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Under the umbrella of the digital turn, novel computati onal 
workfl ows and disti nct aestheti cal principles are becoming 
an integral part of architectural educati on. Nonetheless, 
in current educati onal setti  ngs, there is not much scope 
for a deep understanding nor the development of custom 
computati onal design methods beyond standard toolkits. 
To fi ll this gap, we outline an educati onal framework for 
the development of new generati ve systems. The proposed 
framework combines canonical techniques for generati ve 
systems from diff erent fi elds with recent advancements in 
Arti fi cial Intelligence. It comprises eight schemas: unstruc-
tured constructi ve, structured constructi ve, variati onal, 
improvement, discrete simulati on, conti nuous simulati on, 
generati ve learning and behavioral learning.  Each schema 
consists of a diff erent formulati on of design space and navi-
gati on, providing a knowledge base and a common language 
for design. Their adopti on in design educati on can potenti ally 
expand the boundaries of design both within the agendas of 
the authorial design, nurtured in the studios, or even expand 
the boundaries of the profession to address future demands 
from society.

1. ARCHITECTURE IN A BLACK BOX
Reyner Banham consistently criti cized architectural design 
for its mysterious mode of operati on and superfi cial incor-
porati on of new technologies. In early works, he claimed that 
the avant-garde only adopted an aestheti c of the industrial 
revoluti on, while preserving the academic compositi on as 
an implicit design method1. Later, he depicted the modus 
operandi of architecture as a black box2, “recognized by its 
output, though unknown in its content”3. In this polemic anal-
ogy, architecture has nothing to do with the quality of the 
built environment; it is an exercise of an arcane, privileged 
and unspoken aestheti c code, inculcated in the studios and 
glorifi ed in the draft smanship of architectural drawing. 

In this black box hypothesis, computer-aided design and the 
binary logic of the computers would represent a “probably 
fatal blow”4 to the mysti que of Architecture. Coincidentally, 
its original publicati on in 1990 was followed by a digital turn 
in architecture5. This turn invoked a paradigm shift  in design 
educati on and practi ce, marked by the emergence of compu-
tati onal design models and a new conceptual vocabulary6. In 
the 1990s, architects started to manipulate digital geometry 
with the new CAD, modeling and animati on soft ware, chal-
lenging the limits of traditi onal architectural representati on. 
In the following decade, programming was rediscovered by 

designers with scripti ng languages and the rise of graph-
based parametric editors integrated in CAD systems. The use 
of algorithms in design required the externalizati on of the 
instructi ons for design generati on, moving the designer away 
from the autographic domain of architectural drawing and 
fracturing the black box.

However, the incorporati on of computati onal techniques in 
digital practi ces did not promote the type of rati onality in 
design and educati on aimed for by Banham. As in the past, 
the claims of technological shift  were saturated by aestheti -
cal disputes. Associated with digital fabricati on and new 
advancements in architectural geometry, the computati onal 
methods supported a new repertoire of non-standard forms 
that were developed in research pavilions and, eventually, 
applied to the design of the building surfaces, components, 
and envelope. Practi cal architects intertwined design meth-
ods and aestheti c for the digital architecture.7 Even specifi c 
technologies, such as animati on or parametric modeling, 
were assimilated as a blend of method and design content.8

In this sense, the  draft smanship associated with architectural 
drawing was replaced by digital variati ons.

This recurrence of techno-ideological feuds in architecture 
is related to the socializati on of the aestheti cal code and for-
mati on of the professional behavior, in parti cular with the 
prominence of the “design crit in the architectural school 
studio”9. The studio culture is reminiscent of the Beaux Arts, 
where students were educated by the guidance of one or 
more experienced architects, who criti que their soluti ons 10. 
In this setti  ng, design success is measured by sati sfying the 
expectati ons of the circle of educated “patrons”. Despite 
the aestheti c and technical diff erences, the fi rst digital edu-
cati onal experiences, such as the paperless studios, also 
revolved around the explorati on of an aestheti c agenda of 
experienced architects11.

Notwithstanding, the studio, being a well-established and 
tested educati onal setti  ng, in face of new technologies estab-
lishes a problemati c relati on between design method and the 
expectati ons of the criti c. For instance, it is usual to adopt 
pre-defi ned computati onal workfl ows and plug-ins as a plat-
form to explore a certain design agenda. This setti  ng comes 
with the cost of immediacy and bias, as there is no ti me to 
investi gate the potenti al of computati on for design beyond 
the agenda and toolbox provided by the studio.12
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 Table 1: Computati onal schemas and techniques for GS and space 
planning.

 Table 2: Recent concepts associated with GS and computati onal design.

This relati on is even more criti cal in face of design automa-
ti on and Arti fi cial Intelligence (AI), which have long been 
encroaching on the territory of architecture. AI acquired new 
momentum with the recent wave of deep neural networks, 
which succeeded in automati ng acti viti es such as painti ng 
style transfer, playing go, medical imaging, speech recogni-
ti on, face recogniti on and synthesis. Not surprisingly, Mario 
Carpo’s response to this momentum was the announcement 
of a new digital turn for architecture 13. This ti me, the turn is 
based on the computati onal logic of search and the availability 
of big data14, resulti ng in a movement from the non-standard 
forms and smooth surfaces to a focus on voxelizati on and the 
generati on of form with search and simulati on. 

The complex relati on between the terms computati on and dig-
ital is crucial for the future of design educati on. Computati on 
strictly refers to the use of algorithms or models to perform 
operati ons on symbolic representati ons. For example, com-
putati onal design methods use these algorithms and models 
to represent, analyze and synthesize design alternati ves. In 
contrast, the term digital has been used fl uidly to describe 
a certain cultural conditi on or state of being related to the 
advent of diff erent informati on technologies. Design benefi ts 
from historical and philosophical interpretati ons of the infl u-
ence of these technologies on our society and environment. 
However, pursuing legiti mate expressions of the digital with 
restricted computati onal schemas prevents the access to a 
more general knowledge on computati onal logic and struc-
tural changes in design practi ce.

2. REVIEWING GENERATIVE SYSTEMS
While computati on logic can address diff erent aspects of 
architecture, in this paper we focus on the synthesis of forms 
and spati al patt erns. A proper knowledge base of compu-
tati onal synthesis can be developed based on generati ve 
systems (GS) − systems that can generate design alternati ves 
automati cally for a certain problem. While current digital 
studios and programming textbooks focus on parametric, 
NURBS and mesh modeling, GS comprehends a wider vari-
ety of techniques from diff erent fi elds and domains. Design 
educati on would benefi t from a systemati c and historical 
understanding of the diff erent computati onal schemas avail-
able for GS. 

The defi niti on and systemati zati on of GS have been devel-
oped in computati onal design books15, courses, arti cles 
and research conferences in Computer-aided Architectural 
Design16 (CAAD). A brief review is given below. 

Christopher Alexander’s understanding of “generati ng 
system” is as a system composed of a kit of parts and com-
binatory rules that can generate many variati ons17. In his 
structuralist view, all natural and arti fi cial phenomena are 
themselves systems generated by a specifi c set of interact-
ing forces or rules.18 However, while natural systems are 

adaptable to the interacti on of forces, the built environment 
requires arti fi cial methods to capture the existi ng forces and 
promote a global behavior based on their equilibrium. In 
oppositi on to conventi onal design, which addresses this task 
by intuiti on, Alexander categorized three methods to gen-
erate form based on forces19: (1) numerical methods, which 
use linear opti mizati on of design variables to look for the 
best form; (2) analog methods, which use a physical model 
to represent the forces of the system and look for a stable 
confi gurati on; (3) relati onal methods, which use diagrams to 
represent the diff erent forces of a system and fuse them to 
generate the proper form.

William Mitchell wrote one of the fi rst overviews of GS in the 
fi eld of CAAD20. His understanding of GS is as systems that 
can produce a variety of potenti al soluti ons for a problem. 
He proposed three general categories for GS that are simi-
lar to Alexander’s methods: (1) analogue GS are composed 
of analogue elements that enable mechanical operati ons to 
change the state of the system; (2) iconic GS are systems that 
use movies, models, drawings, and geometric operati ons to 
generate soluti ons, (3) symbolic GS use symbols and compu-
tati onal data-structures to represent a soluti on and rely on 
arithmeti c and logical operati ons to change it.

While Alexander’s work focused on GS based on relati onal/
iconic GS21, Mitchell’s overview focused on symbolic GS to 
produce spati al soluti ons that meets certain specifi ed criteria 
automati cally – i.e., space planning. In contrast to Alexander’s 
structuralist approach, Mitchell interprets symbolic GS with 
classical AI concepts. Each GS operates with discrete steps. 
Related designs that are visited in the computati onal process 
are codifi ed in a directed graph called state-acti on graph, 
which structures the space of all possible designs and avail-
able operati ons for navigati on.22 The goal of GS is to navigate 
the set of soluti ons in this state-acti on graph looking for a 
subset of soluti ons that sati sfy the design goals.

Mitchell23 and other researchers, for example Henrion24 and 
Liggett 25, classifi ed and described the soluti on procedures of 
symbolic GS for space planning. Most of their categories are 
inscribed in two computati onal schemas: search and opti mi-
zati on26, which were the main topics in Simon’s famous text 
on a science of design27. See Table 1.28 29 30

Since the 1990s, not only metaheuristi cs but also other com-
putati onal concepts, such as cellular automata and swarm 
algorithms became part of architectural experimentati on, 
which were explored in computati onal design books31. 
Additi onally, architects also incorporated animati on, NURBS, 
mesh and parametric modelers in their design toolbox. While 
most experimentati ons departed from classical AI, eventu-
ally, techniques, such as search and dissecti on, are revisited32. 

In Table 2, we organize authors who try to capture the 

diff erent computati onal and mathemati cal concepts associ-
ated with design. We combine (1) the pedagogical categories 
for the teaching of GS proposed by Fischer and Herr33, (2) the 
concepts identi fi ed by Kolarevic to characterize the digital 
morphogenesis34, (3) the digital models of design beyond 
CAD systems described by Oxman35 and (4) the mathemati -
cal concepts identi fi ed by Burry and Burry36 in contemporary 
design. We organize them according to the following sche-
mas: complex geometry and topology, packing and ti ling, 
diagramming and data visualizati on, animati on, opti mizati on 

and performance, parametrics, rule-based systems and com-
plexity. 37 38

Recent classifi cati ons have moved away from the computa-
ti onal logic to focus on their source or the applicati on domain, 
indicati ng the incorporati on of GS as a common practi ce for 
architectural design. Oxman and Oxman39 provide six general 
models of form generati on: (1) mathemati cal: which exploits 
mathemati cal formulae for generati ve procedures; (2) tec-
tonic, which employs tectonic patt erns for form generati on; 
(3) material: which uses tectonic and assembly patt erns, 
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state of the system is specifi ed, navigati on is defi ned by the 
selecti on and applicati on of rules or procedures, manually or 
automati cally, to change the state of the system in discrete 
steps. The design space is neither explicit nor defi nitely fi nite. 
See example in Figure 1, top.

Structured constructi ve schema

This schema addresses problems structured as a graph or 
a tree, which are composed of states (nodes) and available 
acti ons (edges). The states are the nodes and the possible 

constructi ons or acti ons are the edges. Navigati on combi-
natorically explores valid states in the design space, which 
contains “the set of all states reachable from the initi al state 
by any given sequence of acti ons”43. In a search, the solu-
ti on is a sequence of acti ons from an initi al state at the root 
to a desired state. In a traversal, the soluti on is a systemati c 
way to access some or all the states. In a sampling, a soluti on 
is generated by following a single path defi ned by a certain 
probability or policy. Diff erent algorithms organize the search 
in diff erent ways by using strategies to order the explora-
ti on, to evaluate the costs of the decisions or to check the 
consistency of the diff erent constraints of the problem. See 
example in Figure 1, middle and bott om.

Variati onal schema

This schema defi nes geometric enti ti es and relati ons using 

such as folding, braiding, knitti  ng and weaving, to generate 
form; (4) natural or neo-biological, which employs biologi-
cal principles to generate form; (5) fabricati onal, which uses 
existi ng patt erns of fabricati on for design generati on; and (6) 
performati ve, which models physical data of the context as 
the input for a generati ve process that sati sfy certain objec-
ti ves. This type of categorizati on refl ects the ubiquity of GS 
in diff erent architectural approaches, which is also reinforced 
by categorizati on of soluti on procedures in specifi c domains, 
such as digital fabricati on with parametric modeling40.

3.A FRAMEWORK FOR GS
The challenge in categorizing GS is that their underlying tech-
niques originate in diff erent fi elds, they overlap, or they apply 
to multi ple domains of design. While pioneer classifi cati ons 
focused on the computati onal logic of the GS, recent ones 
address specifi c technologies, design inspirati on or applica-
ti on domain in architecture. These recent approaches are 
very producti ve for educati on and bring design to the center 
of att enti on. However, they limit the scope of GS to the status 
quo and design instanti ati on – i.e., to a set of soluti ons with 
its own tested workfl ows and tools. 

In the opposite directi on, our framework recovers the idea 
of computati on not as a tool for design, but as an alternati ve 

logic of design. It does not focus on the representati on of the 
design elements but on the high-level concepts that mediate 
design and computati onal generati on: design spaces and nav-
igati onal strategies. Broadly speaking, design space refers to 
the space of possible alternati ves that can be generated given 
a certain formulati on of the problem. Design navigati on refers 
to the operati ons and control strategies that are available to 
navigate between these alternati ves. In traditi onal practi ces, 
designers use heuristi cs to formulate and reformulate the 
problem, building expressive design spaces and navigati onal 
strategies to explore soluti on candidates.41 In GS, the design 
spaces and navigati on strategies are a consequence of its for-
mulati on with specifi c algorithms and models.

By focusing on computati onal logic with more abstract 
categories, this framework comprehends both the existi ng 
soluti on procedures and the potenti al incorporati on of recent 
advancements in AI. The eight schemas of our proposed 
framework are in Table 3.42

Unstructured constructi ve schema

The schema is based on the existence of a discrete repre-
sentati on, which can be geometrical or even alphanumerical, 
that is sequenti ally constructed by the applicati on of rules 
or procedures, which might require a certain shape or a cer-
tain relati on between shapes to be matched. Once the initi al 

Table 3: A GS framework based on design space and navigati on

Figure 1: Constructi ve schema. Top: unstructured constructi ve schema 
of the qGrowth grammar. Middle: qGrowth structured in a tree with a 
greedy best-fi rst search algorithm that orders the fronti er based on the 
Euclidean distance to a target. Bott om: example of qGrowth generated by 
sampling. It follows the target behind a wall (ellipse). 
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space is defi ned by all possible confi gurati ons of a simulati on, 
given its initi al setti  ngs and the agents’ policies

The next two categories employ Machine Learning – a multi -
disciplinary fi eld concerned with programs that automati cally 
improve with experience – to search for the best hypothesis 
about a given data, behavior or knowledge.44 They open the 
possibility of learning GS from data.

Generati ve Learning

To solve many learning tasks, researchers employ genera-
ti ve models, which aft er having been exposed to a dataset, 
“explicitly or implicitly model the distributi on of inputs as well 
as outputs”45. More than simply learning how to perform a 
certain task, they model how the data has been generated. 
Thus, a generati ve model enables the sampling of synthesized 
data based on the data distributi on that it learned for the 
task. The design space is the space and domain of the input 
vector, which is translated to a result by the learned mapping. 
See example in Figure 4.

Behavioral Learning

This schema is based on learning the acti ons of agents to cus-
tomize a GS. Among other approaches, it includes adapti ve 
agents46 and reinforcement learning47. The system learns a 
policy (the probability of choosing the available acti ons in a 
state) by combining simulati on with evoluti onary algorithms 
or by exploring and exploiti ng acti ons to maximize a reward 
in an environment.

In practi ce, the schemas presented above can be combined 
to form hybrid GS. By combining the diff erent categories, 
designers can develop a custom GS with a proper design 
space and navigati on for their problems.

4. A POST-DIGITAL COMPUTATION?
The post-digital should not be understood as an emerging 
era, but as a criti cal atti  tude towards the fascinati on or denial 
of the digital. New formulati ons of a digital zeitgeist48 or re-
mysti fi cati ons of the architectural representati on49 are  both 
short-sighted acts. In contrast, if we accept the ubiquity of the 
digital, we can use computati on to explore complex spati al 
patt erns and interacti ons, addressing previously ungraspable 
aspects of society and environment.

parameters and constraints through explicit functi ons 
defi ned by the designer. The resulti ng design space is explicit 
in the parameter space. It comprehends all the geometrical 
and numerical variati ons resulti ng from all possible combina-
ti on of the parameter values, which can be done manually or 
algorithmically, using stochasti c or deterministi c procedures.

Improvement schema

This schema is based on the transformati on of a state by a 
search for alternati ves that perform bett er according to 
a metric. The design space is the parameter space, where 
parameter values describe all possible design soluti ons. The 
functi on space contains the possible results of a single or 
many evaluati ve functi ons applied to a soluti on. The fi tness 
space is a one-dimensional space that translates the results of 
the functi ons to a single measurement of success. The com-
binati on of these spaces results in a representati on called a 
fi tness landscape that contains all the fi tness value for all the 
soluti ons in the parameter space. Improvement procedures 
can be solved by the applicati on of calculii, opti mizati on 

strategies or metaheuristi cs. See hybrid example in Figure 2.

Discrete Simulati on 

This schema is based on a discrete representati on, such as a 
grid or a graph. In combinati on, the states of the local units 
characterize the global state. Once an initi al global state is 
defi ned, the rules or procedures aff ect some elements of the 
collecti on, based on local states and neighborhoods, whilst 
preserving the global characteristi cs of the representati on. 
The design space comprehends all possible variati ons of the 
global representati on, considering the initi al state and the set 
of rules applied over ti me. The examples of discrete simula-
ti ons are generally associated with mathemati cal models of 
urban or natural phenomena. See example in Figure 3.

Conti nuous simulati on

This schema is based on a collecti on of agents that sense, act 
and interact. Each agent interweaves local evaluati on of its 
goals and acti ons on the environment − the space, fi xed ele-
ments and the other agents – by the applicati on of local rules 
or procedures. Agents can have diff ering levels of autonomy. 
While simpler systems use basic refl ex agents, more com-
plex systems have a program to evaluate and act. The design 

Figure 2: Hybrid (2 + 4). Opti mizati on of fl oorplans with Geneti c algorithm 

and KDTree.50
Figure 3: Discrete simulati on. Rules and example of Beady Ring.51
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