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Abstract. In this paper we review the research on multi-agent space planning 

(MASP) during the period of 2008-2017. By MASP, we refer to space planning 

(SP) methods based on online mobile agents that map local perceptions to actions 

in the environment, generating spatial representation. We group two precedents 

and sixteen recent MASP prototypes into three categories: (1) agents as moving 

spatial units, (2) agents that occupy a space, and (3) agents that partition a space. 

In order to compare the prototypes, we identify the occurrence of features in 

terms of representation, objectives, and control procedures. Upon analysis of 

occurrences and correlations of features in the types, we present gaps and 

challenges for future MASP research. We point to the limits of current systems 

to solve spatial conflicts and to incorporate architectural knowledge. Finally, we 

suggest that behavioral learning offers a promising path for robust and 

autonomous MASP systems in the architectural domain. 

Keywords: Space planning; Agent-based modeling; Multi-agent systems; 

Generative systems. 

1 Introduction 

Designing spatial arrangements is at the core of architecture and has traditionally been 

solved by human-centered methods. Since the early 1960s, a main branch of CAAD 

research focused on automated space planning (SP), comprising methods for allocating 

and configuring architectural spaces based on computational data-structures and 

algorithms. While a large part of the space planning literature is grounded in classical 

Artificial Intelligence (AI) techniques and on optimization methods, an emerging 

branch of SP, which we refer to as Multi-agent space planning (MASP), addresses the 

use of agents to augment SP exploration in real-time.  

However, it is important to be accurate with respect to the term ‘agent’.  In AI, the 

term is used generally as an abstraction to describe autonomous computational systems. 

In this context, an agent is a construct that, immersed in an environment, uses its 

program to map percept sequences to actions, in order to solve a certain task rationally 

[1]. Depending on the task environment, multiple interactive agents can be designed to 
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cooperate, coordinate and negotiate to achieve a certain goal, forming a multi-agent 

systems (MAS). 

Another important reference is agent-based modeling (ABM), where an agent is a 

unit of representation in the computational modeling of complex systems. Multiple 

computational agents map percepts to actions, interacting with each other in a shared 

environment and developing patterns or behaviors that are not necessarily predictable 

from the perspective of the individual [2]. ABM may also include the user as an 

omniscient agent that has access to all agents, environments and can affect the behavior 

of the system. 

MASP can have either the goal-oriented approach of MAS, in order to create agents 

that try to solve a specific SP task, or it can be closer to the exploratory branch of ABM 

in the development of models that investigate emerging spatial patterns resulting from 

the interaction of custom agents. Each agent is an entity with local control, interweaving 

individual perception and action to satisfy certain spatial objectives. This results in a 

simulation of agents that decide how space should be shaped and occupied. 

Due to its emphasis on a continuous and interactive configuration of spatial patterns, 

MASP has huge potential for future decision making and design systems. However, it 

still has a secondary role in the literature. General SP literature review papers [3–7] 

have none or few examples of MASP, recent specialized literature review papers focus 

on mainstream techniques, such as evolutionary optimization [8] and a recent review 

of agent-based models in architectural research [9] addresses collaborative design 

systems, but does not present MASP examples for building design. 

This paper addresses this gap by providing an initial categorization and a literature 

review of recent MASP work (2008-2017) within the scope of building design. It 

includes the allocation of human activities in architectural space, such as building parts 

on a site or rooms inside a building, using diagrams or technical representations. It 

comprehends agents with different complexity, from basic reflex agents that refine a 

pre-existing spatial arrangement to intelligent agents that can generates complete spatial 

patterns. It covers agent-based modeling, techniques adapted to control agents (such as 

physics simulation) and hybridizations of agents with conventional or manual methods. 

It excludes applications with cellular automata, which were already reviewed by a 

previous paper [10], and allocation tasks that are strictly for urban design. 

Different databases and online documentations were used to look for MASP 

prototypes, but the main source is the CumInCAD1. In the next three sections, we 

organize the descriptions of sixteen research prototypes and two precedents according 

to categories that conciliate algorithmic and spatial characteristics: (1) agents as moving 

spatial units; (2) agents that occupy discrete spaces; and (3) agents that partition space. 

After these descriptive sections, we analyze the prototypes based on their types and 

on the occurrence of features related to computational representation, evaluation and 

control procedures. The goal is to characterize the prototypes under the proposed 

categories and to present trends, patterns and challenges for future research. 

1 CumInCAD is a cumulative index about publications in Computer-Aided Architectural Design 

(CAAD), which provides access to papers of the conferences organized by the sibling CAAD 

associations (ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures) and 

other related conferences. 
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2 Type 1: Agents as moving spatial units 

Each agent of a system of type 1 incorporates an individual representation of space, 

which is modified to interact with other agents and to satisfy spatial objectives.    

2.1 IMAGE (IMG) 2 

System description: IMG is an interactive computer system for multi-constrained 

synthesis of spatial arrangements [11, 12], and an important precedent for type 1.  

System algorithm: Each spatial unit is a custom cuboid that moves in the space. These 

aim at satisfying (multiple) user-defined objectives and constraints: adjacent, keep out, 

overlap, relative position, ratio, width / depth / height, 𝑥  / 𝑦  / 𝑧  position, distance, 

shared wall, enclose, next, on top of, floor, above, align, and visual access. A constraint 

graph stores cuboid units at the main nodes and relations as intermediate labelled nodes. 

A Least Mean Squares Fit (LMSF) is applied sequentially to all the spaces, changing 

the descriptors of a unit (dimension, location and rotation) to achieve the best local 

improvement – i.e., minimum error regarding all the linear equations of the constraints. 

Fig. 1. IMAGE. Left: complex volumes generated by aggregation of cuboids with relative 

position objective; Left-center and center: visual access objective; center-right: circulation 

objective; right: constraint graph [11, 12]. 

2.2 Fuzzy Layout Planner (FLP) 

System description: FLP [13] is an editor to create and modify dynamic bubble 

diagrams for the early-stages of design. It adopts reactive spatial units and focuses on 

user manipulation. 

System algorithm: Each agent is a rectangular bubble, which has minimum agency and 

is directly manipulated by the designer. As the user changes one of its dimensions, the 

2 We refer to all the prototypes analyzed in this paper by a name and an abbreviation. In cases 

where the authors defined the name in the paper, we adopt it. Else, we create a simple name based 

on the paper title, description or characteristics of the prototype. The abbreviation of these names 

will be used to reference the prototypes in the tables of section 5.   
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bubble modifies the other dimension automatically to preserve the assigned area. A 

repulsion force ensures the packing of close bubbles. 

Fig. 2. Fuzzy Layout Planner. Top left: dimensions of bubble adapt to preserve area; bottom-left: 

dividing bubbles; top-right: repulsion forces; bottom-right: packing bubbles [13].  

2.3 Sniffing Space I (SS1) 

System description: SS1 [14] is MASP hybrid of type 1 and 2. It consists of a self-

organizing bubble diagram combined with loosely packed rectangles [15].  

Fig. 3. Sniffing Space. Top row: spatial association generating zones [14]. Bottom row: 

expansion of the model with rectangular boundaries [15]. 

System algorithm: SS1 incorporates swarm intelligence – in contrast to the reactive 

agents of FLP, it uses ant foraging algorithms to define the interaction between two 

types of agents: (1) ant soldiers; and (2) an array of ant nests. The soldiers are produced 

by the nests, which are inter-connected by edges indicating association or adversity. 

The soldiers are points that navigate in the environment, producing and following two 

different pheromone trails depending on whether they are searching for associated nests 

or returning to their original nest. Each nest has a fixed circular body and a rectangular 

boundary with random dimensions 𝑥  and 𝑦  that satisfy its required area. The nests 

gradually follow visiting soldiers that are returning to associated nests, clustering with 

them and eventually interrupting the production of new soldiers. Additionally, they 

have three spatial behaviors: adapt 𝑥  and 𝑦  when they nestle, move away from 
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overlapping adversary nests, and overlie with associated nests. It results in a loose 

packing of rectangles, defined by the connections. 

2.4 Actants (ACT) 

System description: ACT [16, 17] is a self-organizing system that loosely packs 

polygons.  

System algorithm: It combines swarm intelligence and a physics engine. It is based on 

dynamic units called Actants, which are represented by soft body polygons composed 

of internal and boundary nodes that function as sensors and actuators. The nodes 

maintain the consistency of the shape by attraction-repel forces. The boundary nodes 

emit and track identity-based pheromone, detect other nodes, and move the Actant. 

The system is based on a hunter-prey dynamic between different Actants. The 

pheromone differences in the environment might attract or repel boundary nodes, 

keeping the Actant in movement. After a period, if no associated Actant is found by 

following the pheromone gradients, one of the boundary nodes is selected for a direct 

search in the local vicinity. When an Actant wants to be found by its associates, it 

produces pheromone. When it is evading or seeking, it blocks pheromone production, 

preventing the agglomeration of non-associated Actants. 

Fig. 4. Actants. Top-left: an Actant and its components; bottom-left: scale of consolidation; top-

center: Actants’ vertices reacting to pheromone; right: different associations [16]. 

2.5 Floating Bubbles (FB) 

System description: FB [18] is a self-organizing bubble diagram with optional 

rectangular boundaries. 

System algorithm: Physics simulation and heuristics solve the adjacency between 

bubbles. Agents are represented as circular disks or, optionally, as rectangles, 

connected by adjacency edges. To solve the diagram, the system assigns two basic 

forces to the agent: attraction and repulsion. Attraction is proportional to the length of 

the vector between the boundaries of two connected bubbles. Repulsion is proportional 

to the overlapping area between two bubbles and pushes each bubble away. However, 

using only attraction and repulsion forces, the bubbles can get stuck in suboptimal 
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arrangements. To avoid these situations, a heuristic moves a bubble towards a 

connected bubble when an adjacent requirement stays unsatisfied for too long. As the 

heuristic restarts the interactions in a slightly different state, eventually it reaches the 

equilibrium and satisfy all the adjacencies. 

 

 

Fig. 5. Floating Bubbles. Left: three stages in the basic floating bubble system; right: one stage 

of the generative process using squares [18]. 

2.6 Space-planning with real-time physics (RTF) 

System description: RTF [19] is a self-organizing, three-dimensional bubble diagram.  

 

 

Fig. 6. Space-planning with real-time physics. Top left: abstract diagram. Top right and bottom: 

physics simulation for bubble diagram. 

System algorithm: The user defines an abstract diagram with primary and secondary 

adjacencies among the elements of the architectural brief. The elements can also be 

connected to anchor objects, which represent important features of the environment. 

The specifications of the abstract diagram are translated to a physics simulation, where 

the elements are spheres, the edges are springs (with different forces for primary, 

secondary, and anchor connections), and the anchors are cylinders. The resulting bubble 

diagram is solved by packing the spheres using spring forces. To translate the bubbles 
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to a floorplan diagram, the spheres are converted to squares in the three-dimensional 

space, which can be customized by the user. 

2.7 Interactive Bubbles (IB) 

System description: IB [20] is a self-organizing bubble diagram. 

System algorithm: It combines a temperature heuristic with direct application of 

attraction and repulsion forces to organize circular agents. Attraction and repulsion 

forces solve the adjacency of connected bubbles and pack them inside a user-defined 

polygon. The overall behavior of each agent is a result of the sum of the vectors of the 

forces. A non-destructive heuristic uses varying temperatures to prevent suboptimal 

arrangements. The temperature is inversely proportional to the satisfaction of the 

objectives. An unsatisfied agent has higher temperature, reducing its area and its 

reaction to the surrounding forces. When the agent gets closer to satisfy its objectives, 

the temperature is reduced, recovering its original area and behavior. The user can 

manipulate the descriptors of the bubbles in real-time. 

Fig. 7. Interactive bubbles. a-b: simulation of the bubble diagram with changing temperature; c-

e: simulation with the definition of a containment area [20]. 

2.8 Narrative Landscape (NL) 

System description: NL [21] is a self-organizing system that packs convex polygons. 

System algorithm: It uses a Markov chain combined with physics simulation to create 

and pack convex spaces. Initially, the user defines a set of spatial types with distinct 

geometric properties and specifies a transition matrix. The generative process starts by 

randomly sampling an initial space in that set and sequentially sampling the next spaces 

using the transition matrix. Different transition matrices and spatial properties will 

generate different chains of polygons. Each space is a soft body composed of a central 

particle and surrounded by child particles on the border. The behavior of the bodies is 

defined by the combination of four types of specialized springs: (1) a Markov spring 

connects the central particles of neighboring spaces to reinforce adjacency;  (2) a set of 
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collision springs attaches the central particle of a space to close particles of neighboring 

spaces to reinforce alignment; (3) a minimum distance spring preserves a minimum 

distance between spaces with different qualities; (4) a within distance spring reinforces 

adjacency for  spaces with the same qualities that are not connected by Markov springs. 

 

 

Fig. 8. Narrative landscape. Left: soft bodies and classes for springs connecting particles; right: 

two layouts [21]. 

2.9 Multi-agent + Evolutionary (MAE) 

System description: MAE [22] is a MASP hybrid of type 1 and 2 that combines a 3D 

bubble diagram with a grid-based system to allocate activities for architectural layouts. 

 

System algorithm: The simulation in MAE uses two types of agents: spheres that 

represent regular rooms and capsules that represent corridors, staircases and linear 

rooms. The agents are placed on the environment and are connected based on adjacency 

requirements. They interact using rules such as attraction, repulsion, swap and 

compression. In attraction, each agent is pushed closer to a connected agent by a vector 

𝑚, defined by the difference between their closest points. Repulsion uses the inverse of 

𝑚 to push overlapping agents apart. For most of the cases, attraction and repulsion only 

move the target agent. However, they can also affect the orientation and length if the 

target is a horizontal capsule-like agent. Pairs of connected agents use the swap rule to 

avoid crossing connections with other pairs. The compression rule is a heuristic that 

reduces the volume of the building by pushing the agents together along the simulation.  

After the simulation, the resulting spaces are assigned to a 3D grid, forming sets of 

cells with the same room identities and sets of faces between the different rooms. This 

is the initial state for an optimization. At each iteration, a child solution is generated by 

mutation – room identities are swapped, and room shapes are changed by moving 

coplanar faces. The parent and child are evaluated by their room shapes, dimensions, 

aspect ratios and building shape. An annealing-based function defines the probability 

of accepting the child as the parent for the next iteration. 
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Fig. 9. Multi-agent + Evolutionary. Top-left: spherical agent, capsule-like agent and push 

operation; bottom-left: swap operation; top-right: agents solving adjacencies; bottom-right: 

converting agents to a grid representation and optimizing the solution [22]. 

3 Type 2: Agents that occupy a space 

Type 2 agents do not have a custom spatial shape. They navigate and allocate activities 

in a set of pre-defined spatial units, such as grids. 

3.1 Sniffing Space II (SS2) 

System description: SS2 [23] is a grid-based system to allocate activities in the routes 

of an airport. 

Fig. 10. Sniffing Space II. Left: Routing between destination points; Right: cargo clustering [23]. 

System algorithm: It combines ant foraging with a cargo placement protocol to allocate 

activities on a grid. The ant foraging algorithm simulates passenger routing in an 

airport. Each ant has an agenda with a sequence of destinations or hubs, which represent 

specific spaces of the airport. Ants not only follow pheromones and navigate between 

hubs but also respond to other agents sharing similar qualities. These qualities are 

encoded as random activity cargos that are assigned to each agent. As agents with 

similar items meet on a trail, they deposit the cargo at their current location. Every time 

another agent with a similar cargo passes by this cluster of cargos, it also drops it. In 
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contrast, a passing agent might collect dropped cargos that have less than 𝑛 neighbors, 

preventing scattering of activities. The concentration of the cargos defines the activity 

cells on the routes between destination points. 

3.2 Stigmergic Space Adjacency Software (SSAS) 

System description: SSAS [24] is a self-organizing system that allocates different 

activities in a three-dimensional grid.  

System algorithm: Agents represent different activities connected by adjacency 

relationships. Each agent has a specific RGB value and is compatible with agents within 

a close color range – meaning that they should be adjacent. The agents dispute the 

territory in a three-dimensional grid of cells. They expand to unoccupied cells with 

closest pheromone values and, after achieving the desired area, contract. At each node, 

the agent changes the local environment by diffusing its pheromone value, which 

attracts agents with compatible values. A regular cell carries a pheromone value and is 

influenced by the agents. However, the cell can be customized to impose a pre-defined 

value, stimulating spatial templates over which the agents will dispute the territory – 

such as circulation systems, boundary areas closer to the light exposure, etc. Also, the 

user can customize the set of nodes of the three-dimensional grid, creating 

topographies, a pre-defined parti or even voids to preserve views. 

Fig. 11. Stigmergic Space Adjacency Software. Left: grid topology and example of pheromone 

values; middle: templates for external influence and node masking; right: a solution [24]. 

3.3 Collective construction (CC) 

System description: CC [25] is a multi-agent learning system that allocates different 

activities in a three-dimensional grid.  

System algorithm: Ten color-coded groups containing fifty agents allocate the different 

activities in the grid using adversarial learning. During the simulation, each agent 

perceives four features in its cone of vision and can take four actions. The features are: 

(1) the agent is on the ground level; (2) there is a teammate nearby; (3) there is an

opponent nearby; and (4) there is a building block nearby. The actions are: (1) move

forward; (2) flock, to align its heading with its teammates; (3) attack, which converts

CAADFutures19 -61



opponents to teammates or eliminates teammates; and (4) build, which places a building 

block of the team’s color in the cell. Each group uses a neural network with shared 

weights as its policy. At each time step, the agent uses the four features detected as the 

input of the network, which outputs the probability of executing the four actions. Then, 

the agent selects the most probable one. At the end of the simulation, the performance 

of each team is measured by the number of blocks produced multiplied by the number 

of surviving team members. The four elite networks remain for the next episode, while 

the other six are defined by mutation and combination. This experiment is repeated, 

resulting in different arrangements. 

Fig. 12. Collective construction. Results of the experiments [25]. 

3.4 Artificial Life Space Planning (ALSP) 

System description: ALSP [26] is hybrid system of type 1 and 2 that combines activity 

allocation in a two-dimensional grid with a bubble diagram. 

Fig. 13. Artificial Life Space Planning. Left: grid-planning system; center: bubble diagram; right; 

integration of grid-planning system and bubble diagram [26]. 

System algorithm: Each bubble is a soft-body defined by a curve interpolated over a 

series of control points. The user can create, edit, drag and connect these bubbles. Then, 

a genetic algorithm (GA) specifies rectangles on a grid. The genome is based on five 
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descriptors: row, col, width, length and state. A fitness function evaluates the area and 

adjacency of a grid allocation based on the specifications of the bubble diagram (area 

of the bubbles and connections). Finally, the bubbles will move to the solution specified 

on the grid, stablishing a design cycle.   

4 Type 3: Agents that partition space 

In contrast to agents that have an attached spatial representation or agents that occupy 

a discrete set of cells, type 3 agents navigate in the territory and parametrize the 

partition of the space. 

4.1 YONA (Y) 

System description: YONA [27] is a graph-based system to generate residential layout. 

It serves as an historically important precedent for type 3, 

 

System algorithm: It is based on a three-stage representation with incremental design 

information: graph embedding, bubble-diagram, and schematic plan. YONA tests the 

adjacency graph specified by the user to ensure its planarity and, then, uses a top-down 

heuristic to generate a graph embedding. The user can rearrange the embedding by 

moving each node to a new position. After a satisfactory arrangement, the program 

draws an offset boundary and a dual-graph, creating multiple polygonal partitions 

around the original nodes. Then, it generates b-spline curves inside these partitions, 

forming a bubble-diagram over which the user can sketch the shape of the rooms.  

 

 

Fig. 14. Stages of YONA: graph embedding, polygons generated by dual-graph connected to 

offset boundary, bubble-diagram, and plan drawn by user [27]. 

4.2 Associative Spatial Networks (ASN) 

System description: ASN [28] is a system that generates an exhibition hall layout 

according to the topology of the exhibition and potentially to the users’ feedback.  

 

System algorithm: The system is divided in 3 parts. Firstly, adjacency graphs are 

generated for the exhibitions. Each individual exhibit of an exhibition is described by 

multiple features and projected to a point in ℝ2 by a self-organizing map (SOM). A 

planar graph is created by connecting each point to the neighbors with the closest 
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distance and by storing these values in the edges. The second stage involves clustering 

exhibitions that can share similar spatial configuration of the layout. This is solved by 

a growing neural network that adapts to the varying dimension of the input spectrum 

for each adjacency graph, clustering them according to similar topologies. The graph 

with the spectrum closest to the average in each cluster is selected to define the floor 

plan. In the third stage, the selected average graphs are embedded on a plane and their 

nodes are distributed in the exhibition hall layout by a repulsion algorithm. Using a 

Voronoi diagram, each node becomes a polygonal exhibition cell, and the permeability 

of the wall is defined by the connection between the neighboring nodes (wall for no 

connection, permeable wall for high edge values and no wall for low edge values). 

Fig. 15. Associative Spatial Networks. Top-left: adjacency graph for exhibition; bottom-left: 

growing neural gas mapping; middle: repulsion algorithm distributes graph nodes over the space; 

right: translating a graph into the layout of the exhibition with a 2d Voronoi diagram [28]. 

4.3 Dwelling Agglomerator (DA) 

System description: DA [29, 30] is a self-organizing settlement of dwelling units 

connected by public spaces.  

System algorithm: It associates a custom flocking model with Voronoi partitioning and 

an evaluation function to generate settlements in real-time. A flocking simulation 

moves the agents to form a network with approximated orthogonal connections, 

following five basic navigation rules. The first two rules are movements that preserve 

a specific distance range between the agent and its closest neighbors. With this range 

satisfied, other three rules specify a rotation around the closest neighbor, moving the 

agent towards a position aligned or perpendicular to the edge connecting the two closest 

neighbors. The agents are used to partition the space with a Voronoi Diagram, forming 

the dwelling units and the open space. An evaluation function calculates a score for 

each unit based on criteria such as area, direct sunlight or accessibility. It defines 

whether the agent should stop or keep flocking to look for a better position. 
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Fig. 16. Dwelling Agglomerator. Top-left: flocking rules; Bottom-left: creation of access routes; 

right: two layouts [29]. 

4.4 Responsive Algorithms (RA) 

System description: RA[31] is a MASP of type 1 and 3 that generates spatial partitions 

based on an architectural brief.  

System algorithm: RA combines bubble diagrams, graph embeddings and Voronoi 

partition inside a parametric modelling editor. The user defines a bubble diagram, with 

disks representing the spatial units with their required area, and edges representing the 

adjacency. The bubble diagram is treated as a circle packing problem and solved by 

physics simulation: circular discs are rigid bodies and the edges are springs representing 

adjacencies. A Voronoi diagram generates a spatial partition using the centers of the 

disks. This workflow is extensible to the three-dimensional space, where the nodes of 

the adjacency graph are the centers of packed spheres and a Voronoi partition results in 

a packing of polyhedral cells. 

Fig. 17. Responsive Algorithms. Top-left: circle packing, Voronoi diagram and Voronoi diagram 

with radii; top-right: force-directed graph over Voronoi diagram with radii; bottom-left: 3D 

Voronoi cells; bottom-right: three-dimensional packing with a skin [31]. 
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4.5 Evolving Floorplans (EF) 

System description: EF [32] is MASP of type 1 and 3 that generates floorplans based 

on topological and flow objectives. 

System algorithm: EF uses a general version of Neuroevolution of Augmenting 

Topologies (NEAT) to evolves a weighted, connected, and undirected graph 

representing a floorplan. Chronological markers enable crossover and mutation of 

solutions with different topology and numbers of rooms. The floorplan genome of 

NEAT is composed of node genes and connection genes. The former store information 

such as room’s size, while the latter assign weights to the connections between pairs of 

node genes and are added randomly until the graph is connected. 

The phenotype (i.e. the floorplan) is generated in four steps. (1) A spectral layout 

embeds the graph in space, which is the input for (2) a physics simulation that converts 

the nodes and edges into discs and springs. After the resulting packing, the centers of 

the discs are extracted and combined with the vertices of an offset concave hull for (3) 

the Voronoi tessellation. With this combination, the internal Voronoi cells have a 

boundary like the original circle packing boundary.  

Finally, (4) an ant-colony algorithm is applied to the interior edges of the Voronoi 

mesh to generate a weighted network to satisfy the connection requirements. The edges 

of the resulting hallways are smoothed and dimensioned according to their flow. The 

phenotype is evaluated by the NEAT algorithm, enabling the use of objectives such as 

minimization of traffic between classes, material usage, fire escape paths, and windows. 

Fig. 18. a) spectral layout; b) physics simulation; c) offset of concave hull; d) Voronoi 

tessellation; e) generation of circulation using an ant-colony algorithm; f) final floorplan [32]. 
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5 Analysis of features 

In this section, we analyze the different MASP prototypes to identify the occurrence of 

similar features of representation, objectives, and control procedures. Before we 

advance in the analysis, Table 1 synthesizes the general categorization of types. 

Table 1. MASP Types. 
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Table 2. Representation of the agents. 
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In terms of representation, features used in SP for more than four decades [3], such 

as grids, polygonal representations, and graphs, are still pervasive in MASP. The 

prototypes also incorporate new features, such as soft shapes (bubbles) and the Voronoi 

diagram for spatial partition. As shown in Table 2, bubbles and polygons are dominant 

in type 1. Grids are mostly used in type 2. Voronoi diagrams are dominant in type 3. 

Graphs are used predominantly in type 1 and 3 to store the connections between spaces. 

In some prototypes, the diagrammatic solutions were also converted to richer 

architectural representations with constructive elements (FB and MAE). 
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Table 3. Spatial objectives. 
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Table 4. Control procedures 
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Table 3 shows a contrast between the number of objectives in IMG and in new 

prototypes. IMG has a list of seventeen objectives, which we simplified to eight features 

for analysis. Current systems are more abstract and focus on satisfying basic objectives 

such as adjacency and area/volume. In some of them, relations such as exposure or 

visual access can be customized by using the tools for adjacency. For example, SSAS 

uses pheromone markers to promote the exposure or privacy of a part of the activities 

to the exterior of the building and MAE uses a form of attraction to reduce the external 

surface of the building. Some systems have an explicit implementation of different 

objectives, such as the containment of the agents in a custom polygon (IB) or an 

objective function to evaluate accessibility and exposure (DA). 

Table 4 displays the large diversity of control procedures in the prototypes. 

Different types of physics simulations are present in most prototypes. They 

implement a custom version of attraction/repulsion forces (FB, IB and MAE), rigid 

body simulation (RTF, RA and EF), soft body simulation (ALSP, NL, and ACT), or 

another unspecified implementation (ASN and FLP). 

The second most frequent occurrence is pheromone routing. The algorithms are used 

to guide large spatial clusters (SS1 and SSAS), to control the vertices of polygonal 

entities (ACT), to guide agents that carry and drop spatial units (SS2), or to generate a 

weighted circulation network between the consolidated spatial units (EF).  

Flocking has only two occurrences. In DA, the system is a customized Boid model 

that generates semi-orthogonal networks with spatial agents. In CC, flocking is one of 

the actions in the policy of agents in a three-dimensional grid.  

Hybrid methods are used for all MASP types. They incorporate techniques outside 

of the scope of agent-based modeling, such as LMSF to guide the agent (IMG), 

metaheuristics to initialize or refine the solutions (MAE, ALSP and EF), neural 

networks to generate the adjacency between agents (ASN) or to define the policy of the 

agents (CC), and Markov Chain to generate new agents (NL). 

Fig. 19. Radar charts with the relative occurrences of the features for each type. For hybrid 

prototypes, we divided the occurrence uniformly for each type. 
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Table 5. Correlation matrix for occurrence of features. 

Table 6. Correlation matrix for relations between types and features. Blue is positive and red is 

negative. For hybrid types, we divided the occurrence uniformly. 
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Using correlations between features (Table 5), correlations between types and 

features (Table 6) and the radar charts for the occurrence of features in the types (Fig. 

19), it is possible to visualize certain patterns. The occurrences of representational and 

control features present clear and distinct patterns for each MASP type. In the 

occurrence of objectives, all types overlap on adjacency and area. 

Type 1 has strong occurrence and positive correlation with graphs, bubbles, 

polygons and physics simulation. Bubbles are used to represent fluid moving shapes, 

while polygons mostly represent rigid shapes for packing (ACT is an exception and 

uses polygons for fluid shapes). Other than access and exposure, Type 1 has the 

strongest positive correlation with all features, even with the two objectives that occur 

in all types (adjacency and area), which are also strongly correlated to the main 

representational features of type 1 (graphs, bubbles and polygons). The occurrence of 

adjacency and area in other types is mostly related to hybridization with type 1. 

Type 2 has high occurrence and positive correlation with the grids, which are the 

representational support for correlated control strategies, such as pheromone routing 

(SS1, SS2, and SSAS), metaheuristic optimization (MAE and ALSP) or a neural 

network for multi-agent flocking (CC). Type 2 is slightly positively correlated with 

exposure, not correlated with shape, and negatively correlated with all other objectives.  

Type 3 has a strong correlation with the Voronoi diagrams, which are used to 

translate a population of points in space to polygonal or polyhedral partitions. It also 

presents some occurrences of graphs and bubbles due to the hybrid prototypes, but these 

correlations are respectively weak positive and negative. In terms of control, the only 

significant positive correlations are related to flocking, spectral layout and neural 

networks. In terms of objectives, it has the largest correlations with access and exposure 

among all types. 

6 Conclusion 

The MASP prototypes analyzed in this paper present novel approaches to SP, with a 

rich repertoire of techniques for interactive SP exploration. However, MASP is still a 

broad an open territory for research with big challenges and demands. 

There is a scientific challenge. While most papers reference general ideas that 

inspired their approach – such as Cybernetics, Semiotics, Biology, etc. – and present a 

high-level description of the algorithms, they do not provide a formal description of the 

control procedures or share the code. Few papers analyze the performance or expression 

of the prototypes. One paper provides a brief convergence analysis (FB), some papers 

present a concrete architectural application (IMG and FB) and one prototype was 

applied to a real project and used in a workshop (SSAS). To move from local 

experiments to more robust research, it is necessary to provide mechanisms for the 

reproduction, comparison and analysis of the different MASP approaches. 

There is also two-fold computational challenge: investigate control strategies that 

incorporate domain knowledge and handle multiple spatial objectives and conflicts. 

While IMG tried to solve this using LMSF to define the agent’s policy, new prototypes 
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rely on three general trends – bioinspired agents, physics-based agents and 

hybridization with destructive methods – that have some limitations.  

Bioinspired models are generally resilient and adaptable. Still, as architectural 

problems are not always analogous to biological problems, it is usually hard to produce 

valid architectural patterns and satisfy architectural objectives.  

Physics simulation is a more general model that conciliates simple control with 

intuitive interaction and can be adapted for different spatial problems and objectives. It 

has recently been incorporated into real world practices [33].  However, physics-based 

agents are reactive agents approximately following laws of physics. They do not have 

any sophisticated policy to manage spatial conflicts.  

A valid solution to this issue is to hybridize these agents with metaheuristics that 

globally improve the solution. Nevertheless, it usually requires a pre-defined metric and 

imposes discontinuity in the generation procedure. 

An alternative to these approaches is to develop MASP system with behavioral 

learning, which is present in only one the papers (CC). The recent success of deep 

reinforcement learning (DRL, see [34]) in games, robotics and multi-agent navigation 

suggests that it is a promising field for inquiry. While the multi-agent setting is 

challenging for DRL and current neural network architectures are mostly effective for 

Euclidean data, such as grids, recent researches have been pushing the boundaries both 

for multi-agent learning [35] and for non-Euclidean spaces, such as graphs and 

manifolds [36]. With DRL, it is possible to learn cooperative behavior to generate 

spatial patterns continuously. Agents can learn fully from interaction with the task 

environment in a simulation or with experts in a supervised setting. Potentially, 

behavioral learning can support the development of cooperative agents that are robust 

to variations and defined by domain-specific knowledge. 
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