
15 Gero (ed.), Arlijiciallnrelligellce ill Desigll '02, 105-128 
© 2002 Kluwer Academic Publishers, Dordrecht. 

REPRESENTA TIONAL FLEXIBILITY FOR DESIGN 

RUD! STOUFFS 
Delft University of Technology 
The Netherlands 

AND 

RAMESH KRISHNAMURTI 
Carnegie Mellon University 
USA 

Abstract. We present an abstraction of representational schema to 
model sorts that allows us to explore the mathematical properties of a 
constructive approach to sorts. We apply this approach to 
representational schema defined as compositions of primitive data 
types, and explore a comparison of representational structures with 
respect to scope and coverage. We consider a behavioral specification 
for sorts in order to empower these representational structures to 
support design activities effectively. We provide an example of the use 
of sorts to represent alternative views to a design problem. We 
conclude with a comparison with other approaches for flexibility of 
design representations. 

1. Introduction 

A variety of design problems requires a multiplicity of viewpoints each 
distinguished by particular interests and emphases. For instance, the 
architect is concerned with aesthetic and configurational aspects of a design, 
a structural engineer is engaged by the structural members and their 
relationships , and a performance engineer is engaged by the thermal, 
lighting, or acoustical performance of the eventual design. Each of these 
views - derived from an understanding of current problem solution 
techniques in these respective domains - require different representations of 
the same entity. The work described in this paper is based on the recognition 
that there will always be a need for different representations of the same 
entity , albeit a building or building Rart, a shaRe or other complex attribute. 



106 R STOUFFS AND R KRISHNAMURTI 

This exigency ensues, formally , to define the relations between alternative 
representations, in order to support translation and identify where exact 
translation is possible, and to define coverage of different representations. 

In order to support representational flexibility for design, a framework 
must be conceived that provides support for exploring alternative design 
representations, for comparing design representations with respect to scope 
and coverage, and for mapping design information between representations, 
even if their scopes are not identical. Typically, a representation is a 
complex structure of attributes and constructors, and a representation may 
be a construction of another (Stouffs, Krishnamurti and Eastman 1996). 
Comparing different representations, therefore, requires a comparison of the 
respective attributes, their mutual relationships, and the overall construction. 
On the other hand, the expressive power of a representational framework is 
defined by its vocabulary of primitive attributes (or data types) and 
constructors. A proper definition of this representational framework and its 
vocabulary can give designers the freedom and flexibility to develop or 
adopt representations that serve their intentions and needs, while at the same 
time these representations can be formally compared with respect to scope 
and coverage in order to support information exchange. Such a comparison 
will not only yield a possible mapping, but also uncover potential data loss 
when moving data from less-restrictive to more-restrictive representations. 

Requicha (1980) defines a representational schema as a relationship 
between, on one hand, representations as concrete descriptions and, on the 
other hand, models as the abstract entities described. Models are considered 
mathematical abstractions of real-world or designed entities; representations 
are symbolic descriptions that can be conceived and manipulated using a 
computer. Each particular representation describes a single model but 
generally adheres to a global descriptive convention as expressed by the 
representational schema. We seek to develop a formalism that is based on a 
general description and, at the same time, applies to the particular 
representational schema that we are ultimately interested in. Hereto, we 
consider an abstraction of representational schema to model sorts that 
allows us to explore the mathematical properties of a constructive approach 
to sorts. We then apply this constructive approach to representational 
schema defined as compositions of primitive data types, and explore a 
comparison of representational structures with respect to scope and 
coverage. We consider a behavioral specification for sorts in order to 
empower these representational structures to support design activities 
effectively. We provide an example of the use of sorts to represent 
alternative views to a design problem. We conclude with a comparison with 
other approaches for tlexibility of design representations. 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 107 

2. A Conceptual Definition of Sorts 

A sort constitutes the basic entity for our formalism. Conceptually, a sort 
may define a set of similar data elements, e.g., a class of objects or the set of 
tuples solving a system of equations. For example, points and lines each are 
a sort and so are triangles and squares. Sorts are not limited to geometrical 
objects, colors are a sort and other attributes can also define sorts. When 
described by a system of equations, the solutions to this system specify the 
data elements with respect to some chosen universe, e.g., lines may be 
expressed as infinite sets of points in a Euclidean space, colors as entities in 
an RGB (red-green-blue) or HSI (hue-saturation-intensity) space. Within 
such a system of equations, we can distinguish two types of parameters and 
equations. Characteristic parameters serve to define a generalized data 
element within its universe, e.g., a line in Euclidean space, or a color in 
RGB space. Instance parameters, on the other hand, identify each data 
element within the sort, e.g., a particular line in a sort of lines. For example, 
in the description of a (cartesian) coordinate sort, a characteristic parameter 
x specifies the coordinate as an entity on a cartesian axis, and an instance 
parameter Xc serves to represent each value x may take within this sort, 
x = xc. Similarly, characteristic equations characterize a generalized data 
element, while instance equations bound the set of valid data elements. In 
the description of the coordinate sort, x = Xc is the characteristic equation; an 
optional instance equation may take the form x,, 2: 0, limiting the coordinates 
to positive values. 

If for a sort a, Ac denotes the system of characteristic equations, Ai the 

system of instance equations, A c = {a r , ... ,a:; } the set of characteristic 

parameters, and A' = {a;, ... , a;, } the set of instance parameters, then, the 

representation of a can be written symbolically as follows, 

(1) 

For example, a sort of positive coordinates may be specified as 

II
X = xC (X}II 
xC 2: 0 (xc} 

(2) 

Similarly, a sort of infinite lines may be specified as 

II
(X2 - Xl)(Y - Yl) = (Y2 - Yl)(X - Xl) (x, y} II 

Xl ;t X2 V yl;t y2 (Xl, yl, X2, Y2} 
(3) 



108 R STOUFFS AND R KRISHNAMURTI 

Additional instance equations may limit which lines belong to the sort. 
Sorts combine into new sorts. A composite sort can be defined as the 

result of an operation on two or more operand sorts; sometimes, an 
expression in terms of a single system of equations, as described above, may 
exist. Given two sorts a and b, the sort of all data elements that belong to a 
or b is the result of the operation of sum, a + b. All data elements that 
belong to both a and b define the result of the operation of product (or 
intersection), a . b. The result is zero, a . b = 0, if no data elements belong to 
both a and b. The result of the operation of difference, a - b, is the sort of 
all data elements that belong to a but not to b. Data elements from a and b 
can also be combined into 2-tuples under the operation of cartesian product: 
a x b contains all 2-tuples of which the first member belongs to a and the 
second to b. 

For each operation, one or more rules can be declared that govern when 
the expression can be reduced to a single system of equations. For instance, 
the product a . b is non-zero if the following requirements hold (we refer to 
(Stouffs and Krishnamurti 1998) for an elaborate account, as well as for a 
proper definition of the terms domains, identifiable, and equivalent within 
their respective contexts): 
• the characteristic parameters of a and b have identical domains, A'" = BC 

• the instance parameters of a and b are identifiable, Ai = Bi 
• the characteristic equations of a and b are equivalent, Ae = Be 
The instance equations of a . b are a composition of the instance equations 
of a and b under the logical connective /\ (and). In the case that the instance 
equations of a and b exclude each other, then, a . b = 0. The following rules 
apply: 

BCII Bi ---> 0, otherwise (4) 

The difference of two sorts is dependent on the existence of another sort 
that is a common part of both sorts. Otherwise, if a . b = 0, then, a - b = a. If 
a and b have identical domains and equivalent characteristic equations, then, 
the instance equations of a - b are a composition of the instance equations 
of a and the negation (-,) of the instance equations of b, under the logical 

connective /\. The following rules result: 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 109 

Atll Ai ' otherwise (5) 

Other rules can be specified for the operations of sum, and cartesian 
product (Stouffs and Krishnamurti 1998). However, these do not always 
reduce to a single system of equations; given two sorts a and b that do not 
have identical domains, their sum a + b cannot be reduced. Instead, by using 
distributive rules, any expression of sorts over the operations of sum and 
cartesian product (as well as product and difference) can be reduced to a 
semi-canonical representational form using sum and cartesian product over 
at most two levels. The top level specifies a composition over sum of one or 
more sorts, each of which is a composition over cartesian product, at the 
second level. In this tree structure, the leaf nodes correspond to sorts that 
can be expressed through a single system of equations. Naturally, either or 
both levels may be absent depending on the particular sort. As an example, 
consider the sorts of points, colors and labels: the sort of all points with 
either a color or a label assigned is identical to the sort of all colored and all 
labeled points; points X (colors + labels) = points x colors + points X labels. 
The following distributive rules apply: 

a x (b + c) ----t a x b + a x c 
(a + b) xc ----t a x c + b x c (6) 

Furthermore, a subsumption relationship, ::;, may be defined over sorts: 

(7) 

From the semi-canonical form described above, we can derive some rules 
that govern when a sort may be a part of another sort. Consider the 
following classification on the universe of sorts: let Do be the set of sorts 
that can be expressed by a single system of equations (0 composition levels), 
let DJ be the set of sorts that can be expressed using only the operation of 
cartesian product (I composition level), and let D2 be the set of sorts that 
include the operation of sum (I or 2 composition levels). Then, for a E Di to 
be a part of b E Dj , j must either be equal to i or equal to 2 (Stouffs and 
Krishnamurti 1998). If i and j are 0, rules (4) specify when a is a part of b, 
or a· b = a: provided the characteristic equations are identical, a sort 
subsumes another sort if its instance equations form a subsystem of the 
other sort's instance equations. 



110 R STOUFFS AND R KRISHNAMURTI 

The subsumption relationship facilitates the comparison of sorts in terms 
of scope and coverage. For example, the sum of two sorts has both operands 
as a part. Similarly, the product of two sorts forms a part of both sorts, 
while the operations of product and difference define a classification of a 
sort with respect to another sort into disjoint parts. 

3. A Constructive Approach to Representational Structures 

For all practical purposes, we consider elementary data types as building 
blocks for the construction of sorts as representational structures. The 
representational structure of a primitive sort, corresponding to an 
elementary data type, may be the tuple of values that correspond to the 
instance parameters of the mathematical expression of this same sort. The 
systems of characteristic and instance equations are encoded in the 
definition of the primitive sort in order to allow for an interpretation of the 
representational structure. Since instance equations constrain the set of valid 
data elements, the definition of a primitive sort may include a number of 
arguments that offer access to (some of) these constraints when instantiating 
a primitive sort. At instantiation, a primitive sort is also assigned a name, in 
order to semantically distinguish sorts that are, otherwise, syntactically 
identical. 

3.1 FORMAL COMPOSITIONAL OPERATORS 

Primitive sorts combine to composite sorts under formal compositional 
operations over sorts. These formal characteristics should derive from the 
conceptual operations considered above, defining a subsumption 
relationship that facilitates the comparison of sorts, and offering reduction 
rules and distribution rules that give access to a semi-canonical form. At the 
same time, these operations must reflect on semantic relationships that make 
sense in a representational definition of design data. For example, the 
operation of sum allows for disjunctively co-ordinate compositions of 
multiple sorts; a resulting data collection combines the different types of 
data elements from its operand sorts without imposing any hierarchical 
relationships. The resulting representational structure distinguishes all 
operand structures such that each data element belongs explicitly to one of 
the operand sorts. For example, a sort of points and lines distinguishes each 
data element as either a point or a line. Even if both operand sorts are 
syntactically identical, though semantically distinguished, all data elements 
are still recognized as belonging to one sort or the other. For example, an 
expression of a rule has both a lhs (Jeft-hand-side) and rhs (right-hand-side) 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 111 

of the same composite data type; any data element must belong either to the 
lhs or rhs. Conceptually, a rule element might instead be considered as a 2-
tuple, consisting of a lhs and rhs element, in accordance to the operation of 
cartesian product. However, in a general expression of a rule, either of the 
lhs and rhs components may be omitted, as allowed by the operation of sum. 

The attribute operator, instead, specifies a subordinate composition of 
sorts. The resulting representational structure is a combination of both 
operand structures under an object-attribute relationship. For example, a 
sort of labeled points is specified as a sort of points, with one or more labels 
assigned to each point in the data collection. Similar to the operation of 
cartesian product, the attribute operation is non-commutative. Other 
interpretations of the operation of cartesian product can also be considered. 
Conceptually, a composition of the operation of cartesian product to the nth 
degree enables the definition of a sort of n-tuples of data elements from the 
respective operand sorts. Correspondingly, a vector operator can be defined 
that allows for conjunctively co-ordinate compositions of multiple sorts. 
More interestingly, a grid operator can allow for co-ordinate compositions 
of a single sort, with a specification of the grid size according to one, two, 
or more dimensions. Within the resulting representational structure, operand 
data elements are distinguished by the grid location these are assigned to. As 
an example, a grid operation may be useful in tiling design in order to 
distinguish the individual tiles in a larger composition. 

Considering the attribute operation, denoted 'A', instead of the operation 
of cartesian product, all associative and distributive rules that apply to sorts 
conceptually (Stouffs and Krishnamurti 1998), still apply to sorts as 
representational structures, e.g.: 

a 1\ (b 1\ c) -+ a 1\ b 1\ C 

(a 1\ b) 1\ C -+ a 1\ b 1\ C 

a 1\ (b + c) -+ a 1\ b + a 1\ c 
(a+b)l\c -+ al\c+bl\c (8) 

However, the reduction to a semi-canonical form is complicated by the 
ability to semantically identify a sort, that is, to assign a name to a sort. Let 
':' denote the operation of semantic identification. Then, consider the 
following associative rule over the attribute operation: 

a 1\ (d : b 1\ c) -+ a 1\ b 1\ C (9) 

Both sides to the rule are syntactically equivalent, i.e., in both cases a data 
collection contains data elements from a, each of which has an attribute 
collection consisting of data elements from b, again, each of which has an 
attribute collection consisting of data elements from c. However, 



112 R STOUFFS AND R KRISHNAMURTI 

semantically, the attribute collections of data elements of a are defined and 
identified as belonging to d or b 1\ c, respectively. When attempting to 
interpret and deal with a sort, such a distinction may be important, as it 
offers a simple way of limiting the depth at which a sortal specification 
must be minimally considered. Therefore, though rule (9) may be used when 
comparing sorts with respect to scope and coverage, this reduction is not 
automatically applied in the definition of a sort. Similarly, the following 
distributive rule only serves the comparison of sorts: 

a 1\ (d : b + c) -+ a 1\ b + a 1\ c (10) 

The situation is even more complex if, under an attribute operation, the 
first argument is a named composite sort, as in the case of (d : a 1\ b) 1\ c. 
Under the attribute operator, data collections are assigned as attribute to 
individual data elements . In the sort d : a 1\ b, these are the individual data 
elements of b within collections that are themselves assigned as attribute to 
elements of a. A representational structure that links the data collections of 
c to the individual data elements of b will obliterate the boundaries of the 
semantic identification as defined for d, resulting in the sort a 1\ b 1\ c. In 
order to maintain a reference to this semantic identification, a new, named 
sort c'd: a 1\ b 1\ C may be constructed to replace (d: a 1\ b) 1\ C as the result 
of this definition. Note that the apostrophe should not be mistaken as an 
operator, but instead serves as a binding element in the construction of a 
name out of two component names. Consider the sorts of labeledpoints : 
points 1\ labels and colors. Then, the construction labeledpoints 1\ colors is 
redefined as colors'labeledpoints : points 1\ labels 1\ colors, effectively 
assigning colors to labels that are assigned to points, while maintaining a 
reference to the original construction of the sort through its name. The 
following rules can be specified to apply automatically in the definition of a 
sort: 

(d: a 1\ b) 1\ C -+ c'd: a 1\ b 1\ c 
(d: a + b) 1\ C -+ c'd: a 1\ b + a 1\ c (11) 

Thus, although a semi-canonical form can be arrived at to support the 
comparison of sorts with respect to scope and coverage, representational 
structures corresponding to sorts may contain many more levels of 
operations over attribute and sum that retlect on the historical definition of 
this sort as a hierarchical composition of previously defined sorts. 

Operations of product and difference can also be defined on sorts as 
representational structures. However, their semantic significance to 
representational structures is doubtful. Consider the following distributive 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 113 

rules involving either the operation of product or difference with the 
operation of sum or cartesian product (Stouffs and Krishnamurti 1998): 

(a + b) . c ~ a . c + b . c 
a . (b + c) ~ a . b + a . c 

(a + b) - c ~ (a - c) + (b - c) 
a - (b + c) ~ (a - b) . (a - c) 

(a A b) . (c A d) ~ (a . c) A (b . d) if a . c =t= 0 and b . d =t= 0; 

(a A b) . c ~ 0 and 
a · (b A c) ~ 0, otherwise 

(12) 

(13) 

(a A b) - (c A d) ~ (a - c) A b + a A (b - d) if a - c =t= 0 and b - d =t= 0; 
(a A b) - c ~ a A band 
c - (a A b) ~ c, otherwise (14) 

Upon applying these distributive rules to any sortal compOSitIOn 
involving any of these four operators, the only operations of product or 
difference that will result will be between primitive sorts that differ 
syntactically only in their arguments shaping the constraints that govern the 
resulting sort. According to rules (4) and (5), as specified for sorts 
conceptually, the resulting sort can be interpreted in terms of its overall 
constraints as a composition of the operand constraints (or instance 
equations) and defined as such. However, in this case, all references to the 
original construction of the sort will be lost, while the same effect can be 
achieved simply by altering the respective sorts' constraints. If instead, the 
original construction is maintained, a sort results that no longer offers a one
to-one relationship between its definition as an operational expression on 
primitive sorts and its representational structure. After all, the subtraction of 
a sort constrains the data elements that can be represented but the 
subtraction operation itself cannot be reflected in the representational 
structure. While we are interested in the definition of a language of 
expression of representational structures, ultimately, we are concerned with 
the representational structures themselves and the data that can be, and is, 
represented in these. 

3.2 COMPARING REPRESENTATIONAL STRUCTURES 

Sorts can be compared and matched as, roughly, equivalent, similar and 
convertible. Firstly, two sorts are equivalent if both are semantically derived 
from the same sort, where a semantic derivation consists of zero, one, or 
more renaming operations, b: a. Under equivalency, one sort may be 



114 R STOUFFS AND R KRISHNAMURTI 

semantically derived from the other, or both may be semantically derived 
from a third sort. Thus, the equivalency relationship is reflexive, 
commutative, and transitive . Obviously, two sorts are identical only if these 
are also semantically identical. Secondly, two sorts are denoted similar if 
these are similarly constructed from the same primitive components, that is, 
the respective primitive components are syntactically identical and their 
respective constructions can be reduced to the same semi-canonical form 
using the associative and distributive rules specified above. Two primitive 
sorts are said to be syntactically identical if these have been identically 
defined, except for their name. A further distinction may be made between 
strongly similar sorts, which are constructed over equivalent sorts, and 
weakly similar sorts, which also contain (derivations from) primitive sorts 
that are only syntactically identical. For example, a 1\ b and a 1\ care 
strongly similar if and only if band c are equivalent. Also, a + (d : b + c) 
and (e : a + b) + C are strongly similar. The similarity relationship is also 
reflexive, commutative, and transitive. 

Equivalent as well as similar sorts guarantee a correct exchange of data 
without data loss, except semantically. Furthermore, if one sort matches a 
part of another sort, under a composition over sum, data exchange without 
data loss applies from the first sort to the second. In the opposite direction, 
the occurrence of data loss is fully dependent on the actual data that is being 
exchanged. If two sorts are not similar, these may still be convertible, 
possibly without data loss. This is the case if two primitive sorts differ only 
in their arguments or constraints, similar to the instance equations of the 
mathematical approach. Data loss is then dependent on the relationships 
between these constraints and, possibly, on the actual data. This is also the 
case if, given a sort, another sort is constructed from this sort by reversing 
one or more attribute relationships, for instance, a 1\ band b 1\ a are said to 
be convertible. (Whether data-loss occurs in such conversions is dependent 
on the behavioral categories of the constituent sorts; see section 4.2 
"Composite Behaviors.") Naturally, sorts that are similarly constructed over 
convertible sorts are also convertible. 

Given a partial match under the attribute relationship, sorts are still 
partially convertible. Again , data loss will be dependent on the actual match 
and on the direction of the data exchange. For example, two sorts a and 
a 1\ b are partially convertible. Data loss occurs when exchanging data from 
a 1\ b to a: all attribute information represented in b will be discarded. When 
exchanging data from a to a 1\ b, a default attribute must be assigned to each 
data element from a in order to ensure the validity of the resulting 
information. Finally, two sorts are incongruous if no match, even partial, 
applies. 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 115 

While two sorts may be uniquely classified as equivalent, convertible, or 
otherwise, various alternative matches may still exist. Consider the matching 
of two compositions of sorts under the operation of sum. Each pairing of 
component sorts, one from each composition, may be a potential match. If 
one composition contains two equivalent sorts, neither of which has an 
identical counterpart in the other composition, though at least one equivalent 
match does apply, then, multiple combinations of sorts from either 
composition will be evenly matched. A decision from the user will be 
necessary to resolve this situation . This decision may be stored for later 
retrieval, such that subsequent occurrences of the same or similar match no 
longer require the user's interaction. In another case, a single best match 
may exist and be automatically selected for a component sort, even if the 
intention of the user may be otherwise. As an example, a primitive sort may 
have an equivalent as well as a convertible counterpart in the other 
composition, with the user' s preference for the convertible match. In this 
case, a lesser match may be assigned a higher priority by the user such that 
this is considered first in the matching process. 

In general, a quantification of the matching between sorts may be 
considered, with integral values defined by the identical, equivalent, 
strongly similar, weakly similar, convertible, partially convertible, or 
incongruent character of the match, increasingly in this order, and decimal 
values reflecting on the details of the match. For example, a decimal value 
for a strongly similar match may be derived from, amongst others, the 
number of equivalent versus identical component sorts. Then, the user may 
choose to override selective matches by assigning higher (or lower) 
matching values . 

The comparison and matching of sorts for data exchange allows one to 
monitor data-integrity during the design process, at all times, for a large 
variety of data. Specifically, the coverage of sorts can be compared; data 
can always be moved from more-restrictive to less-restrictive sorts without 
data loss; and data loss can be measured when moving data in the opposite 
direction. Active control over which conversions should and should not be 
allowed or considered may be presented to the user in the form of a level 
tuner: three user-defined levels specify matching value intervals of 
predefined handling behavior Table I . 

4. Behavioral Specifications for Sorts 

Most CAD applications adopt an object-oriented approach at the conceptual 
level, providing users with line segments, surfaces, or solids as objects with 



116 R STOUFFS AND R KRISHNAMURTI 

attributes that maintain their properties at all times, unless explicitly altered 
by the user. While conceptually attractive and very understandable to the 
user, this approach is inimical to creative design. Creative design activities 
rely on a restructuring of information uncaptured in the current information 
structure, as when looking at a design provides new insights that lead to a 
new interpretation of the design elements. It can be proven that continuity of 
computational change requires an anticipation of the structures that are to be 
changed (Krishnamurti and Stouffs 1997). Creativity, on the other hand, is 
devoid of anticipation. 

TABLE I. Level tuner 
, .. --_.- - -_ .. ......... _._-_.- •.. . _- --- -._-_ ... - - -... - -- . - -----~--

i 
I level handling , 

[ < I, 
sorts are considered equal, 

conversion is performed without notification 

. < 12 user is notified of conversion 

I 

< I, user's approval is requested for conversion i 
, 

conversion is not allowed, I ?:.l, 
! unless upon user's specific initiation 

Consider for example the composition of squares in figure 1. Specified as 
two square objects, each square can almost effortlessly be resized and 
moved. Instead, a manipulation of the individual line segments would 
require each square to be re-represented as a collection of four line 
segments. Visually, the composition in Figure I contains not two but three 
squares. Irrespective of whether the composition has been defined as a 
collection of two square objects or as a collection of twice four line 
segments, neither representation allows the third square easily to be 
distinguished and manipulated, unless it is additionally defined in the 
composition, possibly by drawing the shape over. Instead, if line segments 
would constitute dynamic data entities that can split themselves into any 
number of smaller line segments, the resulting composition of line segments 
would not only represent each of the three squares, but also an infinite 
number of other collections of line segments. Furthermore, 
representationally, each of these configurations has the same significance, 
and the designer may select anyone as an interpretation of the design. 

When dispensing with the object-oriented approach at a representational 
level, operations that may otherwise seem trivial, such as adding or 
removing elements or figures, become resolutely non-trivial. Consider the 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 117 

addition of two numbers, in the case these represent cardinal values, e.g., a 
number of columns that is increased, and ordinal values, e.g., for a given 
space, determining the minimum distance to a fire exit or the (maximum) 
amount of ventilation required given a variety of activities. Similarly, 
consider additive versus subtractive colors, depending on whether these 
refer to the mixing of surface paints or light colors, respectively. A 
specification of such operational behavior needs to be included in the 
definition of a data type or structure. Fortunately, this behavioral 
specification may be reasonably limited to a few basic operations. 
Specifically, we consider the common arithmetic operations of addition and 
subtraction, and of product or intersection. The most common CAD 
operations of creation and deletion, and selection and deselection, can all be 
expressed as a combination of addition and subtraction operations from one 
sort or design space to another. More complex operations of grouping and 
layering can be similarly defined over more complex sorts (Stouffs and 
Krishnamurti 1996). 

Figure I. A simple, yet, ambiguous composition of (two or three) squares 

A behavioral specification also is a prerequisite for an effective exchange 
of data between various representations and for a uniform handling of 
different and a priori unknown data structures. Consider the association of 
building performance data to design geometries. The behavior of these data 
as a result of alterations to the geometries can be expressed through a 
number of operations chosen to match the expected behavior. When an 
application receives the data together with its behavioral specification, the 
application can correctly interpret, manipulate, and represent this 
information without unexpected data loss. 

For maximum flexibility, when composing sorts from other sorts, the 
operational behavior of the resulting sort should be automatically derived 
from the behavior of the component sorts. Hereto, we consider an algebraic 
framework for the specification of a sorts' operational behavior based on a 
partial order relationship (Stouffs 1994; Stiny 1991). This partial order 
relationship determines when an element can be considered a part of 



118 R STOUFFS AND R KRISHNAMURTI 

another element. Fundamentally, any part of a data element defines in itself 
a valid data element of the same data type, and any combination of data 
elements under addition, subtraction, and product also constitutes a valid 
data element. Algebraically written, any collection of data elements of the 
same type is a member of an algebra that is ordered by a part relation and 
closed under the algebraic operations of addition, subtraction, and product. 

4.1 TYPES OF BEHAVIORS 

The simplest behavior that fits the requirements is a discrete behavior, 
corresponding to a mathematical set, where the part relation reduces to the 
subset relation, and the operations of addition, subtraction, and product 
correspond to set union, difference, and intersection, respectively. In other 
words, if a and b denote two data collections of a sort with discrete 
behavior, and A and B denote the corresponding sets of data elements (a : A 
specifies A as a representation of a), then 

a : A/\b:B ~ a:5.b<;:=>A~B 

a+b:AuB 
a-b: AlB 
a·b:AnB (15) 

Under the discrete behavior, an explicit action is still required from the 
user in order to alter any data element. Only if two elements are identical do 
these combine into one. Stiny (1992) explores the application of the 
algebraic model to geometries with weights as attributes. Weights may be 
considered to denote thickness for points and lines, or tones for surfaces and 
volumes. A behavior for weights becomes apparent from drawings: a single 
line drawn multiple times, every time with different thickness, appears as it 
was drawn once with the largest thickness, even though it assumes the same 
line with other thickness. Thus, a collection of weights always combines 
into a single weight, which has as value the least upper bound of all the 
individual weight values, i.e., their maximum value. This behavior is termed 
ordinal; using numbers to represent weights, the part relation on weights 
corresponds to the less-than-or-equal relation on numbers; 

a:{x}/\b:{y} ~ a:5.b<;:=>x:5.y 
a + b : (max(x, y)} 
a - b : {} if x:5. y, else {x} 
a· b: (min(x, y)} (\6) 

Line segments may be considered as intervals on infinite line carriers. An 
interval behavior applies to line segments as well as intervals of time or 



REPRESENT A TlONAL FLEXIBILITY FOR DESIGN 119 

other one-dimensional quantities: intervals on the same carrier that are 
adjacent or intersect combine into a single interval. An interval is a part of 
another interval if it is embedded in this interval. A specification of the 
interval behavior can be expressed in terms of the behavior of the interval 
boundaries. Let B[a] denote the boundary of a collection a of intervals and, 
given two collections a and b, let I" denote the collection of boundaries of a 
that lie within b, 0" denote the collection of boundaries of a that lie outside 
of b, M the collection of boundaries of both a and b where the respective 
intervals lie on the same side of the boundary, and N the collection of 
boundaries of both a and b where the respective intervals lie on opposite 
sides of the boundary (Stouffs 1994), Figure 2. Then, 

a: B[a] /\ b : B[b] =? a ~ b ¢=? I" = 0 /\ Ob = 0 /\ N = 0 
a + b : B[a + b] = 0" + Ob + M 
a - b: B[a - b) = 0" + h + N 
a . b : B[a . b] = f" + h + M 

N M 

(17) 

Figure 2. The specification of the houndary collections I", 0", ft" 0,,, M and N, given two 

collections of intervals a (above) and b (below). 

Note that the interval behavior also applies in the case of infinite 
intervals, provided an appropriate representation of both (infinite) ends of a 
carrier exists. Similar behaviors can be specified for plane segments and 
volumes (Stouffs 1994) as well as hypersegments of higher dimension; (17) 
still applies though the construction of la, Oa, h, Ob, M, and N is 
correspondingly more complex, Figure 3. 

4.2 COMPOSITE BEHAVIORS 

A composite sort inherits its behavior from its component sorts in a manner 
that depends on the compositional relationship. Under the operation of sum, 
the behavior is that of the component sort for each component. Data 
collections from different component sorts never interact, the resulting data 
collection, corresponding the composite sort, is the group of collections 
from all component sorts. When an operation applies to two data collections 



120 R STOUFFS AND R KRISHNAMURTI 

of the same composite sort, the operation instead applies to the respective 
component collections. 

Figure 3. The boundary collections I", 0", Ib' Oh, M and N for two volumes a and b, and the 
collections of volumes resu Iting from the operations a + b, a . b, a - band b - a. 

The attribute operation on sorts specifies a dependency relation on the 
sorts in a composition, where each component, except the first, defines an 
attribute sort to the previous component. That is, a corresponding data 
collection consists of data elements of the first component sort, each 
element of which has, as attribute, another data collection corresponding to 
the sort as a composition of all but the first component, in a recursive 
manner. Thus, the behavior of such a sort is defined by the behavior of its 
first component sort. Specifically, when an operation applies to two data 
collections of the same composite sort (under the attribute relationship), 
identical data elements merge and their attribute collections combine under 
the same operation. Any elements that have an empty attribute collection are 
removed. An object-oriented behavior can be achieved for any sort by 
combining this with a sort of (unique) identifiers under the attribute 
relationship. The resulting data form is akin to a database of individuals, 
where each individual has a unique key assigned. 

Behaviors play an important role when assessing data-loss in information 
exchange between different sorts. Reorganizing component sorts under the 
attribute relationship into a different compositional hierarchy may alter the 
corresponding behavior and trigger data-loss. Consider a sort of weighted 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 121 

points, i.e., a sort of points with attribute weights, and a sort of points of 
weights, i.e., a sort of weights with attribute points. A collection of 
weighted points defines a set of non-coincident points, each of which has a 
single weight assigned. These weights may be different for different points. 
The collection's behavior is discrete. Instead, a collection of points of 
weights is defined as a single weight with an attribute collection of points, 
and has an ordinal behavior. In both cases points are associated with 
weights. However, in the first case different points may be associated with 
different weights, whereas, in the second case all points are associated with 
the same weight. In a conversion from the first to the second sort, data-loss 
is inevitable. 

5. Example 

Consider design information in the form of design constraints and related 
information, e.g., for a steel-framed building project (Lottaz, Stouffs and 
Smith 2000), Figure 4. The information consists, minimally, of a set of 
authors, a set of constraints for each author, a common set of variables with 
each variable linked to the constraints defined over this variable, and a 
constraint solver (in the form of a URL) for each author (or constraint). 

Figure 4. Design problem from a building project: the dimensioning of holes in steel beams 

The author names, the constraint expressions and the variable names all 
define primitive sorts with characteristic individual 'Label' . The constraint 
solvers define a primitive sort with characteristic individual 'UrI'. Three 
more primitive sorts with characteristic individual 'Property' serve to 
represent the various links between the constraint expressions and, 
respectively, the author names, variabJe names, and constraint solvers. 
Figure 5 presents a definition of these sorts, including a graphical depiction. 



122 R STOUFFS AND R KRISHNAMURTI 

authornames : [Label] 
constraintexpressions : [Label) 
variablenames : [Label] 
constraintsolvers : [Uri) 
(isdefinedby. hasconstraints) : [Property] (constraintexpressions. authomames) 
(contains. belongsto) : [property) (constraintexpressions. variablenames) 
(issolvedby. solves) : [Property) (constraintexpressions. constraintsolvers) 

constraintexpressions authomames 

constraintexpressions variablenames 

constraintexpressions constraintsolvers 

Figure 5. Definition and graphical depiction of primitive sorts for the constraints example 

An organization of the design information by type, i.e., constraints, 
variables, authors, and solvers, with entities linked as appropriate, presents a 
straightforward and efficient way of storing this information into a relational 
database, Figure 6. 

In order to support an actual design session, the author's design itself, 
i.e., his or her design constraints, should form the focus of the information 
organization. All other information entities can be made accessible from 
these, thereby clarifying each constraint's context and role in the design. A 
corresponding representational schema is presented in Figure 7. The 
author's constraints each specify the variables affected and provide access 
to the author's constraint solver. Each variable, in turn, specifies the 
constraints from other authors that are defined over this variable, and each 
of these constraints specifies its author. All information links are 
additionally provided. This representational schema supports the user in 
evaluating the effect of altering a constraint on the design and whether such 
a change may interfere with other constraints specified by the collaboration 
partners. 

Figure 8 offers a VRML visualization of design data from the steel
framed building project represented in this schema. 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 123 

database: authors + constraints + variables + solvers 
authors: authornames 1\ hasconstraints 
constraints: constraintexpressions 1\ constraint properties 
constraint properties : isdefinedby + contains + issolvedby + attributes 
variables: variablenames 1\ variableproperties 
variableproperties: belongsto + attributes 
solvers: constraintsolvers + solver properties 
solver properties : solves + attributes 

constraints 

authornames 

hasconstraints 

constraintproperties 

variables solvers 

attributes solves attributes 

isdefinedby contains issolvedby attributes 

Figure 6. Database view of the design constraints example: definition and graphical depiction 

of the database SOlt. Note that a definition of the attributes sort is assumed, but not provided. 

6. Discussion 

In the definition and development of sorts as a concept and framework for 
representational flexibility, we let ourselves be guided as much by the 
algebraic strength of the adopted approach as by its practical benefits. This 
algebraic character offers a handle for the comparison and matching of 
representational structures and for the exchange of data accordingly. It also 
provides the ability to alter representational structures on the fly while 
maintaining their uniform approach of dealing with and manipUlating data 
entities. The practical benefits must show in the description and building of 
representational structures as compositions of basic building blocks, that 
serve the design process in all its aspects. Ideally, a designer should be able 
to build or alter a representational structure to reflect on a particular need, in 
an almost intuitive way. Hereto, the behavioral specification serves as an 
attempt to bridge the desired simplicity of expressing representational 
structures and the necessary power of these structures to support design 



124 R STOUFFS AND R KRISHNAMURTI 

activities effectively. In this paper, we have explored and argued the 
algebraic strength on both a conceptual and representational level and 
offered a simple example in the context of design constraints. In order to 
further illustrate the approach's practical benefits, other, more complex, 
examples of practical design cases are currently being investigated. 

myconstraints : constraintexpressions 1\ myconstraintproperties 
myconstraintproperties : myvariables + solvers + hasvariables + issolvedby + attributes 
myvariables : variablenames 1\ myvariableproperties 
myvariableproperties : otherconstraints + belongsto + attributes 
otherconstraints : constraintexpressions 1\ otherconstraintproperties 
otherconstraintproperties : authors + contains + issolvedby + isdefinedby + attributes 

authornames hasconstraints 

Figure 7. Design view of the design constraints example: definition and graphical depiction 
of the myconstraints sort 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 125 

Figure 8. Snapshots of a VRML visualization for the steel-framed building project 

While many other approaches exist and are being explored to support 
flexibility and extensibility of design models and representations, as well as 
the exchange of information between various representations or 
applications, few attempt to achieve this through a simple expressive 
language. Both van Leeuwen (1999) and Snyder (1998) adopt a schema 
approach. Feature-based modeling (van Leeuwen 1999) allows for the 
extensibility of conceptual schemas and supports these to be shared between 
different applications or designers. It also allows the designer to apply 
schemas to particular design situations by modifying or extending these with 
relationships and properties. Additionally, feature type recognition (van 
Leeuwen and de Vries 2000) enables the mapping of user-defined schemas 
to approved schema libraries, further supporting communication. In order to 
access and develop these schemas while modeling the design information, a 
3D graphical tool is being developed that offers access to both the design 
model and the schema library (Coomans 2001). The SPROUT modeling 
language (Snyder and Flemming 1999; Snyder 1998) allows for the 
specification of schematic descriptions that can be used to generate 
computer programs that provably map data between different applications. 

The LexiCon semantic model defines a formal vocabulary for the storage 
and exchange of information in the construction industry (Woestenenk 
1998). It is defined in a semi-syntactic approach in which concepts are 
unambiguously defined by their constituent attributes. In this way, these 
attributes comprise the primitive concepts defining the semantic vocabulary 
of the model. If this descriptive approach is taken one step further, the 
attributes themselves can be described syntactically, leading to a purely 
syntactic description of concepts as compositions of primitive data types. 
Similar to sorts, a formal descriptive framework may then allow these 
syntactical descriptions to be compared independently of their conceptual 
meanings, allowing for synonym concepts, and for various degrees of 
similarity between alternative concepts. 



126 R STOUFFS AND R KRISHNAMURTI 

XML defines such a formal framework. XML is a meta-language that 
serves to define markup languages for specific purposes. By specifying a 
grammatical structure of markup tags and their composition, a markup 
language is defined that can be shared with others. When an agreement can 
be reached on the tags, various markup languages can be developed based 
on these tags. and information exchanged between these, even if these 
languages differ in scope or composition. XML has the advantage that it is 
readable by both humans and the computer; markup languages based on 
XML can easily be adapted or extended to one's own specific purposes or 
needs. XML is particularly suited to structure otherwise unstructured 
information, such as textual data, and to organize information available over 
the Web. However, an XML based markup language does not provide any 
information on how to manipulate its data and, as such, is ill suited to 
represent detailed graphical or geometrical data. 

From XML, our approach borrows a foundation consisting of an 
extensible vocabulary of data components that can be composed 
hierarchically into a representational language. In order to integrate the 
behavioral specification in the implementation, an object-oriented approach 
is applied, defining data elements as objects that encapsulate both the data 
structure and the operations defined on these structures. Also, the 
compositional operators are selected such that all representational structures 
offer the same operational functionality and derive this behavior from their 
component structures. 

Then. a language specification is derived on two levels, similar to the 
approach used by the International Alliance for Interoperability (IAI) in the 
specification of its Industry Foundation Classes (IFCs) for a building object 
model (Bazjanac 1998). On a first syntactic level, the vocabulary of 
primitive object classes and their respective behaviors is defined. This 
behavior, in itself, does not provide any meaning to the object class. In fact, 
a same data structure may define two or more object classes if as many 
different behaviors can be said to apply, for different purposes. On a second 
level, a selection of object classes is defined and, individually, named in 
order to express a semantic concept. These named classes can, subsequently, 
be composed into a hierarchical structure in order to define an appropriate 
representational schema. In contrast to the IFC approach, this semantic 
concept can be specified by the user and the representational structure 
composed accordingly. Alternative representations can be defined by 
altering the compositional structure or the selection of component classes. 
As each representation defines the same common operations, these can be 
reasonably plugged into an applicative interface for manipulation. 



REPRESENTATIONAL FLEXIBILITY FOR DESIGN 127 

Acknowledgements 

This work is partly funded by the Netherlands Organization for Scientific Research (NWO), 
grant nr. 016.007.007. The second author is partially supported by the National Science 
Foundation, grant nr. CMS-0121549 . The first author would like to thank Michael Cumming 
for his invaluable comments. 

References 

Bazjanac, v: 1998, Industry foundation classes: bringing software interoperability to the 
building industry, The Construction Specifier 6: 47-54. 

Coomans. MKD: 200 I, DDDiver: 3D interactive visualization of entity relationships, in D. 
Ebert (ed.). Data Visualization 2001: Proceedings of the loi11l Eurographics and IEEE 
TCVe Symposium on Visualization, Springer, Vienna, pp. 291-299. 

Krishnamurti, Rand Stouffs, R: 1997, Spatial change: continuity, reversibility and emergent 
shapes, Environment and Planning B: Planning and Design 24: 359-384. 

Lottaz, C, Stouffs, R and Smith, I: 2000, Increasing understanding during collaboration 
through advanced representations, Electronic loumal of Information Technology in 
Construction 5: 1-25. [itcon.org/2000/l/j 

Requicha, A.A.G. : 1980. Representations for rigid solids: theory, methods and systems, 
Computing Surveys 12: 437-464. 

Snyder, J.D.: 1998, Conceptual Modeling and Application Integration in CAD: The Essential 
Elements, Ph.D. dissertation, School of Architecture. Carnegie Mellon University. 
Pittsburgh. P A. 

Snyder, J and Flemming, U: 1999, Information sharing in building design, in G. Augenbroe 
and C. Eastman (eds), Computers in Building, Kluwer Academic, Boston, pp. 165-183. 

Stiny, G: 1992. Weights. Environment and Planning B: Planning mul Design 19: 413-430. 

Stouffs. R: 1994, The Algebra of Shapes, Ph.D. dissertation, Department of Architecture, 
Carnegie Mellon University, Pittsburgh. PA. 

Stouffs. Rand Krishnamurti. R: 1998. An algebraic approach to comparing representations, 
in J. Barallo (ed.), Mathematics & Design 98, The University of the Basque Country, San 
Sebastian. pp. 105-114. 

Stouffs, Rand Krishnamurti, R: 1996, The extensibility and applicability of geometric 
representations. ArchiteclUre Proceedings of 3rd Design and Decision Support Systems in 
Architecture and Urban Planning Conference. Eindhoven University of Technology, 
Eindhoven. pp. 436-452. 

Stouffs, R, Krishnamurti, R and Eastman. CM: 1996, A formal structure for nonequivalent 
solid representations, in S Finger, M Mantyla and T Tomiyama (eds), Proceedings of 
IFIP we 5.2 Workshop on Knowledge IntellSive CAD II, International Federation for 
Information Processing, Working Group 5.2, pp. 269-289. 

van Leeuwen, IP: 1999, Modeling ArchiteclUral Design Information by Features, Ph.D. 
Dissertation, Eindhoven University of Technology, Eindhoven. 

van Leeuwen, JP and de Vries , B: 2000. Modelling with features and the formalisation of 
early design knowledge, in R Gonplves, A Steiger-Ganrao and R Scherer (eds), Product 
and Process Modeling in Building and Construction. A.A. Balkema. Rotterdam, pp. 167-
176. 



128 R STOUFFS AND R KRISHNAMURTI 

Woestenenk, K: 1998, A common construction vocabulary, in R Amor (ed.), Product and 
Process Modelling in the Building Industry, Building Research Establishment, Watford, 
pp. 561-568. 


