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ABSTRACT

Finding common ground is increasingly more important in building design as building
projects are becoming more complex. Finding common ground generally requires common
views of the same building information. We propose the concept of a sortal building model
as an extension to the Building Information Model (BIM), offering the user the means to
build up design representations, in support of common or interdisciplinary views, and to use
such representations for querying building information. The concept of a sortal building
model is based on a framework for representational flexibility named sorts, which provides
formal support for the construction of design representations, and for the comparison of
alternative representations in order to support translation and identify where exact translation
is possible. In this paper, we compare the process of constructing design views to a complex
adaptive system, in which the design view is as much an outcome of as a means to the design
communication process. This comparison sheds light on the characteristics that distinguish
the BIM and the sortal building model and on the functionalities that are needed to support
the creation and use of a sortal building model for exploring different views in support of
(interdisciplinary) design communication. We also briefly describe those aspects of the sorts
framework that assist in developing these functionalities.
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INTRODUCTION

Failure costs in building construction, in the Netherlands, collectively amount to about 5 to 6
billion euros, about 8 to 10% of the total building costs (Brokelman and Vermande 2005).
Part of these costs is due to design mistakes as a consequence of poor communication among
different disciplines involved in the building design process. Software developments to
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support the building process have mainly focused on mono-disciplinary design and analysis
applications. Research into integrated design environments, starting in the 1970’s, has so far
failed to impact the design practice on any global scale. More recently, research into product
models, information standardization and Building Information Models (BIMs) has focused
on common representational models for multidisciplinary building information. While these
models support all-encompassing (centralized or distributed) collections of building
information and data exchange between applications within and between disciplines, they do
not necessarily support design communication.

Design communication does not only concern the exchange of building information
between different partners and disciplines, but also implies a large amount of human
communication concerning knowledge transfer, decision making and finding common
understanding. Finding common ground is increasingly more important in building design as
building projects are becoming more complex as the result of advances in technological
abilities, the will to break new grounds, the increasing power of diverse interest groups,
issues of liability, etc. Finding common ground generally requires common or, at least,
similar views of the same building information. Such views cannot be too general, nor pre-
defined, as they need to target the specific subject of communication, and the specific
backgrounds of the partners involved. Neither domain-specific design and analysis
applications, nor BIMs, provide adequate support for creating such views and, thus, for
finding common ground.

We propose the concept of a sortal building model as an extension to a BIM, offering the
user the means to build up design representations, in support of common or interdisciplinary
views, and to use such representations for querying building information. The concept of a
sortal building model is based on a framework for representational flexibility named sorts,
which provides formal support for the construction of design representations, the comparison
of alternative representations in order to support translation and identify where exact
translation is possible, and the integration of functional components into design
representations in order to specify design queries (Stouffs and Krishnamurti 2004).
Quintessential to the concept of a sortal building model is the need to construct design views,
either from scratch or by adapting an existing view.

In this paper, we compare the process of constructing design views to a complex adaptive
system, in which the design view is as much an outcome of as a means to the design
communication process. This comparison sheds light on the characteristics that distinguish
the BIM and the sortal building model and on the functionalities that are needed to support
the creation and use of a sortal building model for exploring different views in support of
(interdisciplinary) design communication. We also briefly describe those aspects of the sorts
framework that assist in developing these functionalities.

REQUIREMENTS FOR A DESIGN REPRESENTATION SYSTEM

The building domain, at all stages, is multi-disciplinary, involving participants, knowledge
and information from various specializations. Problems in building design, therefore, require
a multiplicity of viewpoints, each distinguished by particular interests and emphases. In the
main, the architect is concerned with aesthetic and configurational aspects of a design, the
structural engineer considers the structural members and their relationships, and the
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performance engineer is interested in the thermal, lighting, or acoustical performance(s) of an
eventual design. Each has views — derived from an understanding of current problem
solution techniques in their respective domain — that require a different representation of the
same (abstract) entity. Each view specifies a particular selection of information, presented in
a particular way. As such, different views — or different representations — may derive from
different design stages but may also support different persons or applications in the same
design stage. Even within the same task, or by the same person, various representations may
serve different purposes defined within the problem context and selected approach. This is
especially true in architectural design, where the design process, by its exploratory and
dynamic nature, invites a variety of approaches and representations (e.g., Kolarevic 2000).

As an activity in the design process, creativity relies on a restructuring of information that
is not yet captured in a current information structure — that is, emergent information — for
example, when the design provides new insights that lead to a new interpretation of
constituent design entities. Creativity in design can be supported, to some extent, by
descriptions of design entities with either definite or indefinite parts. When design
descriptions have indefinite parts, new design entities can be recognized as alternative
collections of design parts, and descriptions can be reinterpreted as composed of a different
number of design entities. These descriptions can be augmented with properties that
themselves have definite descriptions with definite or indefinite parts. Classic representation
schemes also deal with definite descriptions but generally with definite parts and certainly
properties are definite descriptions with definite parts. The classic BIM approach requires a
specification of design entities as objects (with properties) that is maintained at all times,
unless explicitly altered. Any reinterpretation of design entities, then, requires the
specification of a computational change that not only fixes the source and destination object
types beforehand, but also fixes their numbers and the mapping between properties.
Continuity of such computational change requires anticipation of the particular structures that
are to be changed (Krishnamurti and Stouffs 1997). Creativity, on the other hand, is outwith
such anticipation.

It follows that, in the early phases of architectural design, the design representation is as
much an outcome of as a means to the design process. Systems whose structure is
“simultaneously both the means and the outcome of the social practices associated with
elements of the system” (Kooistra 2002) present a special kind of systems. Kooistra refers to
this mean/outcome mechanism as an ice canoe (Hough et al. 2001). We can consider the
evolution of a design representation throughout the design process as such a system, in
particular, a complex adaptive system. A complex adaptive system is the operational model
of the complexity paradigm, which “uses systemic inquiry to build fuzzy, multivalent,
multilevel and multidisciplinary representations of reality” (Dooley 1997). Dooley
distinguishes two (or three) key principles to a complex adaptive system: “order is emergent
as opposed to predetermined, and the state of the system is irreversible and often
unpredictable”. These principles also apply — or can be applied — to the evolution of a
design representation in a dynamic design process. Considering that “order arises from
complexity through self-organization” (Prigogine and Stengers 1984), the process of self-
organization in the context of an evolving design representation takes on the form of human
communication or correspondence leading to an agreement on the representation that prevails
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in the system (see also Kooistra 2002). This communication can be considered among
different users or between the user and the design application (correspondence between the
user’s mental model and the application’s design representation). At the same time, the state
or history of a design representation is in principle irreversible as changes to the
representational structure can result in data loss. Since the design outcome is indeterminately
related to the design requirements and the design process, and the design representation is an
intricate part of this outcome, this representation is in principle also unpredictable.

Applied to a framework for building design representations in the context of a design
process, these key principles can be translated into requirements of robustness and flexibility
(see also Kooistra et al. 2003) with respect to the design representation system, and of the
potential for data loss. Here, robustness means that the system offers the possibility for
correspondence (or communication) leading to an agreement on the representation that
prevails in the system. At the same time, the system must offer the possibility for
representations to change and in such a way that, in principle, claims on this representation
generate quality improvement. “A claim has the desired quality if in the construction process
attention has been devoted to the construction progressing in such a way that using the claim
serves to improve the quality” (Groen et al. 1980, see also Kooistra 2002). Laying claims can
be considered as the engine of the design process, also with respect to (the design of) the
design representation.

FORMALLY RELATING REPRESENTATIONS

Typically, a representation is a complex structure of properties (or attributes) and
constructors, and a representation may be a construction of another (Stouffs et al. 1996). Van
Leeuwen et al. (2001) describe a property-oriented data modeling approach, in which design
concepts are represented as flexible networks of objects and properties. In contrast to the
classic BIM approach, an object has no predefined set of properties and the composition of
properties defining an object can be changed at any time. Concept modeling (van Leeuwen
and Fridgvist 2003; see also van Leeuwen 1999) provides an elaboration of this approach. It
distinguishes concepts and individuals, both defined in terms of properties, where concepts
represent modeling schemata and individuals represent particular designs. A concept defines
an individual’s initial structure of properties, however the relationship between an individual
and a concept is a loose one: properties can be added to an individual irrespective of whether
its concept predefines these same properties; individuals can also relate to multiple concepts
or relate to more specific concepts over time. As such, concept modeling allows for the
extensibility of conceptual schemata and for flexibility in modeling information structures
that differ from the conceptual schemata these derive from. Under the property-modeling
approach, correspondence can be achieved through the evolution of the network of objects
and properties and by agreement on the naming of objects. These names can themselves be
understood as laying claim to these objects with the purpose of improving quality. Thus,
modeling design representations through incremental changes can play an important role in
achieving agreement and thus in containing the “chaos” to which the construction of design
representations within a flexible framework can lead.

Such an incremental approach, however, can greatly benefit from a formal framework
that allows for alternative representations of a same entity to be compared and related,
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formally, in order to support translation and identify where exact translation is possible. For
example, Stouffs et al. (1996) were able to show, using a subsumption relation defined on
well known solid models — boundary solid representations (Baumgart 1975, Mantyla 1988,
Paoluzzi et al. 1989) and the maximal element representation (Krishnamurti 1992) — that
information loss between some of these solid models is inevitable. Subsumption is a
powerful mechanism for comparing alternative representations of the same entity. When a
representation is subsumed by another, the entities represented by the former can also be
represented by the latter representation, without any data loss. There are many
representational formalisms that consider the subsumption relationship in order to achieve
partially ordered type structures; most are based on first-order logic. Applied to building
design, a good example is Woodbury et al. (1999), who adopt typed feature structures as the
model for design space exploration. Like many other formalisms, typed feature structures
consider a record-like data structure for representing data types. Record-like data structures
facilitate the encapsulation of property information in (a variation of) attribute/value pairs
(ATt-Kaci 1984). Furthermore, the properties may themselves be typed by type structures,
i.e., expressed in terms of record-like data structures, containing (sub)properties. Then, the
subsumption relationship defines a partial ordering on type structures. Furthermore, the
algebraic operations of intersection and union (or others similar) may be defined on type
structures so that the intersection of two type structures is subsumed by either type structure,
and the union of two type structures subsumes either type structure.

Key to typed feature structures is the notion of partial information structures and the
existence of a unification procedure that determines if two partial information structures are
consistent and, if so, combines them into a single, new (partial) information structure. Typed
feature structures further consider a type hierarchy and a description language, where each
type defines a corresponding description. The subsumption relation between feature
structures extends the subsumption ordering on types inherent to the type hierarchy.
Woodbury et al. (1999) also specify a generating procedure that relates feature structures
with a description (or type) that they satisfy, and that incrementally generates more complete
design structures. This fact — that the generating procedure monotonically generates more
complete information structures — could be interpreted as excluding the possibility for
information loss and thus making design states reversible. However, the inclusion of an
information removal operator is possible providing more flexibility at the cost of limiting
search strategies (Woodbury et al. 1999).

A SEMI-CONSTRUCTIVE ALGEBRAIC FORMULATION

Of course, there is more than one approach to formally model design descriptions. We
consider a semi-constructive algebraic formulation, termed sorts. The premise here is that
whenever individuals are confronted with information, they naturally classify it according to
their own needs and understanding — sort it out, so to speak. Sortal descriptions of design
entities can have definite or indefinite parts, and can be augmented with properties that are,
themselves, sortal descriptions and, therefore, can have definite or indefinite parts. Sortal
descriptions can also combine under a subsumption relationship. Sortal descriptions may be
shared and they have implications for information transfer, information coverage and
information loss.
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A BEHAVIORAL SPECIFICATION FOR SORTS

“In functional semantics, if two functions exhibit the same behavior they are the same. In
type feature structures, if two paths exhibit analogous properties, they represent analogous
design (or reuse) cases” (Krishnamurti 2006). However, difficulties arise when dealing with
information of different types in a uniform way. For instance, at the representational level,
operations that may otherwise seem trivial, such as adding or removing data elements,
become resolutely non-trivial — for instance, the addition of two numbers when these
represent cardinal values (e.g., a number of columns that is increased) and when these
represent ordinal values (e.g., for a given space, determining the minimum distance to a fire
exit or the (maximum) amount of ventilation required given a variety of activities), and
similarly, additive versus subtractive colors, depending on whether these refer to the mixing
of surface paints or colors of light, respectively.

An important ingredient of sorts is behavioral specification. Behavioral specification is a
prerequisite for the effective exchange of data between various representations. Fortunately,
it is reasonably limited to the common arithmetic operations of addition, subtraction, and
product. It turns out that the more common CAD operations of creation and deletion, and
selection and deselection, can all be expressed as some combination of addition and
subtraction from one design space (sort) to another. The complex operations of grouping and
layering can be treated likewise.

The simplest specification of a part relationship corresponds to the subset relationship on
mathematical sets. This part relationship particularly applies to points and labels, e.g., a point
is part of another point only if the two are identical, and a label is a part of a collection of
labels only if it is identical to one of the labels in the collection. Then, operations of addition
(combining elements), subtraction, and product (intersecting elements) correspond to set
union, difference, and intersection, respectively. Explicit designer action is required in order
to alter any data element. Only when two elements are identical can these combine as one.

Another kind of behavior arises when we consider the part relationship on line segments.
A line segment is an interval on an infinite line carrier; in general, one-dimensional quantities
such as time may be considered as intervals. An interval is a part of another interval if it is
embedded in this interval; intervals on the same carrier that are adjacent or overlap combine
into a single interval. Specifically, interval behavior can be expressed in terms of the
behavior of the boundaries of intervals (Krishnamurti and Stouffs 2004). This behavior also
applies to infinite intervals, provided there is an appropriate representation of both (infinite)
ends of its carrier.

Behaviors also apply to composite sorts, that is, a part relationship can be defined for its
component data elements belonging to a composite sort defined under a conjunction
(attribute or property operator) or disjunction. The composite inherits its behavior from its
components in a manner that depends on the compositional relationship.

The disjunctive operator distinguishes all operand sorts such that each data element
belongs explicitly to one of these sorts — the disjunctive sort subsumes each operand sort.
For example, a sort of points and lines distinguishes each data element as either a point or a
line. Consequently, a data element is part of a disjunctive data collection if it is a part of the
partial data collection of elements from the same component sort. In other words, data
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collections from different component sorts, under the disjunctive operator, never interact; the
resulting data collection is the set of collections from all component sorts. When the
operation of addition, subtraction or product is applied to two data collections of the same
disjunctive sort, the operation instead applies to the respective component collections.

Under the attribute operator a data element is part of a data collection if it is a part of the
data elements of the first component sort, and if it has an attribute collection that is a part of
the respective attribute collection(s) of the data element(s) of the first component sort it is a
part of. When data collections of the same composite sort (under the attribute operator) are
pairwise summed (differenced or intersected), identical data elements merge, and their
attribute collections combine, under this operation. Elements with empty attributes are
removed and the composite behavior is that, in the first instance, of the first component sort.

When reorganizing the composition of components sorts under the attribute operator, the
corresponding behavior may be altered in such a way as to trigger data loss. Consider a
behavior for weights (Stiny 1992) (e.g., line thickness or surface tones) as becomes apparent
from drawings on paper — a single line drawn multiple times, each time with a different
thickness, appears as if it were drawn once with the largest thickness, even though it assumes
the same line with other thickness. When using numeric values to represent weights, the part
relation on weights corresponds to the less-than-or-equal relation on numeric values. Thus,
weights can combine into a single weight, which has as its value the least upper bound of all
the respective weight values, i.e., their maximum value. Similarly, the common value
(intersection) of a collection of weights is the greatest lower bound of all the individual
weights, i.e., their minimum value. The result of subtracting one weight from another is
either a weight that equals the numeric difference of their values or zero (i.e., no weight), and
this depends on their relative values.

Now consider a sort of weighted entities, say points, i.e., a sort of points with attribute
weights, and a sort of pointed weights, i.e., a sort of weights with attribute points. A
collection of weighted points defines a set of non-identical points, each having a single
weight assigned (possibly the maximum value of various weights assigned to the same
point). These weights may be different for different points. The behavior of the collection is,
at first instance, the behavior for points. On the other hand, a collection of pointed weights,
which is defined as a single weight (which is the maximum of all weights considered) with
an attribute collection of points, adheres, at first instance, to the behavior for weights. In both
cases, points are associated with weights. However, in the first case, different points may be
associated with different weights, whereas, in the second case, all points are associated with
the same weight. In a conversion from the first to the second sort, data loss is inevitable. An
understanding of when and where exact translation of data between different sorts, or
representations, is or is not possible, becomes important for assessing data integrity and
controlling data flow (Stouffs et al. 1996).

Behavioral specification is a prerequisite for a uniform handling of different and a priori
unknown data structures. The behavior of such data can be expressed through a number of
operations chosen to match the expected behavior. When an application receives data along
with its behavioral specification, the application can then correctly interpret, manipulate, and
represent this information without unexpected data loss. The part relationship that underlies
the behavioral specification for a sort enables matching to be implemented for this sort; since
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composite sorts inherit their behavior and part relationship from their component sorts, any
technical difficulties in implementing matching apply just once, for each primitive sort.

DATA RECOGNITION USING SORTS

Logic-based models essentially represent knowledge; sorts, on the other hand, represent data
— any reasoning is based purely on present or emergent information.

The typed feature structures formalism, like most logic-based formalisms, links
subsumption directly to information specificity, that is, a structure is subsumed by another, if
this structure contains strictly more information than the other. One consequence of (logical)
subsumption is that the absence of information in a design representation does not
necessarily imply the absence of this information in the design, that is, representations are
automatically considered to be incomplete. As a result, when searching for a design
(representation) that satisfies certain information, less specific representations cannot
automatically be excluded (e.g., Baader et al. 2003). For example, consider polygon objects
that may have a color assigned. When looking for a yellow square, a square without any
color specified is considered a potential solution — unless, it has another color explicitly
specified, or it is otherwise known not to have the yellow color. The fact that a color is not
specified does not exclude an object from potentially being yellow. Nothing can be excluded
unless it is explicitly excluded — that is, logic-based representations consider an open world
assumption. Sorts, on the other hand, hold to a closed world assumption. A polygon only has
a color if one is explicitly assigned: when looking for a yellow square, any square will not
do, unless it has the yellow color assigned.

Recognizing information, especially of the emergent kind, is invaluable, rather,
necessary, should the information be, subsequently, the subject of action. From a creativity
standpoint, design relies on an ability to restructure emergent information. Data recognition
and subsequent manipulation can be considered part of a single computation:

s —f(a) + f(b).

Here s is a data collection, a is a representation of the data pattern, f is a transformation
under which a is a part of s, and f(b) is the data replacing f(a) in s. s — f(a) + f(b) is an
expression of computational change and can be written as a design rule: a — b. Rule
application consists of replacing the emergent data corresponding to a, under some allowable
transformation, by b, under the same transformation.

Formally, rules may be grouped as a grammar — a device for specifying the set of all
designs generated by the rules collectively. Each generation of a design in the language starts
from an initial design, and uses the rules to create a design that contains elements from a
given terminal vocabulary. Rules and grammars specified as such, lead naturally to the
generation and exploration of possible designs. According to Mitchell (1993) and Stiny
(1993), in the case of creative spatial design, spatial elements that emerge under a part
relation are highly enticing to design search. The closed world assumption is commonly used
in design grammars to constrain emergence. More specifically, labeled points commonly
serve to constrain the applicability of shape rules. Sorts provide a component-based approach
to developing grammar systems, utilizing a uniform characterization of grammars (Stouffs
and Krishnamurti 2001).
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CONCLUSIONS

There will always be a need for different representations of the same entity, whether it be a
building in its entirety that is under consideration, or a part of a building, albeit a shape, or
some other complex collection of properties. Considering a representation as a complex
structure of properties and constructors, then, comparing alternative representations requires
a comparison of their respective properties and their mutual relationships, and the overall
construction. At the same time, the expressive power of a representational framework is
defined by its vocabulary of properties and constructors. A formal definition of this
representational framework and its vocabulary can give designers the freedom and flexibility
to develop or adopt representations that serve their intentions and needs, while at the same
time these representations can be compared with respect to scope and coverage in order to
support information exchange and communication. Such a comparison will not only yield a
possible mapping, but also uncover potential data loss when moving data from less-
restrictive to more-restrictive representations.
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