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Under the umbrella of the digital turn, novel computational
workflows and distinct aesthetical principles are becoming
an integral part of architectural education. Nonetheless,
in current educational settings, there is not much scope
for a deep understanding nor the development of custom
computational design methods beyond standard toolkits.
To fill this gap, we outline an educational framework for
the development of new generative systems. The proposed
framework combines canonical techniques for generative
systems from different fields with recent advancements in
Artificial Intelligence. It comprises eight schemas: unstruc-
tured constructive, structured constructive, variational,
improvement, discrete simulation, continuous simulation,
generative learning and behavioral learning. Each schema
consists of a different formulation of design space and navi-
gation, providing a knowledge base and a common language
for design. Their adoption in design education can potentially
expand the boundaries of design both within the agendas of
the authorial design, nurtured in the studios, or even expand
the boundaries of the profession to address future demands
from society.

1. ARCHITECTURE IN A BLACK BOX

Reyner Banham consistently criticized architectural design
for its mysterious mode of operation and superficial incor-
poration of new technologies. In early works, he claimed that
the avant-garde only adopted an aesthetic of the industrial
revolution, while preserving the academic composition as
an implicit design method®. Later, he depicted the modus
operandi of architecture as a black box?, “recognized by its
output, though unknown in its content”3. In this polemic anal-
ogy, architecture has nothing to do with the quality of the
built environment; it is an exercise of an arcane, privileged
and unspoken aesthetic code, inculcated in the studios and
glorified in the draftsmanship of architectural drawing.

In this black box hypothesis, computer-aided design and the
binary logic of the computers would represent a “probably
fatal blow™ to the mystique of Architecture. Coincidentally,
its original publication in 1990 was followed by a digital turn
in architecture®. This turn invoked a paradigm shift in design
education and practice, marked by the emergence of compu-
tational design models and a new conceptual vocabulary®. In
the 1990s, architects started to manipulate digital geometry
with the new CAD, modeling and animation software, chal-
lenging the limits of traditional architectural representation.
In the following decade, programming was rediscovered by

designers with scripting languages and the rise of graph-
based parametric editors integrated in CAD systems. The use
of algorithms in design required the externalization of the
instructions for design generation, moving the designer away
from the autographic domain of architectural drawing and
fracturing the black box.

However, the incorporation of computational techniques in
digital practices did not promote the type of rationality in
design and education aimed for by Banham. As in the past,
the claims of technological shift were saturated by aestheti-
cal disputes. Associated with digital fabrication and new
advancements in architectural geometry, the computational
methods supported a new repertoire of non-standard forms
that were developed in research pavilions and, eventually,
applied to the design of the building surfaces, components,
and envelope. Practical architects intertwined design meth-
ods and aesthetic for the digital architecture.” Even specific
technologies, such as animation or parametric modeling,
were assimilated as a blend of method and design content.?
In this sense, the draftsmanship associated with architectural
drawing was replaced by digital variations.

This recurrence of techno-ideological feuds in architecture
is related to the socialization of the aesthetical code and for-
mation of the professional behavior, in particular with the
prominence of the “design crit in the architectural school
studio”®. The studio culture is reminiscent of the Beaux Arts,
where students were educated by the guidance of one or
more experienced architects, who critique their solutions *°.
In this setting, design success is measured by satisfying the
expectations of the circle of educated “patrons”. Despite
the aesthetic and technical differences, the first digital edu-
cational experiences, such as the paperless studios, also
revolved around the exploration of an aesthetic agenda of
experienced architects?’.

Notwithstanding, the studio, being a well-established and
tested educational setting, in face of new technologies estab-
lishes a problematic relation between design method and the
expectations of the critic. For instance, it is usual to adopt
pre-defined computational workflows and plug-ins as a plat-
form to explore a certain design agenda. This setting comes
with the cost of immediacy and bias, as there is no time to
investigate the potential of computation for design beyond
the agenda and toolbox provided by the studio.?



This relation is even more critical in face of design automa-
tion and Artificial Intelligence (Al), which have long been
encroaching on the territory of architecture. Al acquired new
momentum with the recent wave of deep neural networks,
which succeeded in automating activities such as painting
style transfer, playing go, medical imaging, speech recogni-
tion, face recognition and synthesis. Not surprisingly, Mario
Carpo’s response to this momentum was the announcement
of a new digital turn for architecture 3. This time, the turn is
based on the computational logic of search and the availability
of big data'*, resulting in a movement from the non-standard
forms and smooth surfaces to a focus on voxelization and the
generation of form with search and simulation.

The complexrelation between the terms computation and dig-
ital is crucial for the future of design education. Computation
strictly refers to the use of algorithms or models to perform
operations on symbolic representations. For example, com-
putational design methods use these algorithms and models
to represent, analyze and synthesize design alternatives. In
contrast, the term digital has been used fluidly to describe
a certain cultural condition or state of being related to the
advent of different information technologies. Design benefits
from historical and philosophical interpretations of the influ-
ence of these technologies on our society and environment.
However, pursuing legitimate expressions of the digital with
restricted computational schemas prevents the access to a
more general knowledge on computational logic and struc-
tural changes in design practice.

2. REVIEWING GENERATIVE SYSTEMS

While computation logic can address different aspects of
architecture, in this paper we focus on the synthesis of forms
and spatial patterns. A proper knowledge base of compu-
tational synthesis can be developed based on generative
systems (GS) - systems that can generate design alternatives
automatically for a certain problem. While current digital
studios and programming textbooks focus on parametric,
NURBS and mesh modeling, GS comprehends a wider vari-
ety of techniques from different fields and domains. Design
education would benefit from a systematic and historical
understanding of the different computational schemas avail-
able for GS.

The definition and systematization of GS have been devel-
oped in computational design books®, courses, articles
and research conferences in Computer-aided Architectural
Design'® (CAAD). A brief review is given below.

Christopher Alexander’s understanding of “generating
system” is as a system composed of a kit of parts and com-
binatory rules that can generate many variations®. In his
structuralist view, all natural and artificial phenomena are
themselves systems generated by a specific set of interact-
ing forces or rules.’®* However, while natural systems are

adaptable to the interaction of forces, the built environment
requires artificial methods to capture the existing forces and
promote a global behavior based on their equilibrium. In
opposition to conventional design, which addresses this task
by intuition, Alexander categorized three methods to gen-
erate form based on forces®: (1) numerical methods, which
use linear optimization of design variables to look for the
best form; (2) analog methods, which use a physical model
to represent the forces of the system and look for a stable
configuration; (3) relational methods, which use diagrams to
represent the different forces of a system and fuse them to
generate the proper form.

William Mitchell wrote one of the first overviews of GS in the
field of CAAD?. His understanding of GS is as systems that
can produce a variety of potential solutions for a problem.
He proposed three general categories for GS that are simi-
lar to Alexander’s methods: (1) analogue GS are composed
of analogue elements that enable mechanical operations to
change the state of the system; (2) iconic GS are systems that
use movies, models, drawings, and geometric operations to
generate solutions, (3) symbolic GS use symbols and compu-
tational data-structures to represent a solution and rely on
arithmetic and logical operations to change it.

While Alexander’s work focused on GS based on relational/
iconic GS??, Mitchell’s overview focused on symbolic GS to
produce spatial solutions that meets certain specified criteria
automatically —i.e., space planning. In contrast to Alexander’s
structuralist approach, Mitchell interprets symbolic GS with
classical Al concepts. Each GS operates with discrete steps.
Related designs that are visited in the computational process
are codified in a directed graph called state-action graph,
which structures the space of all possible designs and avail-
able operations for navigation.?? The goal of GS is to navigate
the set of solutions in this state-action graph looking for a
subset of solutions that satisfy the design goals.

Mitchell?® and other researchers, for example Henrion?* and
Liggett?®, classified and described the solution procedures of
symbolic GS for space planning. Most of their categories are
inscribed in two computational schemas: search and optimi-
zation?, which were the main topics in Simon’s famous text
on a science of design?. See Table 1.

Since the 1990s, not only metaheuristics but also other com-
putational concepts, such as cellular automata and swarm
algorithms became part of architectural experimentation,
which were explored in computational design books3!.
Additionally, architects also incorporated animation, NURBS,
mesh and parametric modelers in their design toolbox. While
most experimentations departed from classical Al, eventu-
ally, techniques, such as search and dissection, are revisited*?.

In Table 2, we organize authors who try to capture the
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Schemas Simon Mitchell

Henrion

Liggett

Search e Heuristic search e Heuristic search

Jigsaw (satisficer)
Dissection (satisficer)

Constructive procedures

e Linear programming

e Dynamic programming
Optimization e Geometric programming

e Queuing theory

e Control theory

e Generate and Test

Improvement

programming

Nonlinear and linear

Additive (optimizer)
Permutational

Improvement procedures

(optimizer) Simulated annealing
Hybrid optimizing Genetic algorithm
(optimizer)

Hybrid

e “Satisfeasing”?®
e Dissection with e Hybrid approach
dimensional optimizing

e Generate and Test?°
Other e Generate and Test?® e Analytical procedures
e (Shape grammars)

Table 1: Computational schemas and techniques for GS and space
planning.

Schemas Fischer and Herr Kolarevic Oxman Burry and Burry
Complex e Topology . ) e Topology
) e Topological formation )
geometry and e Non-Euclidean geometry ) e Mathematical surfaces
model (Formation) )
topology e NURBS and series

Packing and Tiling

e Packing and Tiling

Diagramming and e Algorithmic generation and

data visualization growth (data mapping)®’ Datascapes

e Datascapes and multi-
dimensionality

e Metamorphosis

e Motion-based formation

Animation e Dynamics and fields of )
model (Formation)
forces
e FEvolutionary design
model (Generative)
: : : ) ) e Performance-based
N e Algorithmic (re-) production e Genetics (genetic .
Optimization and ) A _ 8 formation model N
(e.g. genetic algorithms, algorithm) e Optimization
performance . : ) (Performance)
selective procedures) e Performative Architecture
e Performance-based
generation model
(Performance)
. . ) e Associative design
. e Algorithmic generation and ) )
Parametrics ) ) Parametrics formation model
growth (parametric design)3’ .
(Formation)
e Algorithmic generation and
growth (e.g. fractals, re-
writing rules)3’
e Emergent systems, self- e Genetics (L-systems)3 )
Rule-based g ) 4 ) ( - ¥ ) e Grammatical )
) organization (e.g. cellular e Non-linearity, ) ) e Chaos, complexity and
modeling and ) ) transformative design
: automata and swarm indeterminacy and ) emergence
complexity model (Generative)

modelling) emergence
e Generative grammars (e.g. L-

systems and shape-

grammars)

Table 2: Recent concepts associated with GS and computational design.

different computational and mathematical concepts associ-
ated with design. We combine (1) the pedagogical categories
for the teaching of GS proposed by Fischer and Herr®3, (2) the
concepts identified by Kolarevic to characterize the digital
morphogenesis®*, (3) the digital models of design beyond
CAD systems described by Oxman?®* and (4) the mathemati-
cal concepts identified by Burry and Burry3® in contemporary
design. We organize them according to the following sche-
mas: complex geometry and topology, packing and tiling,
diagramming and data visualization, animation, optimization

and performance, parametrics, rule-based systems and com-
plexity.

Recent classifications have moved away from the computa-
tional logic to focus on their source or the application domain,
indicating the incorporation of GS as a common practice for
architectural design. Oxman and Oxman?® provide six general
models of form generation: (1) mathematical: which exploits
mathematical formulae for generative procedures; (2) tec-
tonic, which employs tectonic patterns for form generation;
(3) material: which uses tectonic and assembly patterns,



Schemas Design space

Design navigation Examples*?

1. Unstructured Possible transformations of the

constructive schema

Application of rules or
initial state by set of rules procedures

Fractals, L-systems, mesh subdivision,
tessellations and shape grammars

Possible transformations of the

2. Structured constructive o
initial state by set of rules

schema

Search, traversal or sampling by Partition trees, uninformed search, heuristic
application of rules or

search, random search, colorings and

structured by graph or tree procedures dissections

Parameter space with properties

3. Variational schema - -
and relations between entities

Navigation in parameter space

Early algorithmic art (8-corner, Turbulence
centered and Schotter) and parametric models

Parameter space with properties
4. Improvement schema and relations between entities with
corresponding fitness value.

Navigation in parameter space,
guided by fitness landscape

Hill climbing, gradient descent, simulated
annealing, particle swarm optimization and
evolutionary algorithms

Possible states of a composite
representation, starting from an
initial configuration

5. Discrete simulation

Local rules applied on the
components of the
representation over time

Cellular automata, reaction-diffusion,
diffusion-limited aggregation, discrete urban
simulations, slime mold and ant foraging

States resulting from interaction
6. Continuous simulation between agents and continuous
environment

Local rules followed by each
agent in the environment

Rigid/soft body simulation, differential
growth and swarms

Parameter space and generative
functions learned by data
distribution

7. Generative learning

Navigation in the learned
parameter space

Autoencoder, GAN and PCA

The policy space, which combines
8. Behavioral learning
system

The Bucket Brigade, Monte Carlo learning,

the state and action spaces of the Application of the learned policy Temporal-difference learning and Deep Q-

Learning

Hybrid Combine previous design spaces

Combine previous design
navigations optimization of a partition tree (2 + 4) and

Parametric Shape Grammars (1 + 3), Shape
Annealing (1 + 4), Shape GAN (1 + 7),

learning steering behaviors (6 + 8)

Table 3: A GS framework based on design space and navigation

such as folding, braiding, knitting and weaving, to generate
form; (4) natural or neo-biological, which employs biologi-
cal principles to generate form; (5) fabricational, which uses
existing patterns of fabrication for design generation; and (6)
performative, which models physical data of the context as
the input for a generative process that satisfy certain objec-
tives. This type of categorization reflects the ubiquity of GS
in different architectural approaches, which is also reinforced
by categorization of solution procedures in specific domains,
such as digital fabrication with parametric modeling?°.

3.A FRAMEWORK FOR GS

The challenge in categorizing GS is that their underlying tech-
niques originate in different fields, they overlap, or they apply
to multiple domains of design. While pioneer classifications
focused on the computational logic of the GS, recent ones
address specific technologies, design inspiration or applica-
tion domain in architecture. These recent approaches are
very productive for education and bring design to the center
of attention. However, they limit the scope of GS to the status
quo and design instantiation —i.e., to a set of solutions with
its own tested workflows and tools.

In the opposite direction, our framework recovers the idea
of computation not as a tool for design, but as an alternative

logic of design. It does not focus on the representation of the
design elements but on the high-level concepts that mediate
design and computational generation: design spaces and nav-
igational strategies. Broadly speaking, design space refers to
the space of possible alternatives that can be generated given
a certain formulation of the problem. Design navigation refers
to the operations and control strategies that are available to
navigate between these alternatives. In traditional practices,
designers use heuristics to formulate and reformulate the
problem, building expressive design spaces and navigational
strategies to explore solution candidates.** In GS, the design
spaces and navigation strategies are a consequence of its for-
mulation with specific algorithms and models.

By focusing on computational logic with more abstract
categories, this framework comprehends both the existing
solution procedures and the potential incorporation of recent
advancements in Al. The eight schemas of our proposed
framework are in Table 3.

Unstructured constructive schema

The schema is based on the existence of a discrete repre-
sentation, which can be geometrical or even alphanumerical,
that is sequentially constructed by the application of rules
or procedures, which might require a certain shape or a cer-
tain relation between shapes to be matched. Once the initial
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Figure 1: Constructive schema. Top: unstructured constructive schema

of the qGrowth grammar. Middle: qGrowth structured in a tree with a
greedy best-first search algorithm that orders the frontier based on the
Euclidean distance to a target. Bottom: example of qGrowth generated by
sampling. It follows the target behind a wall (ellipse).

state of the system is specified, navigation is defined by the
selection and application of rules or procedures, manually or
automatically, to change the state of the system in discrete
steps. The design space is neither explicit nor definitely finite.
See example in Figure 1, top.

Structured constructive schema
This schema addresses problems structured as a graph or

a tree, which are composed of states (nodes) and available
actions (edges). The states are the nodes and the possible

illegal for #1: ZI

expand to interior intersection

02<p<08

t=175

constructions or actions are the edges. Navigation combi-
natorically explores valid states in the design space, which
contains “the set of all states reachable from the initial state
by any given sequence of actions”3. In a search, the solu-
tion is a sequence of actions from an initial state at the root
to a desired state. In a traversal, the solution is a systematic
way to access some or all the states. In a sampling, a solution
is generated by following a single path defined by a certain
probability or policy. Different algorithms organize the search
in different ways by using strategies to order the explora-
tion, to evaluate the costs of the decisions or to check the
consistency of the different constraints of the problem. See
example in Figure 1, middle and bottom.

Variational schema

This schema defines geometric entities and relations using
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Figure 2: Hybrid (2 + 4). Optimization of floorplans with Genetic algorithm
and KDTree.*®

parameters and constraints through explicit functions
defined by the designer. The resulting design space is explicit
in the parameter space. It comprehends all the geometrical
and numerical variations resulting from all possible combina-
tion of the parameter values, which can be done manually or
algorithmically, using stochastic or deterministic procedures.

Improvement schema

This schema is based on the transformation of a state by a
search for alternatives that perform better according to
a metric. The design space is the parameter space, where
parameter values describe all possible design solutions. The
function space contains the possible results of a single or
many evaluative functions applied to a solution. The fitness
space is a one-dimensional space that translates the results of
the functions to a single measurement of success. The com-
bination of these spaces results in a representation called a
fitness landscape that contains all the fitness value for all the
solutions in the parameter space. Improvement procedures
can be solved by the application of calculii, optimization

JEs R s e M R e M s e
PR A LR R e
ER L o e B A R S

e
=i

strategies or metaheuristics. See hybrid example in Figure 2.

Discrete Simulation

This schema is based on a discrete representation, such as a
grid or a graph. In combination, the states of the local units
characterize the global state. Once an initial global state is
defined, the rules or procedures affect some elements of the
collection, based on local states and neighborhoods, whilst
preserving the global characteristics of the representation.
The design space comprehends all possible variations of the
global representation, considering the initial state and the set
of rules applied over time. The examples of discrete simula-
tions are generally associated with mathematical models of
urban or natural phenomena. See example in Figure 3.

Continuous simulation

This schema is based on a collection of agents that sense, act
and interact. Each agent interweaves local evaluation of its
goals and actions on the environment - the space, fixed ele-
ments and the other agents — by the application of local rules
or procedures. Agents can have differing levels of autonomy.
While simpler systems use basic reflex agents, more com-
plex systems have a program to evaluate and act. The design
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Figure 3: Discrete simulation. Rules and example of Beady Ring.*

space is defined by all possible configurations of a simulation,
given its initial settings and the agents’ policies

The next two categories employ Machine Learning —a multi-
disciplinary field concerned with programs that automatically
improve with experience —to search for the best hypothesis
about a given data, behavior or knowledge.** They open the
possibility of learning GS from data.

Generative Learning

To solve many learning tasks, researchers employ genera-
tive models, which after having been exposed to a dataset,
“explicitly or implicitly model the distribution of inputs as well
as outputs”™>. More than simply learning how to perform a
certain task, they model how the data has been generated.
Thus, a generative model enables the sampling of synthesized
data based on the data distribution that it learned for the
task. The design space is the space and domain of the input
vector, which is translated to a result by the learned mapping.
See example in Figure 4.

Behavioral Learning

This schema is based on learning the actions of agents to cus-
tomize a GS. Among other approaches, it includes adaptive
agents* and reinforcement learning®. The system learns a
policy (the probability of choosing the available actions in a
state) by combining simulation with evolutionary algorithms
or by exploring and exploiting actions to maximize a reward
in an environment.

In practice, the schemas presented above can be combined
to form hybrid GS. By combining the different categories,
designers can develop a custom GS with a proper design
space and navigation for their problems.

4. APOST-DIGITAL COMPUTATION?

The post-digital should not be understood as an emerging
era, but as a critical attitude towards the fascination or denial
of the digital. New formulations of a digital zeitgeist*® or re-
mystifications of the architectural representation® are both
short-sighted acts. In contrast, if we accept the ubiquity of the
digital, we can use computation to explore complex spatial
patterns and interactions, addressing previously ungraspable
aspects of society and environment.
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Our own approach in this paper situates the logic and his-
tory of computation as a way of designing and not as a tool
to express a digital condition. In the same way that an algo-
rithm course in computer science might refer to canonical
algorithms as a base for new developments — without claims
for an algorithmic era —, canonical computational schemas
can provide a common background to support research on
GS. By exploring and hybridizing the different schemas, the
designer can navigate in the complex territory of computa-
tion to look for novel design logics.

We introduced this framework in a mini course in our
institution, addressing the first five schemas. In the end of
the course, the students had to choose a problem in their
domain (game, building, landscape, urban design, etc.) and
develop a GS to produce alternatives of solutions. We still
plan to extend it to a full course where we can discuss all
the schemas, incorporating the recent advancements in Al.
For a future objective, we intend to refine and formalize the
categories and their relations into a book.
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