our experience and our familiarity with certain known concepts and metaphors
and apply them to our way of doing things. Through corpora of spatial designs,
grammarians have clearly demonstrated that designers tend to employ a limited set of
spatial relationships to produce seemingly distinctive designs. In other cases,
grammarians have demonstrated the existence of spatial transformations from one style to
another. This is not unlike the architectural historian who attempts to discover the
principles underlying a given building or styles of buildings. In our own teaching, we
encourage students to play with known styles using architectural history as the basis of
their experiment. It is equally valid to experiment with different spatial relations on a
grammatical basis. This is not to say that the grammarians’ explanations of style are any

1 This is not to say that designs themselves are not subject to the laws of the natural
sciences; that is an altogether different issue.

Spatial Grammars : Motivation, Comparison, and New Results 59
more accurate than those of architectural historians; nevertheless, the value of grammars
for pedagogy cannot be disclaimed.2

Secondly, the act of designing is sometimes seen as an act of ‘discovery.’ It has
been remarked by some researchers that they have been surprised by the forms and
arrangements that they come across by playing with spatial forms and relationships
through using interactive grammar systems. It is perhaps this same sense of discovery
that motivates other researchers to look at emerging technologies such as hypermedia,
multimedia and virtual reality.

Thirdly, if one accepts that spatial designs are represented by drawings, one can
then examine the techniques by which drawings can be constructed. Euclid was the first
to influence constructive techniques through his invention of the compass and straight
edge. One has to just examine early architectural drawings for the truth of this remark. A
history of Euclidean construction and constructibility can be found in (Eves, 1963).
Briefly, towards the latter half of seventeenth century geometers such as Georg Mohr
began to question Euclidean constructibility using just a compass. Mohr’s result,
originally in Danish and discovered in 1928 by Johannes Hjelmselev, was independently
discovered by the Italian poet, Lorenzo Mascheroni in 1797. This work was
complemented by Poncelot and Steiner to give their famous rusty compass construction
theorem. All of this culminated in August Adler’s famous turn of the century theorem on
Euclidean constructibility using two straight edges be they parallel or intersecting. It is
not an exaggeration to claim that Adler’s work directly impacted on modern architectural
drafting tools such as the Mayline and the architect’s triangle. With the advent of
computer graphics and Sutherland’s (1963) work on Sketchpad, the use of geometric
transformations have become part of the draftsman’s arsenal. The story does not end
here. If one accepts a pencil and eraser metaphor to drawings, then spatial rules are
simply extensions of the metaphor. One uses the leaded side to add ‘marks’ onto paper
and one uses the eraser to remove marks. A rule application is a simultaneous use of lead,
eraser and geometrical transformations. One point to note is that all of these techniques
have their basis in formal geometry. We believe that the next generation of constructive
tools have their basis in formal grammar theory.

Lastly, grammar systems that are really useful are difficult to implement. This is a
legitimate criticism of grammar systems. We should know; one of the authors was among
the first to implement a spatial grammar system. Part of the difficulty stems from the
technical considerations of implementing grammars, which we address in this paper. Part
of the difficulty is developing ways of enabling designers to employ grammatical rules in
a manner that does not impede their act of designing, which we do not address in this
paper. However, the latter is not merely a matter of developing appropriate human-
computer interfaces. The problem runs deeper and relates to the appropriateness of a
given grammar formalism for a given design problem, and to the representational
demands that grammar systems impose on users. Unfortunately, systems that are
comparatively easy to use such as discoverForm (Carlson, 1989), and to some extent,
Tartan Worlds (Woodbury et al., 1992) do not provide for rich classes of spatial designs;
systems that are not so easy to use such as SGI (Krishnamurti, 1982) and GENESIS
(Heisserman, 1991) do provide for richer classes of spatial designs. In recent articles,

2 In a private communication, Ömer Akin offered another more powerful reason for
studying grammars, especially in connection with issues of style and of the design process, namely,
the question of where do grammars come from? This, in itself, is a design problem and relates to
issues in cognitive psychology, a discussion of which is beyond our competence at present.

60 Ramesh Krishnamurti and Rudi Stouffs
Woodbury and Griffiths (1993) describe their experiences with GENESIS in developing a
grammar for fire-station layouts, and Carlson (1993) explores this problem from a
programming standpoint. While the problem of bringing grammars to a wider audience
of designers remains high on our priority, there are other issues that need to be tackled
first.

In this paper we examine issues relating to grammar implementations. Spatial
grammar formalisms share certain characteristics in common, which we explore from a
computational standpoint. Section 2 introduces the necessary terminology. Section 3
briefly surveys three spatial grammar formalisms. Sections 4 through 6 describe shape
grammars and provide new results on shape recognition.

2 Grammars: A Uniform Treatment

Grammars are formal devices for specifying ‘languages’ and just that. Grammars
for generation and analysis have found wide ranging use in a variety of fields.

All grammars share certain definitions and characteristics. Grammars are defined
over an algebra of objects, U, closed under the operations of ‘+’ and ‘–’ and a set of
transformations F. In other words, if u and v are members of U, then so are u + f(v) and
u – f(v) where f is a member of F. In addition, we can define a match relation ‘≤’ on U
such that f(u) ≤ v whenever u occurs in v, for some member f of F.

In general, there are four parts to a grammar G = (N, T, R, I):

• nonterminal vocabulary N
• terminal vocabulary T ⊂ U
• finite set of rewriting rules (or productions) R ⊂ ψ1(T, N) × ψ2(T, N)
• (set of) initial objects I ⊂ ψ1(T, N)

ψ1 and ψ2 are set defining functions on T and N. In general, the elements of the
terminal and nonterminal vocabularies are members of U, though certain restrictions may
apply.

A rewriting rule has the form lhs → rhs. The lhs (left hand side) of the rule
contains elements from T and N, but cannot be empty. The rhs (right hand side) of the
rule, in addition, may be empty. A rule applies to a particular object if the lhs of the rule
‘matches’ a part of the object under some allowable transformation f. Rule application
consists of replacing the matching part by the rhs of the rule under the same
transformation. A rule a → b is applicable to u whenever there is a transformation f such
that f(a) ≤ u, in which case, under rule application, the object v is produced, given by the
expression:

v = [u – f(a)] + f(b)

We denote a rule application by u ⇒ v and say that u directly derives v. A
sequence of rule applications from object u to object v is denoted by u ⇒ ∗ v; that is, u ⇒
… ⇒ v. In this case, we say that u derives v.

The central problem in implementing grammars is the matching problem, that of
determining the transformation f under which the relation ð holds for f(a). Clearly, this
problem depends upon on the representation of the elements of U.

A grammar defines a language; that is, a set containing all objects generated by
the grammar, where each generation starts with an initial object and uses rules to achieve

Spatial Grammars : Motivation, Comparison, and New Results 61
an object that contains only terminals.
A grammar is serial if a rule is applied to just one instance of a matching object,

and parallel if a rule is applied to all such instances. Most grammars are used serially.
A uniform characterization for a variety of grammar systems is given in (Gips and

Stiny, 1980).

3 Spatial Grammars

In this section, we distinguish between three kinds of spatial grammars: string
grammars, set grammars, and graph grammars.

3.1 String Grammars
The algebra U = Σ*, the least set of all strings over a set of symbols Σ, and includes

ε, the string of length 0.
A common example of a string grammar systems is a phrase-structure grammar

(Sudkamp, 1988), which is defined as the four-tuple Gp = (N, T, R, I) over a vocabulary V,
where V = N ∪ T, N ∩ T = ∅ , T ⊂ U. The lhs and rhs of a rule are strings over V with the
lhs involving at least one symbol of N.

The operations of ‘+’, ‘–’ and the transformation f have the following
interpretation: Let denote the length of string u. f takes a string u and gives a pair
(u, i), where i is an integer. Then,

f(u) ≤ v whenever v = xuy and i =
v + f(u) = xuy whenever v = xy and i =
v – f(u) = xy whenever v = xuy and i =

The integer i is used as position index to indicate where the string u starts. The
operators, + and –, are respectively string insertion and deletion operators. ≤ is the
substring relation. Under rule application, u directly derives v, u ⇒ v, if u = xay, v = xby
and a → b is a member of R. The language generated by grammar Gp is L(Gp) =
{ v | v ∈ T∗ such that I ⇒ ∗ v}, where T∗ is the least set of the terminal vocabulary closed
under string concatenation.

String grammars lend themselves naturally to classification according to the form
of the rules. A regular string grammar only allows rules of the forms A → aB and A → b,
where A, B ∈ N and a, b ∈ T. A context-free string grammar has rules of the form A → b,
where A ∈ N and b ∈ V* − {ε}. A context-sensitive grammar has rules that take the form
xAy → xby, where A ∈ N and x, y, b ∈ T* with b ≠ ε. Otherwise a string grammar is
unrestrictive. A similar classification can be specified for certain non-string grammars.

Example
The Tartan Worlds (Woodbury et al., 1992) is an example that bestrides string and

set grammars, which are considered in section 3.2, in which each symbol corresponds to a
geometrical entity represented as a graphical icon. The grammar can be used either
serially or in parallel. We consider a simplified string grammar version of the Tartan
Worlds.

The Simple Tartan World is represented by a grid of cells (x, y), x ≥ 0, y ≥ 0. For
any string v, we can define an assignment function g that gives a list of triples <x, y, icon>
as follows:

u

x
x
x

62 Ramesh Krishnamurti and Rudi Stouffs
g(v) = g(a), (x(i), y(i), icon(u)) whenever v = au, = 1 and = i.

g(ε) gives an empty triple. The comma ‘,’ operator separates the different
elements in a list. For each symbol in a string, g identifies its tartan grid location and
associated graphical icon.

Each rule in the Simple Tartan Worlds consists of one symbol on the lhs and
symbols on the rhs given in their spatial relation. For each rule l → r, we can define g as
g(l) → g(r), where the (x, y) coordinates of the elements in r are relative to the (x, y)
coordinate of the symbol l. Thus, under rule application the new string, w, is given by

w = [v – f(l)] + f(r)

and its g value, g(w), updated to,

g(w) =
gu, {(x+xa-xl, y+ya-yl,i) | (x,y,i) ∈ g(r), g(l) = (xl, yl, _), g(a) = (xa, ya, _)}, gt

where v = uat and g(v) = (gu=g(u)), g(a), (gt=g(t)).
Note that, in the Tartan Worlds, a grid cell may be occupied by several symbols,

the order of display depending on the order in the rule. Note too that different symbols
may map onto the same graphical icon. In its full generality, the Tartan Worlds allows
many symbols on the left hand side of a rule. This situation is better considered as a set
grammar.

3.2 Set Grammars
As the name implies, set grammars deal with objects expressed as sets of entities.

3.2.1 Structure Grammars
Structure grammar is one such example (Carlson et al., 1991). Here an object,

referred to as a structure, is represented as a set of pairs { (a, h), … }, where a is drawn
from a set of symbols V and h is drawn from a group of transformations F. Thus, the
algebra, U, under consideration is the power set, ℘ (V × F). The nonterminals are drawn
from a similar algebra of symbols and the same group of transformations, with the
provision that the nonterminal and terminal symbols are not shared.

The operations of ‘+’ and ‘–’ correspond to the familiar set operations of union, ∪ ,
and difference, \ . The relation, ≤, corresponds to the subset relation. A transformation f
on a structure { (a, g), (b, h), … } produces the structure { (a, fg), (b, fh), … }, where fg,
fh, … are members of F, by virtue of the group property of F. Thus, rule application in a
structure grammar yields the set:

[u \ f(a)] ∪ f(b) provided f(a) ⊂ u.

A structure grammar Gs is the 4-tuple (T, N, R, I), where I is the initial structure
drawn from the power set, ℘ ((T ∪ N) × F). The language L(Gs) is the set of all structures
that do not contain nonterminals.

Structure grammars are especially useful when one can establish a 1-1
correspondence between symbols and spatial icons, though the attractive feature of
structure grammars is that, in its full generality, it is independent of any spatial
connotations associated with either the symbols or the group of transformations and thus,
can also be applied to problems without spatial content. Another feature of set grammars

u a

Spatial Grammars : Motivation, Comparison, and New Results 63
that distinguishes them from string grammars is that the symbols are order independent.
Note that the Tartan Worlds considered previously as a string grammar extension

can be considered as a structure grammar where F is the infinite group of translations.

3.2.2 Solid Grammars
Solid grammars (Heisserman, 1991) may be considered as constrained set

grammars. Basically, a solid is represented as a collection of faces, each of which is
described by its edges and vertices that are mapped onto (x, y, z) coordinates. Thus, a
solid is given by a set of triples {(fi, Ei, Vi)}, where

.

In addition, there are other constraints on the topology and geometry that have to
be satisfied in order for the set to represent a solid (see Mäntylä (1988) on boundary
representations). A face may be augmented with labels, which are treated as
nonterminals. In principle, a solid rule a → b serves to replace one or more faces by a
collection of faces with proviso that the resulting set satisfies the requirements of a solid.
The operations of ‘+’ and ‘–’ do not have unique interpretations but correspond to
collections of Euler operators (Mäntylä, 1988) such that the resulting object is a proper
solid. Thus, ‘+’ and ‘–’ are elements of sets of functions made up of sequences of Euler
operators. Let τ denote a truth value functional that holds whenever the set represents a
proper solid. Whence, rule application is given by +(– (u, f(a)), f(b)), where f is a
geometrical transformation such that τ(+(– (u, f(a)), f(b))) is TRUE.

It should be noted that a solid grammar manipulates data structures that represent
the faces, edges, and vertices of a solid. In his original formulation, Heisserman
describes solid grammars in terms of the graph of the boundary representation augmented
by labels and states. A solid rule then translates to one of a predicated rule, where the
matching condition is captured by truth value functionals on the elements of the graph
and the replacement is effected by a sequence of primitive Euler operations such that the
resulting graph is a boundary representation of some solid possibly augmented with
labels and states. The matching condition reflects the existence of some subgraph of the
boundary representation and replacement is given by a sequence of data structure
operations. In other words, a solid grammar can be treated as a graph grammar, which is
considered in the next section.

3.2.3 Computational Considerations
In its simplest form, rule application involves set operations under the identity

transformation. In structure grammars, the transformation is an element of a group. The
matching relation is the subset relation and can be determined in linear time. For
complex extensions of set grammars such as solid grammars, rule application is described
in different terms. Here, the matching relation is absorbed into the lhs of a rule that
serves as the ‘antecedent’ for some action. The rhs of the rule is then the ‘consequent’
action and is expressed as a sequence of operations on the representation of the solid.
The complexity of rule application depends on the complexity of determining the
antecedent condition.

3.3 Graph Grammars
Graph grammars are particularly useful if connectivity or incidence between

elements is the dominant feature of the design problem. Graph grammars can be defined
in a number of ways depending on the application; here, we follow Pavlidis (1972).

Vi Ei 1+–[]
i

∑ 2=

64 Ramesh Krishnamurti and Rudi Stouffs
A nonterminal graph structure of the mth order is an entity that is connected to the
rest of the graph by m nodes. A graph structure may be termed a node structure (1st
order), a branch structure (2nd order), a triangle structure (3rd order) or, in general, a
polygon structure. The vocabulary of terminals consists of nodes and branches.

An mth order context-free graph grammar is given by Gg = (N, T, R, I), where N is
a set of mth order nonterminal graph structures. The lhs of a rule is a single nonterminal
graph structure, the rhs is a graph containing possibly both terminals and nonterminals,
and when a rule is applied, all the nodes connecting the structure with the rest of the graph
are treated uniformly. An mth order context-free graph grammar is an mth order linear
graph grammar if the rhs’s of the rules each contain at most one nonterminal structure.

A rule applies to a graph if its lhs is isomorphic to a nonterminal structure in the
graph. The problem of finding a subgraph isomorphic to the lhs of the rule can be
accomplished by some guided graph traversal such as depth- or breadth-first search. In
the application, the matched nonterminal structure is replaced by the rhs of the rule,
which is connected to the rest of the graph through exactly the same m nodes as the
nonterminal structure was. The transformation f under which the rule applies is simply an
assignment of coordinates to the nodes of the lhs and rhs.

Example
The trestlelike graphs illustrated in Figure 1 can be generated by the following

linear graph grammar Gg. Let n denote a terminal node, b a terminal branch and B a
nonterminal branch structure. K4 denotes the complete graph on four nodes with just one
nonterminal branch (Figure 1a).

Gg = (N, T, R, I)
N = {B}, T = {b, n}, R = {B → b, B → K4}, I = {K4}

Figure 1. Objects in the grammar Gg: (a) the initial graph K4 (the double edge
denotes the nonterminal branch structure B); (b) two sample graphs generated with
the grammar.

Other variations of graph grammars employ similar matching and replacement
principles, though for general graphs the subgraph isomorphism problem is NP-complete,
even for special kinds of graphs (Garey and Johnson, 1979). Despite this, the matching
algorithm might be made simpler if the graphs do possess specific features.

4 Shape Grammars

K4:

(a)

(b)

Spatial Grammars : Motivation, Comparison, and New Results 65
For the remainder of this paper we discuss shape grammars in detail and present
results on two aspects: (a) the reversibility of shape rules, and (b) the recognition of
shapes made up of planar segments. A shape grammar is a formal rewriting system for
producing languages of shapes (Stiny, 1980a). Unlike the other spatial grammars, shape
grammars operate directly on spatial forms.

4.1 Shape
A shape is defined as a finite arrangement of spatial elements from among points,

lines, planes, volumes, or higher dimensional hyperplanes, of limited but non-zero
measure. A shape is considered an element of an algebra U that is ordered by a part
relation and closed under the operations of sum and difference, and the Euclidean
transformations augmented with scale (Stiny, 1991). If the shapes are defined in a k-
dimensional space, k ≥ n, Un,k denotes the set of all finite arrangements of n-dimensional
hyperplanes of limited but nonzero measure in k-dimensional space. If k is
unambiguously understood, it may be dropped and Un,k can be referred to as Un. Thus,
U0 refers to the algebra of points, U1 the algebra of lines, U2 the algebra of planes and U3
the algebra of volumes. A shape may consist of more than one type of spatial element, in
which case it belongs to the algebra given by the Cartesian product of the algebras of its
spatial element types.

A shape is a part of another shape if it is embedded in the other shape as a smaller
or equal element. A part of a shape is also called a subshape, and specifies the relation,
≤. The operation of sum combines two shapes, and the operation of difference takes the
relative complement of one shape with respect to another. These operations can be
defined in terms of the part relation as follows:

The sum of two shapes a and b is a shape c = a + b = b + a, such that a and b are
parts of c and any part of c is either a part of a or b, or can be divided into two parts, of
which one belongs to a and the other belongs to b.

The difference of two shapes a and b, in that order, is a shape c = a − b, such that c
is a part of a, any part of c is not a part of b, and the sum of b and c equals the sum of a
and b. The algebra has a zero given by the empty shape.

The definitions of sum and difference can also be expressed in terms of set
operations on point sets. The operation of sum is equivalent to the point set operation of
union and the operation of difference to the point set operation of difference or relative
complement. The product a ⋅ b of two shapes a and b is equivalent to the point set
operation of intersection; a ⋅ b = b ⋅ a = a − (a − b) = b − (b − a). We define the symmetric
difference of two shapes a and b as a ⊕ b = b ⊕ a = (a − b) + (b − a). Figure 2 illustrates
the specification of shapes in U3.

The algebra Un satisfies the axioms of a boolean ring under symmetric difference
and product. Shapes in algebra Un have their boundaries in algebra Un−1 (Stiny, 1991;
Krishnamurti, 1992). A shape a is said to contain a shape b if b is a part of a. Two shapes
overlap if they have a common part, that is there exists a nonzero element of Un that is a
part of both shapes, and neither shape contains the other. Two shapes share boundary if
they do not overlap, but their boundaries overlap in Un−1. Otherwise, the two shapes are
known to be disjoint.

4.2 Augmenting Shapes
A shape can be augmented by distinguishing certain points, which introduce

additional spatial relations. This is usually done by labelling these points. Let L be a set
of symbols, which may be empty. Then, we can define a set V0 = U0 × 2L. Thus, a point
is labelled if it has a set of symbols associated with it.

66 Ramesh Krishnamurti and Rudi Stouffs
A labelled shape is an element of V = U × V0. The algebra V has the same
property as U. A labelled shape is made up of a shape and a finite, but possibly empty, set
of labelled points. The set (S, L)+ is the set of all labelled shapes made up of shapes in the
set S ⊂ U and labels in the set L. If the empty shape is included, then the set is denoted
(S, L)∗ .

A shape grammar Gs is defined as a four-tuple Gs = (S, L, R, I); S represents the
terminal vocabulary; the set of symbols L specifies the nonterminal vocabulary; R is a
finite set of shape rules in the form a → b, where a ∈ (S, L)+ and b ∈ (S, L)∗ ; and
I ∈ (S, L)+ is the initial shape. The vocabulary of Gs equals (S, L)∗ .

A shape rule a → b is a spatial relation between shapes a and b; it applies to a
shape s if we can find a transformation f such that f(a) ≤ s, in which case f(b) replaces f(a)
in s under rule application. That is, when the shape rule is applied to the shape s it
produces the shape, s – f(a) + f(b). A shape grammar Gs defines a language L(Gs), the set
containing all shapes generated by the grammar Gs that have no symbols associated with
them.

L(Gs) = { x | x ∈ U such that I ⇒ ∗ x}.

5 Reversible and Irreversible Rules

String grammars and graph grammars share a common characteristic in that their
rules are reversible. That is, for any rule in such a grammar, a reverse rule can be
constructed that, when applying, consecutively, the original and the reverse rule to any
element of the algebra over which the grammar is defined, the result is identical to the
original element. Furthermore, the reverse of a rule a → b is the inverse rule b → a.

That such is the case is easily demonstrated for string grammars. A rule a → b
applies to a string u = xay and forms the string v = xby. The inverse rule b → a then

Figure 2. Two shapes a and b, their sum, differences, product and symmetric

shape a

shape b

a + b

a ⋅ b

a − b

b − a

a ⊕ b

Spatial Grammars : Motivation, Comparison, and New Results 67
applies to the string v to form the original string u. A similar proof can be developed for
graph grammars. However, this characteristic does not apply to either set grammars or
shape grammars. A set grammar rule or shape rule may be either reversible or
irreversible, depending on whether rhs ≤ lhs or not, respectively. We prove this for shape
rules below.

Intuitively, we note that when combining two sets or shapes under the respective
operation of ‘+’, identical elements ‘merge.’ That is, only a single occurrence of the
element appears in the resulting set or shape. Formally, this means that in the case of set
grammars, if denotes the cardinality of a set u, ≤ + . In the case of
string or graph grammars, given the appropriate definition of the size of a graph, this
would constitute strict equality. No comparable measure exists for shapes. The
irreversibility of shape rules, in general, is proven below.

Theorem 1: Given any shape rule a → b with b not a part of a, no shape rule x → y
exists such that, for any shape u, if u ⇒ v under rule a → b and a transformation f, then
v ⇒ u under rule x → y and the same transformation f.

Proof: Assume that, given a rule a → b and a transformation f, there exists a rule
x → y, which may be equal to b → a, such that for any shape u with f(a) ≤ u, the shape
that results from applying to u the rules a → b and x → y, in that order and under the same
transformation f, equals u. Note that two shapes are considered equal if they are a part of
each other, that is, if one is embedded in the other as an equal element. We may assume
that the rule x → y applies under the same transformation: if otherwise, we can always
transform the rule such that it applies under the same transformation, without changing
the rule application nor its scope. Thus,

u ⇒ v ⇒ w with v = u − f(a) + f(b) and
w = v − f(x) + f(y) = u − f(a) + f(b) − f(x) + f(y) = u.

Firstly, take u ← f(a). Then, u − f(a) = ∅ and f(b) − f(x) + f(y) = f(a) or, identically,
b − x + y = a. From the definition of sum, it follows that y ≤ a and (b − x) ≤ a. Since
b a, it must be that x a.

Secondly, take u ← f(a) + f(b). Then, because sum and difference define a
distributive lattice on U,

u − f(a) = (f(a) + f(b)) − f(a)
= (f(a) − f(a)) + (f(b) − f(a))
= ∅ + (f(b) − f(a))
= f(b) − f(a).

From the definition of difference (s − t ≤ s) it follows that

u − f(a) + f(b) = f(b) − f(a) + f(b) = f(b).

Thus, u = f(b) − f(x) + f(y) = f(a) + f(b) or b − x + y = a + b = b + a. If we add a to both
sides of the equation we obtain b − x + y + a = b + a + a or b − x + a = b + a (y ≤ a), which
is impossible, unless x ≤ a. But we know from above that x a.❏

u u v+ u v

≤ ≤

≤≤≤

68 Ramesh Krishnamurti and Rudi Stouffs
Figure 3. An example of an irreversible rule a → b (rule 1). We observe from the
exemplar derivations that when applying the rules a → b and b → a (rule 2)
subsequently and under the same transformation, the resulting shape may not equal
the original shape.

Figure 4. An example of a reversible rule a → b (rule 1). We observe from the
exemplar derivations that when applying the rules a → b and b → a (rule 2)
subsequently and under the same transformation, the resulting shape equals the
original shape.

Theorem 2: A shape rule a → b is reversible if and only if b ≤ a; the reverse rule is
b → a, or f(b) → f(a) for any transformation f.

Proof: We already know that a rule a → b is irreversible if b a. It follows that,

⇒ ⇒

⇒ ⇒

⇒ ⇒

“reverse” rule 2:rule 1:

→ →

derivations:

1 2

1 2

1 2

⇒ ⇒

“reverse” rule 2:rule 1:

→

derivations:
1 2

→

⇒ ⇒
1 2

≤

Spatial Grammars : Motivation, Comparison, and New Results 69
if a → b is reversible, b must be a part of a.
The following proves the converse, that is, if b ≤ a then a → b is reversible and the

reverse rule under the same transformation is b → a. Given the shape rules a → b and
b → a, and given any shape u with f(a) ≤ u, the shape that results from applying to u the
rules a → b and b → a, in that order and under the same transformation f, is

w = u − f(a) + f(b) − f(b) + f(a).

We have that b ≤ a and, therefore, f(b) ≤ f(a). Then, for any shape s, s − f(b) + f(a) = s +
f(a) = s + f(b) + f(a). Thus,

w =

=

= u − f(a) + f(a) = u + f(a) = u.❏

The theorem above gives a sufficient condition for the reversibility of a shape rule
independent of the shape to which it is applied. We can state a weaker condition for
reversibility that is dependent on the shape under application.

Theorem 3: A shape rule a → b applied to a shape u under a transformation f is
reversible if and only if f(b−a) ⋅ u = ∅ .

Proof: Given the shape u and transformation f, the shape rule a → b and its inverse
rule b → a, with f(a) ≤ u, the shape that results from the application of rules a → b and
b → a, in that order, is w = u − f(a) + f(b) − f(b) + f(a). We may assume that b a, and
therefore, b = (b−a) + (b ⋅ a) = (b ⋅ a) + (b−a). Hence,

w = u − f(a) + f(b) − f(b) + f(a)
= u − f(a) + f(b ⋅ a) + f(b−a) − f(b−a) − f(b ⋅ a) + f(a)
= u − f(a) + f(b ⋅ a) + f(b−a) − f(b−a) + f(a) since f(b ⋅ a) ≤ f(a)
= u − f(a) + f(b ⋅ a) − f(b−a) + f(a)

since s + f(b−a) − f(b−a) = s − f(b−a) for any shape s
= u − f(a) + f(b ⋅ a) + f(a) − f(b−a) since f(b−a) ⋅ f(a) = ∅
= u − f(a) + f(a) − f(b−a) since f(b ⋅ a) ≤ f(a)
= u + f(a) − f(b−a) since f(a) ≤ f(a)
= u − f(b−a) since for rule application f(a) ≤ u.

Thus, w = u if and only if f(b−a) ⋅ u = ∅ .❏

Irreversibility of shape rules distinguishes shape grammars from most other spatial
formalisms. The significance from a design standpoint, to us, at any rate, stems from the
fact that designing is a temporal activity. The irreversibility of a rule has the effect of
time stamping each rule application and, thus, capturing design ‘intent’ at any given time.

6 Subshape Detection

A rule in a grammar applies to a member of the algebra over which the grammar is

u − f(a) + f(b) − f(b) + f(a)

u − f(a) + f(b) + f(a)

≤≤≤

70 Ramesh Krishnamurti and Rudi Stouffs
defined, if an ‘occurrence’ of the lhs exists in the member under a valid transformation.
This relation, ≤, is termed substring, subset, subgraph or subshape, respectively, for the
grammars systems presented in this paper. Substring detection consists of a linear search
in a given string for a matching pattern string. Similarly, subset and subgraph detection
consist of a search of either a single entity (in the case of context-free grammars) or a
group of entities within a set or a graph. Such a search is straightforward, i.e., it requires
a one-to-one matching of entities that are identical under a certain transformation, even
though not always computationally efficient, e.g., the subgraph isomorphism problem is
NP-complete. Therefore, these grammars may be termed object-oriented; not so shape
grammars.

A prime requirement for shape grammar computation is that any subshape of a
shape is spatially replaceable. That is, a shape, even though with definite description, has
indefinitely many ‘touchable’ parts; a shape is an individual 3 (Stiny, 1982), and this is
reflected in the part relation defined on shapes. Subshape detection consists of finding
one or all valid transformations under which the lhs of the rule is a part of a given shape.
This problem is composed of finding a correspondence between the spatial elements in
the lhs and elements of the given shape, and determining the transformation that
represents this correspondence.

For U0 and U1 distinguishable points serve as the basis for reducing the problem
(Krishnamurti, 1981; Chase, 1989; Krishnamurti and Earl, 1992). The application of this
concept to Uk, for k > 1, is highly probable. In n dimensions, a correspondence between
n+1, not co-hyperplanar, distinguishable points uniquely determines a linear
transformation, that is a valid transformation if the corresponding ‘point figures’ are
similar. Otherwise, if no n+1, not co-hyperplanar, distinguishable points can be
determined in the lhs, then, an indeterminate number of valid transformations may exist.

6.1 Shape Recognition in U23
We present new results on shape recognition for shapes in U23. Shape recognition

problems in U23 can be reduced to corresponding problems in U13; consequently, we can
use recently published results (Krishnamurti and Earl, 1992). We outline the cases.

Case 1: There are four planes, at most two are parallel and they do not intersect in
a single point.

We can determine the intersecting lines for each pair of planes, of which there are
at least five (one pair may be parallel). Since the planes do not intersect in a single point,
neither do the lines. Thus, we can find two skew lines and reduce the problem
consequently to the case of two skew lines in U13, for which there exists a determinate
number of valid transformations (see case 5(a) in Krishnamurti and Earl (1992)).

Case 2: There are three planes, and not all the lines of intersection are parallel.

Another way to formulate this is the following: There are three planes, and their
normal vectors are linearly independent. As a consequence, no two planes are parallel.
Then, all the lines of intersection intersect in a single point, and the problem reduces to
the case in U13 when all lines are coincident at a common point and not all are colinear,

3 The concept of individuals differs from the generally accepted concept of classes (or sets)
in that no subdivision into subclasses or members is established or suggested a priori (Leonard and
Goodman, 1940).

Spatial Grammars : Motivation, Comparison, and New Results 71
for which there exists an indeterminate number of valid transformations (under scaling)
(see case 5(c) in Krishnamurti and Earl (1992)).

Figure 5. Examples illustring the determinate Case 1.

Case 3: There are three planes and no two are coplanar.

This problem reduces to the case in U13 when all lines are parallel and not all are
colinear, for which there exists either a determinate or an indeterminate number of valid
transformations (under translation) (see case 5(d) in Krishnamurti and Earl (1992)).

Case 4: There are two non-parallel planes.

This problem reduces to the case in U13 when all lines are colinear, for which there
exists an indeterminate number of valid transformations (under translation and scaling)
(see case 5(e) in Krishnamurti and Earl (1992)).

Case 5: All planes are parallel.

There exist an indeterminate number of valid transformations (under rotation and
translation). The base transformation maps the carriers of two planes in the lhs onto the
respective carriers of two planes in the given shape.

Case 6: All planes are coplanar.

There exist an indeterminate number of valid transformations (under rotation,
translation, and scaling). The base transformation maps the carrier of a plane in the lhs
onto the carrier of a plane in the given shape.

Cases 2 through 6 are illustrated in Figure 6. We can reduce the indeterminacy
inherent in shape recognition by considering the problem in the algebras of labelled
shapes, V0, V1 and V2. Following similar arguments to those outlined above, shape
recognition in V23 can be reduced to the problem in V13, which, in turn, can be reduced to
the problem in V03. We are still working on the cases for V23. The cases for V03 and V13
have been discussed elsewhere (Krishnamurti, 1981; Krishnamurti and Earl, 1992).

72 Ramesh Krishnamurti and Rudi Stouffs
Figure 6. Examples illustrating the indeterminate cases: (a) Case 2, (b, c) Case 3,
(d) Case 4, (e) Case 5 and (f) Case 6.

7 Conclusion

A framework for grammar implementations for a variety of formalisms has been
presented and the main computational issues that arise in each discussed. An outline of
the rule application is given for each formalism, though details of actual implementations
are omitted. These would depend on the specific representation used, algorithms for
which, in most cases, can be found in standard computer science texts on data structures.
The formalisms can be used in at least two ways: as a set of a priori rules that can be used
to produce spatial designs, or as a set of rules that are dynamically specified. In either
case, rule application is identical.

In our introduction, a case was made for a new theory of ‘shape editing,’ the
ability to interactively apply constructive techniques for the creation and manipulation of
drawing documents. We believe that spatial rules, based on the precepts of formal
grammars, provide the proper basis for work in this direction. We further believe that the
research reported here lends credible support for this belief.

Acknowledgements

We would like to thank the anonymous referees for their constructive comments.

References

Akin, Ö., 1986. “A Formalism for Problem Restructuring and Resolution in Design,”
Environment and Planning B: Planning and Design 13, pp. 223-232.

Carlson, C., 1989. The Explorer’s Guide to discoverForm™. Manual, Center for Art and

(d) (f)(e)

(b) (c)(a)

Spatial Grammars : Motivation, Comparison, and New Results 73
Technology, Carnegie Mellon University, Pittsburgh, PA.
Carlson, C., 1993. “Describing Spaces of Rectangular Dissections via Grammatical

Programming,” in U. Flemming and S. Van Wyk (eds.) Proceedings of CAAD
Futures ’93.

Carlson, C., McKelvey, R., and Woodbury, R.F., 1991. “Introduction to Structure and
Structure Grammars,” Environment and Planning B: Planning and Design 18,
pp. 417-426.

Chase, S.C., 1989. “Shapes and Shape Grammars: From Mathematical Model to
Computer Implementation,” Environment and Planning B: Planning and Design
16, pp. 215-242.

Chomsky, N., 1957. Syntactic Structures. The Hague: Mouton.
Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M., and Gero, J.S., 1990.

Knowledge-Based Design Systems. Reading, MA: Addison-Wesley.
Earl, C.F., 1986. “Creating Design Worlds,” Environment and Planning B: Planning and

Design 13, pp. 177-188.
Eves, H., 1963. Survey of Geometry: Volumes 1 and 2. Boston: Allyn and Bacon.
Fleisher, A., 1992. “Grammatical Architecture?” Environment and Planning B: Planning

and Design 19, pp. 221-226.
Flemming, U., 1987. “The Role of Shape Grammars in the Analysis and Creatiuon of

Design,” in Y.E. Kalay (ed.) Computability of Design. New York: John Wiley, pp.
245-272.

Garey, M.R., and Johnson, D.S., 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco: W. H. Freeman.

Gips, J., and Stiny, G., 1980. “Production Systems and Grammars: A Uniform Character-
ization,” Environment and Planning B: Planning and Design 7, pp. 399-408.

Heisserman, J., 1991. Generative Geometrical Design and Boundary Solid Grammars.
Ph.D Dissertation, Department of Architecture, Carnegie Mellon University,
Pittsburgh, PA.

Krishnamurti, R., 1981. “The Construction of Shapes,” Environment and Planning B:
Planning and Design 8, pp. 5-40.

Krishnamurti, R., 1982. “SGI: An Interpreter for Shape Grammars,” Research report,
Centre for Configurational Studies, The Open University, Milton Keynes,
England.

Krishnamurti, R., 1992. “The Maximal Representation of a Shape,” Environment and
Planning B: Planning and Design 19, pp. 267-288.

Krishnamurti, R., and Earl, C.F., 1992. “Shape Recognition in Three Dimensions,”
Environment and Planning B: Planning and Design 19, pp. 585-603.

Leonard, H.S., and Goodman, N., 1940. “The Calculus of Individuals and its Uses,” The
Journal of Symbolic Logic 5, pp. 45-55.

Mäntylä, M., 1988. An Introduction to Solid Modeling. Rockville, MD: Computer
Science Press.

Mitchell, W.M., 1990. The Logic of Architecture. Cambridge, MA: MIT Press.
Pavlidis, T., 1972. “Linear and Context-Free Graph Grammars,” Journal of the

Association for Computing Machinery 19, pp. 11-22.
Post, E., 1943. “Formal Reductions of the General Combinatorial Decision Problems,”

American Journal of Mathematics 65, pp. 197-268.
Snodgrass, A., and Coyne, R.D., 1990. “Is Designing Hermeneutical?” Working paper,

Faculty of Architecture, University of Sydney, Australia.
Stiny, G., 1980a. “Introduction to Shape and Shape Grammars,” Environment and

74 Ramesh Krishnamurti and Rudi Stouffs
Planning B: Planning and Design 7, pp. 343-351.
Stiny, G., 1980b. “Kindergarten Grammars: Designing with Froebel’s Building Gifts,”

Environment and Planning B: Planning and Design 7, pp. 343-351.
Stiny, G., 1982. “Shapes are Individuals,” Environment and Planning B: Planning and

Design 9, pp. 359-367.

75 Ramesh Krishnamurti and Rudi Stouffs
Stiny, G., 1991. “The Algebras of Design,” Research in Engineering Design 2, pp. 171-
181.

Sudkamp, T.A., 1988. Languages and Machines: An Introduction to the Theory of
Computer Science. Reading, MA: Addison-Wesley.

Sutherland, I.E., 1963. SKETCHPAD: A Man-Machine Graphical Communication
System. Baltimore, Md.: Spartan Books.

Woodbury, R.F., and Griffiths, E., 1993. “Layouts, Solids, Grammar Interpreters and
Firestations: Some Experience from the Trenches,” in U. Flemming and S. Van
Wyk (eds.) Proceedings of CAAD Futures ’93.

Woodbury, R.F., Radford, A.D., Taplin, P.N., and Coppins, S.A, 1992. “Tartan Worlds: A
Generative Symbol Grammar System,” in D. Noble and K. Kensek (eds.)
ACADIA ’92.

