
Multi-agent Space Planning

A literature review (2008-2017)

Pedro Veloso, Jinmo Rhee, and Ramesh Krishnamurti

Carnegie Mellon University,

Pittsburgh, USA

{pveloso, jinmor, ramesh}@andrew.cmu.edu

Abstract. In this paper we review the research on multi-agent space planning

(MASP) during the period of 2008-2017. By MASP, we refer to space planning

(SP) methods based on online mobile agents that map local perceptions to actions

in the environment, generating spatial representation. We group two precedents

and sixteen recent MASP prototypes into three categories: (1) agents as moving

spatial units, (2) agents that occupy a space, and (3) agents that partition a space.

In order to compare the prototypes, we identify the occurrence of features in

terms of representation, objectives, and control procedures. Upon analysis of

occurrences and correlations of features in the types, we present gaps and

challenges for future MASP research. We point to the limits of current systems

to solve spatial conflicts and to incorporate architectural knowledge. Finally, we

suggest that behavioral learning offers a promising path for robust and

autonomous MASP systems in the architectural domain.

Keywords: Space planning; Agent-based modeling; Multi-agent systems;

Generative systems.

1 Introduction

Designing spatial arrangements is at the core of architecture and has traditionally been

solved by human-centered methods. Since the early 1960s, a main branch of CAAD

research focused on automated space planning (SP), comprising methods for allocating

and configuring architectural spaces based on computational data-structures and

algorithms. While a large part of the space planning literature is grounded in classical

Artificial Intelligence (AI) techniques and on optimization methods, an emerging

branch of SP, which we refer to as Multi-agent space planning (MASP), addresses the

use of agents to augment SP exploration in real-time.

However, it is important to be accurate with respect to the term ‘agent’. In AI, the

term is used generally as an abstraction to describe autonomous computational systems.

In this context, an agent is a construct that, immersed in an environment, uses its

program to map percept sequences to actions, in order to solve a certain task rationally

[1]. Depending on the task environment, multiple interactive agents can be designed to

CAADFutures19 -52

cooperate, coordinate and negotiate to achieve a certain goal, forming a multi-agent

systems (MAS).

Another important reference is agent-based modeling (ABM), where an agent is a

unit of representation in the computational modeling of complex systems. Multiple

computational agents map percepts to actions, interacting with each other in a shared

environment and developing patterns or behaviors that are not necessarily predictable

from the perspective of the individual [2]. ABM may also include the user as an

omniscient agent that has access to all agents, environments and can affect the behavior

of the system.

MASP can have either the goal-oriented approach of MAS, in order to create agents

that try to solve a specific SP task, or it can be closer to the exploratory branch of ABM

in the development of models that investigate emerging spatial patterns resulting from

the interaction of custom agents. Each agent is an entity with local control, interweaving

individual perception and action to satisfy certain spatial objectives. This results in a

simulation of agents that decide how space should be shaped and occupied.

Due to its emphasis on a continuous and interactive configuration of spatial patterns,

MASP has huge potential for future decision making and design systems. However, it

still has a secondary role in the literature. General SP literature review papers [3–7]

have none or few examples of MASP, recent specialized literature review papers focus

on mainstream techniques, such as evolutionary optimization [8] and a recent review

of agent-based models in architectural research [9] addresses collaborative design

systems, but does not present MASP examples for building design.

This paper addresses this gap by providing an initial categorization and a literature

review of recent MASP work (2008-2017) within the scope of building design. It

includes the allocation of human activities in architectural space, such as building parts

on a site or rooms inside a building, using diagrams or technical representations. It

comprehends agents with different complexity, from basic reflex agents that refine a

pre-existing spatial arrangement to intelligent agents that can generates complete spatial

patterns. It covers agent-based modeling, techniques adapted to control agents (such as

physics simulation) and hybridizations of agents with conventional or manual methods.

It excludes applications with cellular automata, which were already reviewed by a

previous paper [10], and allocation tasks that are strictly for urban design.

Different databases and online documentations were used to look for MASP

prototypes, but the main source is the CumInCAD1. In the next three sections, we

organize the descriptions of sixteen research prototypes and two precedents according

to categories that conciliate algorithmic and spatial characteristics: (1) agents as moving

spatial units; (2) agents that occupy discrete spaces; and (3) agents that partition space.

After these descriptive sections, we analyze the prototypes based on their types and

on the occurrence of features related to computational representation, evaluation and

control procedures. The goal is to characterize the prototypes under the proposed

categories and to present trends, patterns and challenges for future research.

1 CumInCAD is a cumulative index about publications in Computer-Aided Architectural Design

(CAAD), which provides access to papers of the conferences organized by the sibling CAAD

associations (ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures) and

other related conferences.

CAADFutures19 -53

2 Type 1: Agents as moving spatial units

Each agent of a system of type 1 incorporates an individual representation of space,

which is modified to interact with other agents and to satisfy spatial objectives.

2.1 IMAGE (IMG) 2

System description: IMG is an interactive computer system for multi-constrained

synthesis of spatial arrangements [11, 12], and an important precedent for type 1.

System algorithm: Each spatial unit is a custom cuboid that moves in the space. These

aim at satisfying (multiple) user-defined objectives and constraints: adjacent, keep out,

overlap, relative position, ratio, width / depth / height, 𝑥 / 𝑦 / 𝑧 position, distance,

shared wall, enclose, next, on top of, floor, above, align, and visual access. A constraint

graph stores cuboid units at the main nodes and relations as intermediate labelled nodes.

A Least Mean Squares Fit (LMSF) is applied sequentially to all the spaces, changing

the descriptors of a unit (dimension, location and rotation) to achieve the best local

improvement – i.e., minimum error regarding all the linear equations of the constraints.

Fig. 1. IMAGE. Left: complex volumes generated by aggregation of cuboids with relative

position objective; Left-center and center: visual access objective; center-right: circulation

objective; right: constraint graph [11, 12].

2.2 Fuzzy Layout Planner (FLP)

System description: FLP [13] is an editor to create and modify dynamic bubble

diagrams for the early-stages of design. It adopts reactive spatial units and focuses on

user manipulation.

System algorithm: Each agent is a rectangular bubble, which has minimum agency and

is directly manipulated by the designer. As the user changes one of its dimensions, the

2 We refer to all the prototypes analyzed in this paper by a name and an abbreviation. In cases

where the authors defined the name in the paper, we adopt it. Else, we create a simple name based

on the paper title, description or characteristics of the prototype. The abbreviation of these names

will be used to reference the prototypes in the tables of section 5.

CAADFutures19 -54

bubble modifies the other dimension automatically to preserve the assigned area. A

repulsion force ensures the packing of close bubbles.

Fig. 2. Fuzzy Layout Planner. Top left: dimensions of bubble adapt to preserve area; bottom-left:

dividing bubbles; top-right: repulsion forces; bottom-right: packing bubbles [13].

2.3 Sniffing Space I (SS1)

System description: SS1 [14] is MASP hybrid of type 1 and 2. It consists of a self-

organizing bubble diagram combined with loosely packed rectangles [15].

Fig. 3. Sniffing Space. Top row: spatial association generating zones [14]. Bottom row:

expansion of the model with rectangular boundaries [15].

System algorithm: SS1 incorporates swarm intelligence – in contrast to the reactive

agents of FLP, it uses ant foraging algorithms to define the interaction between two

types of agents: (1) ant soldiers; and (2) an array of ant nests. The soldiers are produced

by the nests, which are inter-connected by edges indicating association or adversity.

The soldiers are points that navigate in the environment, producing and following two

different pheromone trails depending on whether they are searching for associated nests

or returning to their original nest. Each nest has a fixed circular body and a rectangular

boundary with random dimensions 𝑥 and 𝑦 that satisfy its required area. The nests

gradually follow visiting soldiers that are returning to associated nests, clustering with

them and eventually interrupting the production of new soldiers. Additionally, they

have three spatial behaviors: adapt 𝑥 and 𝑦 when they nestle, move away from

CAADFutures19 -55

overlapping adversary nests, and overlie with associated nests. It results in a loose

packing of rectangles, defined by the connections.

2.4 Actants (ACT)

System description: ACT [16, 17] is a self-organizing system that loosely packs

polygons.

System algorithm: It combines swarm intelligence and a physics engine. It is based on

dynamic units called Actants, which are represented by soft body polygons composed

of internal and boundary nodes that function as sensors and actuators. The nodes

maintain the consistency of the shape by attraction-repel forces. The boundary nodes

emit and track identity-based pheromone, detect other nodes, and move the Actant.

The system is based on a hunter-prey dynamic between different Actants. The

pheromone differences in the environment might attract or repel boundary nodes,

keeping the Actant in movement. After a period, if no associated Actant is found by

following the pheromone gradients, one of the boundary nodes is selected for a direct

search in the local vicinity. When an Actant wants to be found by its associates, it

produces pheromone. When it is evading or seeking, it blocks pheromone production,

preventing the agglomeration of non-associated Actants.

Fig. 4. Actants. Top-left: an Actant and its components; bottom-left: scale of consolidation; top-

center: Actants’ vertices reacting to pheromone; right: different associations [16].

2.5 Floating Bubbles (FB)

System description: FB [18] is a self-organizing bubble diagram with optional

rectangular boundaries.

System algorithm: Physics simulation and heuristics solve the adjacency between

bubbles. Agents are represented as circular disks or, optionally, as rectangles,

connected by adjacency edges. To solve the diagram, the system assigns two basic

forces to the agent: attraction and repulsion. Attraction is proportional to the length of

the vector between the boundaries of two connected bubbles. Repulsion is proportional

to the overlapping area between two bubbles and pushes each bubble away. However,

using only attraction and repulsion forces, the bubbles can get stuck in suboptimal

CAADFutures19 -56

arrangements. To avoid these situations, a heuristic moves a bubble towards a

connected bubble when an adjacent requirement stays unsatisfied for too long. As the

heuristic restarts the interactions in a slightly different state, eventually it reaches the

equilibrium and satisfy all the adjacencies.

Fig. 5. Floating Bubbles. Left: three stages in the basic floating bubble system; right: one stage

of the generative process using squares [18].

2.6 Space-planning with real-time physics (RTF)

System description: RTF [19] is a self-organizing, three-dimensional bubble diagram.

Fig. 6. Space-planning with real-time physics. Top left: abstract diagram. Top right and bottom:

physics simulation for bubble diagram.

System algorithm: The user defines an abstract diagram with primary and secondary

adjacencies among the elements of the architectural brief. The elements can also be

connected to anchor objects, which represent important features of the environment.

The specifications of the abstract diagram are translated to a physics simulation, where

the elements are spheres, the edges are springs (with different forces for primary,

secondary, and anchor connections), and the anchors are cylinders. The resulting bubble

diagram is solved by packing the spheres using spring forces. To translate the bubbles

CAADFutures19 -57

to a floorplan diagram, the spheres are converted to squares in the three-dimensional

space, which can be customized by the user.

2.7 Interactive Bubbles (IB)

System description: IB [20] is a self-organizing bubble diagram.

System algorithm: It combines a temperature heuristic with direct application of

attraction and repulsion forces to organize circular agents. Attraction and repulsion

forces solve the adjacency of connected bubbles and pack them inside a user-defined

polygon. The overall behavior of each agent is a result of the sum of the vectors of the

forces. A non-destructive heuristic uses varying temperatures to prevent suboptimal

arrangements. The temperature is inversely proportional to the satisfaction of the

objectives. An unsatisfied agent has higher temperature, reducing its area and its

reaction to the surrounding forces. When the agent gets closer to satisfy its objectives,

the temperature is reduced, recovering its original area and behavior. The user can

manipulate the descriptors of the bubbles in real-time.

Fig. 7. Interactive bubbles. a-b: simulation of the bubble diagram with changing temperature; c-

e: simulation with the definition of a containment area [20].

2.8 Narrative Landscape (NL)

System description: NL [21] is a self-organizing system that packs convex polygons.

System algorithm: It uses a Markov chain combined with physics simulation to create

and pack convex spaces. Initially, the user defines a set of spatial types with distinct

geometric properties and specifies a transition matrix. The generative process starts by

randomly sampling an initial space in that set and sequentially sampling the next spaces

using the transition matrix. Different transition matrices and spatial properties will

generate different chains of polygons. Each space is a soft body composed of a central

particle and surrounded by child particles on the border. The behavior of the bodies is

defined by the combination of four types of specialized springs: (1) a Markov spring

connects the central particles of neighboring spaces to reinforce adjacency; (2) a set of

CAADFutures19 -58

collision springs attaches the central particle of a space to close particles of neighboring

spaces to reinforce alignment; (3) a minimum distance spring preserves a minimum

distance between spaces with different qualities; (4) a within distance spring reinforces

adjacency for spaces with the same qualities that are not connected by Markov springs.

Fig. 8. Narrative landscape. Left: soft bodies and classes for springs connecting particles; right:

two layouts [21].

2.9 Multi-agent + Evolutionary (MAE)

System description: MAE [22] is a MASP hybrid of type 1 and 2 that combines a 3D

bubble diagram with a grid-based system to allocate activities for architectural layouts.

System algorithm: The simulation in MAE uses two types of agents: spheres that

represent regular rooms and capsules that represent corridors, staircases and linear

rooms. The agents are placed on the environment and are connected based on adjacency

requirements. They interact using rules such as attraction, repulsion, swap and

compression. In attraction, each agent is pushed closer to a connected agent by a vector

𝑚, defined by the difference between their closest points. Repulsion uses the inverse of

𝑚 to push overlapping agents apart. For most of the cases, attraction and repulsion only

move the target agent. However, they can also affect the orientation and length if the

target is a horizontal capsule-like agent. Pairs of connected agents use the swap rule to

avoid crossing connections with other pairs. The compression rule is a heuristic that

reduces the volume of the building by pushing the agents together along the simulation.

After the simulation, the resulting spaces are assigned to a 3D grid, forming sets of

cells with the same room identities and sets of faces between the different rooms. This

is the initial state for an optimization. At each iteration, a child solution is generated by

mutation – room identities are swapped, and room shapes are changed by moving

coplanar faces. The parent and child are evaluated by their room shapes, dimensions,

aspect ratios and building shape. An annealing-based function defines the probability

of accepting the child as the parent for the next iteration.

CAADFutures19 -59

Fig. 9. Multi-agent + Evolutionary. Top-left: spherical agent, capsule-like agent and push

operation; bottom-left: swap operation; top-right: agents solving adjacencies; bottom-right:

converting agents to a grid representation and optimizing the solution [22].

3 Type 2: Agents that occupy a space

Type 2 agents do not have a custom spatial shape. They navigate and allocate activities

in a set of pre-defined spatial units, such as grids.

3.1 Sniffing Space II (SS2)

System description: SS2 [23] is a grid-based system to allocate activities in the routes

of an airport.

Fig. 10. Sniffing Space II. Left: Routing between destination points; Right: cargo clustering [23].

System algorithm: It combines ant foraging with a cargo placement protocol to allocate

activities on a grid. The ant foraging algorithm simulates passenger routing in an

airport. Each ant has an agenda with a sequence of destinations or hubs, which represent

specific spaces of the airport. Ants not only follow pheromones and navigate between

hubs but also respond to other agents sharing similar qualities. These qualities are

encoded as random activity cargos that are assigned to each agent. As agents with

similar items meet on a trail, they deposit the cargo at their current location. Every time

another agent with a similar cargo passes by this cluster of cargos, it also drops it. In

CAADFutures19 -60

contrast, a passing agent might collect dropped cargos that have less than 𝑛 neighbors,

preventing scattering of activities. The concentration of the cargos defines the activity

cells on the routes between destination points.

3.2 Stigmergic Space Adjacency Software (SSAS)

System description: SSAS [24] is a self-organizing system that allocates different

activities in a three-dimensional grid.

System algorithm: Agents represent different activities connected by adjacency

relationships. Each agent has a specific RGB value and is compatible with agents within

a close color range – meaning that they should be adjacent. The agents dispute the

territory in a three-dimensional grid of cells. They expand to unoccupied cells with

closest pheromone values and, after achieving the desired area, contract. At each node,

the agent changes the local environment by diffusing its pheromone value, which

attracts agents with compatible values. A regular cell carries a pheromone value and is

influenced by the agents. However, the cell can be customized to impose a pre-defined

value, stimulating spatial templates over which the agents will dispute the territory –

such as circulation systems, boundary areas closer to the light exposure, etc. Also, the

user can customize the set of nodes of the three-dimensional grid, creating

topographies, a pre-defined parti or even voids to preserve views.

Fig. 11. Stigmergic Space Adjacency Software. Left: grid topology and example of pheromone

values; middle: templates for external influence and node masking; right: a solution [24].

3.3 Collective construction (CC)

System description: CC [25] is a multi-agent learning system that allocates different

activities in a three-dimensional grid.

System algorithm: Ten color-coded groups containing fifty agents allocate the different

activities in the grid using adversarial learning. During the simulation, each agent

perceives four features in its cone of vision and can take four actions. The features are:

(1) the agent is on the ground level; (2) there is a teammate nearby; (3) there is an

opponent nearby; and (4) there is a building block nearby. The actions are: (1) move

forward; (2) flock, to align its heading with its teammates; (3) attack, which converts

CAADFutures19 -61

opponents to teammates or eliminates teammates; and (4) build, which places a building

block of the team’s color in the cell. Each group uses a neural network with shared

weights as its policy. At each time step, the agent uses the four features detected as the

input of the network, which outputs the probability of executing the four actions. Then,

the agent selects the most probable one. At the end of the simulation, the performance

of each team is measured by the number of blocks produced multiplied by the number

of surviving team members. The four elite networks remain for the next episode, while

the other six are defined by mutation and combination. This experiment is repeated,

resulting in different arrangements.

Fig. 12. Collective construction. Results of the experiments [25].

3.4 Artificial Life Space Planning (ALSP)

System description: ALSP [26] is hybrid system of type 1 and 2 that combines activity

allocation in a two-dimensional grid with a bubble diagram.

Fig. 13. Artificial Life Space Planning. Left: grid-planning system; center: bubble diagram; right;

integration of grid-planning system and bubble diagram [26].

System algorithm: Each bubble is a soft-body defined by a curve interpolated over a

series of control points. The user can create, edit, drag and connect these bubbles. Then,

a genetic algorithm (GA) specifies rectangles on a grid. The genome is based on five

CAADFutures19 -62

descriptors: row, col, width, length and state. A fitness function evaluates the area and

adjacency of a grid allocation based on the specifications of the bubble diagram (area

of the bubbles and connections). Finally, the bubbles will move to the solution specified

on the grid, stablishing a design cycle.

4 Type 3: Agents that partition space

In contrast to agents that have an attached spatial representation or agents that occupy

a discrete set of cells, type 3 agents navigate in the territory and parametrize the

partition of the space.

4.1 YONA (Y)

System description: YONA [27] is a graph-based system to generate residential layout.

It serves as an historically important precedent for type 3,

System algorithm: It is based on a three-stage representation with incremental design

information: graph embedding, bubble-diagram, and schematic plan. YONA tests the

adjacency graph specified by the user to ensure its planarity and, then, uses a top-down

heuristic to generate a graph embedding. The user can rearrange the embedding by

moving each node to a new position. After a satisfactory arrangement, the program

draws an offset boundary and a dual-graph, creating multiple polygonal partitions

around the original nodes. Then, it generates b-spline curves inside these partitions,

forming a bubble-diagram over which the user can sketch the shape of the rooms.

Fig. 14. Stages of YONA: graph embedding, polygons generated by dual-graph connected to

offset boundary, bubble-diagram, and plan drawn by user [27].

4.2 Associative Spatial Networks (ASN)

System description: ASN [28] is a system that generates an exhibition hall layout

according to the topology of the exhibition and potentially to the users’ feedback.

System algorithm: The system is divided in 3 parts. Firstly, adjacency graphs are

generated for the exhibitions. Each individual exhibit of an exhibition is described by

multiple features and projected to a point in ℝ2 by a self-organizing map (SOM). A

planar graph is created by connecting each point to the neighbors with the closest

CAADFutures19 -63

distance and by storing these values in the edges. The second stage involves clustering

exhibitions that can share similar spatial configuration of the layout. This is solved by

a growing neural network that adapts to the varying dimension of the input spectrum

for each adjacency graph, clustering them according to similar topologies. The graph

with the spectrum closest to the average in each cluster is selected to define the floor

plan. In the third stage, the selected average graphs are embedded on a plane and their

nodes are distributed in the exhibition hall layout by a repulsion algorithm. Using a

Voronoi diagram, each node becomes a polygonal exhibition cell, and the permeability

of the wall is defined by the connection between the neighboring nodes (wall for no

connection, permeable wall for high edge values and no wall for low edge values).

Fig. 15. Associative Spatial Networks. Top-left: adjacency graph for exhibition; bottom-left:

growing neural gas mapping; middle: repulsion algorithm distributes graph nodes over the space;

right: translating a graph into the layout of the exhibition with a 2d Voronoi diagram [28].

4.3 Dwelling Agglomerator (DA)

System description: DA [29, 30] is a self-organizing settlement of dwelling units

connected by public spaces.

System algorithm: It associates a custom flocking model with Voronoi partitioning and

an evaluation function to generate settlements in real-time. A flocking simulation

moves the agents to form a network with approximated orthogonal connections,

following five basic navigation rules. The first two rules are movements that preserve

a specific distance range between the agent and its closest neighbors. With this range

satisfied, other three rules specify a rotation around the closest neighbor, moving the

agent towards a position aligned or perpendicular to the edge connecting the two closest

neighbors. The agents are used to partition the space with a Voronoi Diagram, forming

the dwelling units and the open space. An evaluation function calculates a score for

each unit based on criteria such as area, direct sunlight or accessibility. It defines

whether the agent should stop or keep flocking to look for a better position.

CAADFutures19 -64

Fig. 16. Dwelling Agglomerator. Top-left: flocking rules; Bottom-left: creation of access routes;

right: two layouts [29].

4.4 Responsive Algorithms (RA)

System description: RA[31] is a MASP of type 1 and 3 that generates spatial partitions

based on an architectural brief.

System algorithm: RA combines bubble diagrams, graph embeddings and Voronoi

partition inside a parametric modelling editor. The user defines a bubble diagram, with

disks representing the spatial units with their required area, and edges representing the

adjacency. The bubble diagram is treated as a circle packing problem and solved by

physics simulation: circular discs are rigid bodies and the edges are springs representing

adjacencies. A Voronoi diagram generates a spatial partition using the centers of the

disks. This workflow is extensible to the three-dimensional space, where the nodes of

the adjacency graph are the centers of packed spheres and a Voronoi partition results in

a packing of polyhedral cells.

Fig. 17. Responsive Algorithms. Top-left: circle packing, Voronoi diagram and Voronoi diagram

with radii; top-right: force-directed graph over Voronoi diagram with radii; bottom-left: 3D

Voronoi cells; bottom-right: three-dimensional packing with a skin [31].

CAADFutures19 -65

4.5 Evolving Floorplans (EF)

System description: EF [32] is MASP of type 1 and 3 that generates floorplans based

on topological and flow objectives.

System algorithm: EF uses a general version of Neuroevolution of Augmenting

Topologies (NEAT) to evolves a weighted, connected, and undirected graph

representing a floorplan. Chronological markers enable crossover and mutation of

solutions with different topology and numbers of rooms. The floorplan genome of

NEAT is composed of node genes and connection genes. The former store information

such as room’s size, while the latter assign weights to the connections between pairs of

node genes and are added randomly until the graph is connected.

The phenotype (i.e. the floorplan) is generated in four steps. (1) A spectral layout

embeds the graph in space, which is the input for (2) a physics simulation that converts

the nodes and edges into discs and springs. After the resulting packing, the centers of

the discs are extracted and combined with the vertices of an offset concave hull for (3)

the Voronoi tessellation. With this combination, the internal Voronoi cells have a

boundary like the original circle packing boundary.

Finally, (4) an ant-colony algorithm is applied to the interior edges of the Voronoi

mesh to generate a weighted network to satisfy the connection requirements. The edges

of the resulting hallways are smoothed and dimensioned according to their flow. The

phenotype is evaluated by the NEAT algorithm, enabling the use of objectives such as

minimization of traffic between classes, material usage, fire escape paths, and windows.

Fig. 18. a) spectral layout; b) physics simulation; c) offset of concave hull; d) Voronoi

tessellation; e) generation of circulation using an ant-colony algorithm; f) final floorplan [32].

CAADFutures19 -66

5 Analysis of features

In this section, we analyze the different MASP prototypes to identify the occurrence of

similar features of representation, objectives, and control procedures. Before we

advance in the analysis, Table 1 synthesizes the general categorization of types.

Table 1. MASP Types.

IM
G

F
L

P

S
S

1

A
C

T

F
B

R
T

F

IB

N
L

M
A

E

S
S

2

S
S

A
S

C
C

A
L

S
P

Y

A
S

N

D
A

R
A

E
F

Type 1

Type 2

Type 3

Table 2. Representation of the agents.

IM
G

F
L

P

S
S

1

A
C

T

F
B

R
T

F

IB

N
L

M
A

E

S
S

2

S
S

A
S

C
C

A
L

S
P

Y

A
S

N

D
A

R
A

E
F

Graph

Bubble/ Circle

Polygon/

Polyhedron

Grid

Voronoi

diagram

In terms of representation, features used in SP for more than four decades [3], such

as grids, polygonal representations, and graphs, are still pervasive in MASP. The

prototypes also incorporate new features, such as soft shapes (bubbles) and the Voronoi

diagram for spatial partition. As shown in Table 2, bubbles and polygons are dominant

in type 1. Grids are mostly used in type 2. Voronoi diagrams are dominant in type 3.

Graphs are used predominantly in type 1 and 3 to store the connections between spaces.

In some prototypes, the diagrammatic solutions were also converted to richer

architectural representations with constructive elements (FB and MAE).

CAADFutures19 -67

Table 3. Spatial objectives.

IM
G

F
L

P

S
S

1

A
C

T

F
B

R
T

F

IB

N
L

M
A

E

S
S

2

S
S

A
S

C
C

A
L

S
P

Y

A
S

N

D
A

R
A

E
F

Adjacency

Area / Volume

Shape

Visual access

Relative position

Access

Containment

Exposure

Table 4. Control procedures

IM
G

F
L

P

S
S

1

A
C

T

F
B

R
T

F

IB

N
L

M
A

E

S
S

2

S
S

A
S

C
C

A
L

S
P

Y

A
S

N

D
A

R
A

E
F

Pheromone

Flocking

Physics

LMSF

Spectral Layout

Heuristic

Metaheuristic

Neural Nets

Markov Chain

CAADFutures19 -68

Table 3 shows a contrast between the number of objectives in IMG and in new

prototypes. IMG has a list of seventeen objectives, which we simplified to eight features

for analysis. Current systems are more abstract and focus on satisfying basic objectives

such as adjacency and area/volume. In some of them, relations such as exposure or

visual access can be customized by using the tools for adjacency. For example, SSAS

uses pheromone markers to promote the exposure or privacy of a part of the activities

to the exterior of the building and MAE uses a form of attraction to reduce the external

surface of the building. Some systems have an explicit implementation of different

objectives, such as the containment of the agents in a custom polygon (IB) or an

objective function to evaluate accessibility and exposure (DA).

Table 4 displays the large diversity of control procedures in the prototypes.

Different types of physics simulations are present in most prototypes. They

implement a custom version of attraction/repulsion forces (FB, IB and MAE), rigid

body simulation (RTF, RA and EF), soft body simulation (ALSP, NL, and ACT), or

another unspecified implementation (ASN and FLP).

The second most frequent occurrence is pheromone routing. The algorithms are used

to guide large spatial clusters (SS1 and SSAS), to control the vertices of polygonal

entities (ACT), to guide agents that carry and drop spatial units (SS2), or to generate a

weighted circulation network between the consolidated spatial units (EF).

Flocking has only two occurrences. In DA, the system is a customized Boid model

that generates semi-orthogonal networks with spatial agents. In CC, flocking is one of

the actions in the policy of agents in a three-dimensional grid.

Hybrid methods are used for all MASP types. They incorporate techniques outside

of the scope of agent-based modeling, such as LMSF to guide the agent (IMG),

metaheuristics to initialize or refine the solutions (MAE, ALSP and EF), neural

networks to generate the adjacency between agents (ASN) or to define the policy of the

agents (CC), and Markov Chain to generate new agents (NL).

Fig. 19. Radar charts with the relative occurrences of the features for each type. For hybrid

prototypes, we divided the occurrence uniformly for each type.

CAADFutures19 -69

Table 5. Correlation matrix for occurrence of features.

Table 6. Correlation matrix for relations between types and features. Blue is positive and red is

negative. For hybrid types, we divided the occurrence uniformly.

CAADFutures19 -70

Using correlations between features (Table 5), correlations between types and

features (Table 6) and the radar charts for the occurrence of features in the types (Fig.

19), it is possible to visualize certain patterns. The occurrences of representational and

control features present clear and distinct patterns for each MASP type. In the

occurrence of objectives, all types overlap on adjacency and area.

Type 1 has strong occurrence and positive correlation with graphs, bubbles,

polygons and physics simulation. Bubbles are used to represent fluid moving shapes,

while polygons mostly represent rigid shapes for packing (ACT is an exception and

uses polygons for fluid shapes). Other than access and exposure, Type 1 has the

strongest positive correlation with all features, even with the two objectives that occur

in all types (adjacency and area), which are also strongly correlated to the main

representational features of type 1 (graphs, bubbles and polygons). The occurrence of

adjacency and area in other types is mostly related to hybridization with type 1.

Type 2 has high occurrence and positive correlation with the grids, which are the

representational support for correlated control strategies, such as pheromone routing

(SS1, SS2, and SSAS), metaheuristic optimization (MAE and ALSP) or a neural

network for multi-agent flocking (CC). Type 2 is slightly positively correlated with

exposure, not correlated with shape, and negatively correlated with all other objectives.

Type 3 has a strong correlation with the Voronoi diagrams, which are used to

translate a population of points in space to polygonal or polyhedral partitions. It also

presents some occurrences of graphs and bubbles due to the hybrid prototypes, but these

correlations are respectively weak positive and negative. In terms of control, the only

significant positive correlations are related to flocking, spectral layout and neural

networks. In terms of objectives, it has the largest correlations with access and exposure

among all types.

6 Conclusion

The MASP prototypes analyzed in this paper present novel approaches to SP, with a

rich repertoire of techniques for interactive SP exploration. However, MASP is still a

broad an open territory for research with big challenges and demands.

There is a scientific challenge. While most papers reference general ideas that

inspired their approach – such as Cybernetics, Semiotics, Biology, etc. – and present a

high-level description of the algorithms, they do not provide a formal description of the

control procedures or share the code. Few papers analyze the performance or expression

of the prototypes. One paper provides a brief convergence analysis (FB), some papers

present a concrete architectural application (IMG and FB) and one prototype was

applied to a real project and used in a workshop (SSAS). To move from local

experiments to more robust research, it is necessary to provide mechanisms for the

reproduction, comparison and analysis of the different MASP approaches.

There is also two-fold computational challenge: investigate control strategies that

incorporate domain knowledge and handle multiple spatial objectives and conflicts.

While IMG tried to solve this using LMSF to define the agent’s policy, new prototypes

CAADFutures19 -71

rely on three general trends – bioinspired agents, physics-based agents and

hybridization with destructive methods – that have some limitations.

Bioinspired models are generally resilient and adaptable. Still, as architectural

problems are not always analogous to biological problems, it is usually hard to produce

valid architectural patterns and satisfy architectural objectives.

Physics simulation is a more general model that conciliates simple control with

intuitive interaction and can be adapted for different spatial problems and objectives. It

has recently been incorporated into real world practices [33]. However, physics-based

agents are reactive agents approximately following laws of physics. They do not have

any sophisticated policy to manage spatial conflicts.

A valid solution to this issue is to hybridize these agents with metaheuristics that

globally improve the solution. Nevertheless, it usually requires a pre-defined metric and

imposes discontinuity in the generation procedure.

An alternative to these approaches is to develop MASP system with behavioral

learning, which is present in only one the papers (CC). The recent success of deep

reinforcement learning (DRL, see [34]) in games, robotics and multi-agent navigation

suggests that it is a promising field for inquiry. While the multi-agent setting is

challenging for DRL and current neural network architectures are mostly effective for

Euclidean data, such as grids, recent researches have been pushing the boundaries both

for multi-agent learning [35] and for non-Euclidean spaces, such as graphs and

manifolds [36]. With DRL, it is possible to learn cooperative behavior to generate

spatial patterns continuously. Agents can learn fully from interaction with the task

environment in a simulation or with experts in a supervised setting. Potentially,

behavioral learning can support the development of cooperative agents that are robust

to variations and defined by domain-specific knowledge.

Acknowledgements. We would like to express our gratitude to the Brazilian National

Council for Scientific and Technological Development (CNPq) for granting Pedro

Veloso a PhD scholarship (grant #201374/2014-5).

References

1. Russel, Stuart J., Norvig, P.: Artificial intelligence: A modern approach. Prentice Hall,

Upper Saddle River (2010)

2. Wilensky, U., Rand, W.: An Introduction to Agent-based Modeling: modeling natural,

societal and engineered complex systems with netlogo. The MIT Press, Cambridge (2015)

3. Mitchell, W.J.: Computer-aided architectural design. Mason Charter Pub, New York

(1977)

4. Liggett, R.S.: Automated facilities layout: past, present and future. Automation in

construction. 9, 197–215 (2000)

5. Homayouni, H.: A Survey of Computational Approaches to Space Layout Planning (1965-

2000). Department of Architecture and Urban Planning University of Washington. (2000)

6. Hsu, Y.-C., Krawczyk, R.J.: New generation of computer aided design in space planning

methods: A survey and a proposal. In: Keatruangkamala, K. and Nakapan, W. (eds.)

CAADFutures19 -72

Proceedings of the 8th CAADRIA conference. pp. 101–116. Rangsit University, Bangkok

(2003)

7. Lobos, D., Donath, D.: The problem of space layout in architecture: A survey and

reflections. Arquitetura Revista. 6, 136–161 (2010)

8. Calixto, V., Celani, G.: A literature review for space planning optimization using an

evolutionary algorithm approach: 1992-2014. In: Project Information for Interaction:

Proceedings of 19th SIGraDi conference. pp. 662–671. Blucher, São Paulo (2015)

9. Chen, L.: Agent-based modeling in urban and architectural research: A brief literature

review. Frontiers of Architectural Research. 1, 166–177 (2012)

10. Herr, C.M., Ford, R.C.: Adapting Cellular Automata as Architectural Design Tools. In:

Emerging Experience in Past, Present and Future of Digital Architecture: Proceedings of

the 20th CAADRIA conference. pp. 169–178. Kyungpook National University, Daegu

(2015)

11. Weinzapfel, G., Handel, S.: IMAGE: computer assistant for architectural design. In:

Spatial synthesis in computer-aided building design. pp. 61–68. Applied Science

Publishers, London (1975)

12. Weinzapfel, G., Johnson, T.E., Perkins, J.: IMAGE: an interactive computer system for

multi-constrained spatial synthesis. In: Proceedings of the 8th Design Automation

Workshop. pp. 101–108. ACM (1971)

13. Bayraktar, M.E., Çağdaş, G.: Fuzzy Layout Planner: A simple layout planning tool for

early stages of design. In: Rudi, S. and Sevil, S. (eds.) Computation and Performance:

Proceedings of the 31st eCAADe Conference. pp. 375–381. TUDelft, Delft (2013)

14. Ireland, T.: Emergent Space Diagrams: The application of swarm intelligence to the

problem of automatic plan generation. In: Tidafi, T. and Dorta, T. (eds.) Joining

Languages, Cultures and Visions: Proceedings of the 13th CAAD Futures conference. pp.

245–258. Les Presses de lUniversité de Montréal, Montréal (2009)

15. Ireland, T.: Stigmergic planning. In: Sprecher, A., Yeshayahu, S., and Lorenzo-Eiroa, P.

(eds.) LIFE in:formation, On Responsive Information and Variations in Architecture:

Proceedings of the 30th ACADIA conference. pp. 183–189. ACADIA, New York (2010)

16. Ireland, T.: An Artificial Life Approach to Configuring Architectural Space. In: Martens,

B., Wurzer, G., Grasi, T., Lorenz, W.E., and Schaffranek, R. (eds.) Real Time:

Proceedings of 33rd eCAADe conference. pp. 581–590. eCAADe, Wien (2015)

17. Ireland, T.: A cell inspired model of configuration. In: Combs, L. and Perry, C. (eds.)

Computational Ecologies: Design in the Anthropocene: Proceedings of 35th ACADIA

conference. pp. 136–147. ACADIA, New York (2015)

18. Hao, H., Ting-Li, J.: Floating bubbles. In: Dave, B., Li, A.I., Gu, N., and Park, H.-J. (eds.)

New frontiers: proceedings of the 15th CAADRIA conference. pp. 175–183. CAADRIA,

Hong Kong (2010)

19. Syp, M.: Space Planning with Physics, http://www.marcsyp.com/space-planning/

20. Veloso, P.: Exploring the bubble diagram. In: Amen, F.G. (ed.) Design in Freedom:

Proceedings of 18th SIGraDi conference. pp. 115–119. Blucher, São Paulo (2014)

21. Christensen, J.T.: The generation of possible space layouts. In: Thompson, E.M. (ed.)

Fusion: Data integration at its best.: Proceedings of the 32nd eCAADe conference. pp.

239–246. eCAADe, Newcastle upon Tyne (2014)

CAADFutures19 -73

22. Guo, Z., Li, B.: Evolutionary approach for spatial architecture layout design enhanced by

an agent-based topology finding system. Frontiers of Architectural Research. 6, 53–62

(2017)

23. Ireland, T.: Sniffing Space II: The use of artificial ant colonies to generate circulation

patterns in buildings. In: Tidafi, T. and Dorta, T. (eds.) Joining Languages, Cultures and

Visions: Proceedings of the 13th CAAD Futures conference. pp. 214–227. Les Presses de

lUniversité de Montréal, Montréal (2009)

24. Meyboom, A., Reeves, D.: Stigmergic Space. In: Beesley, P., Stacey, M., and Khan, O.

(eds.) Adaptive Architecture: Proceedings of the 33rd ACADIA conference. pp. 200–206.

Riverside Architectural Press, Toronto (2013)

25. Narahara, T.: Collective Construction Modeling and Machine Learning: Potential for

Architectural Design. In: Fioravanti, A., Cursi, S., Elahmar, S., Gargaro, S., Loffreda, G.,

Novembri, G., and Trento, A. (eds.) Sharing Computational Knowledge!: Proceedings of

the 35th eCAADe Conference. pp. 593–600. eCAADe, Rome (2017)

26. Fernando, R.: Space Planning and Preliminary Design Using Artificial Life. In: Gu, N.,

Watanabe, S., Erhan, H., Haeusler, M.H., Huang, W., and Sosa, R. (eds.) Rethinking

Comprehensive Design: Speculative Counterculture: Proceedings of the 19th CAADRIA

conference. pp. 657–666. CAADRIA, Hong Kong (2014)

27. Weinzapfel, G., Negroponte, N.: Architecture-by-yourself: an experiment with computer

graphics for house design. In: SIGGRAPH. pp. 74–78 (1976)

28. Harding, J., Derix, C.: Associative spatial networks in architectural design: Artificial

cognition of space using neural networks with spectral graph theory. In: Gero, J.S. (ed.)

Design Computing and Cognition’10. pp. 305–323. Springer, Dordrecht (2011)

29. Puusepp, R.: Agent-based Models for Computing Circulation. In: Gerber, D., Huang, A.,

and Sanchez, J. (eds.) Design Agency: Proceedings of the 34th ACADIA conference. pp.

43–52. Riverside Architectural Press, Cambridge (2014)

30. Puusepp, R.: Spatial Agglomerates. In: Gu, N., Watanabe, S., Erhan, H., Haeusler, M.H.,

and Huang, W. (eds.) Rethinking Comprehensive Design: Speculative Counterculture:

Proceedings of the 19th CAADRIA conference. pp. 585–594. CAADRIA, Hong Kong

(2014)

31. Bazalo, F., Moleta, T.J.: Responsive Algorithms. In: Ikeda, Y., Herr, C.M., Holzer, D.,

Kaijima, S., Kim, M.J., and Schnabel, M.A. (eds.) Emerging Experience in Past, Present

and Future of Digital Architecture: Proceedings of the 20th CAADRIA Conference. pp.

209–218. CAADRIA, Hong Kong (2015)

32. Simon, J.: Evolving Floorplans, http://www.joelsimon.net/evo_floorplans.html

33. Derix, C., Izaki, A.: Spatial computing for the new organic. AD. 83, 42–47 (2013)

34. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT Press,

Cambridge (2018)

35. Nguyen, T.T., Nguyen, N.D., Nahavandi, S.: Deep Reinforcement Learning for Multi-

Agent Systems: A Review of Challenges, Solutions and Applications. arXiv:1812.11794

[cs, stat]. (2018)

36. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric Deep

Learning: going beyond Euclidean data. IEEE Signal Processing Magazine. 34, 18–42

(2017)

CAADFutures19 -74

	Binder2
	CAADFutures2019_cuminCAD_Proceeding-페이지-1-204
	CAAD_futures_2019_paper_117

	CAADFutures2019_cuminCAD_Proceeding-페이지-205-1031

