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ON A METHOD OF FLEMMING 

Wall representation and orthogonal structures 

RAMESH KRISHNAMURTI 
Carnegie Mellon University 

Abstract. I examine a method of Ulrich Flemming, rooted in graph 
theory, originally developed for two-dimensional spatial layouts based 
on mutually orthogonal relations, for extension to the third dimension. 
Specifically, arrangements of three dimensional rectangles (or 3-
rectangles) are considered. Such arrangements can be classified as 
dense or loose, referring to the tightness of packing, and further 
classified as unlocked or locked, referring to the interlocking nature of 
the constituent 3-rectangles. I show that such arrangements can be 
recursively specified by two kinds of rules: simple insertion of a wall 
and ‘pinwheel’ insertion of a cyclical arrangement of walls, mirroring 
his results in 2D. I further mirror Flemming by establishing a similar 
structure property for these arrangements, and conclude by 
establishing the link to a 3D extension of orthogonal structures. 

Prologue  

In a town near Koblenz there was a young man 
Who went to Berlin with a wonderful plan 
With a twist and a slice 
He made a wrep nice 
Das ist DIS he exclaimed with élan 
 
He plaited a wig with the space round the T’s 
He wore it to Buffalo … it was a breeze 
Looking left, looking right 
Looking up, looking down 
He structured this rag and took it to town 
 
Orthogonally speaking, his idea was cool 
He marked the stars by his own expert rule 
And … broke loos a seed 
Though, my friends, there’s lots more to tell 
This man from Koblenz has succeeded quite well. 
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Ulrich Flemming grew up in Mayen near Koblenz, in the Eifel region of 
Germany – he did his PhD at the Technical University of Berlin on 
generative rules for two dimensional T-plans – developing and extending this 
work to loose arrangements at SUNY-Buffalo, and Carnegie Mellon – where 
his ideas took shape in form of the computer systems: DIS, LOOS and SEED 

Ulrich Flemming championed and advanced the cause of spatial layout 
design as a legitimate area of inquiry bringing rigor to method in regard to 
schemes of subdivisions of right-angled spaces separated by ‘walls’ in 
mutually orthogonal directions. Much of his work focused on arrangements 
of rectangles in two dimensions, dense and loose, in theory and in practice, 
on implementation, with application to design and construction; see 
Flemming (1978, 1979, 1980, 1986, 1988, 1989, 1990; with Fenves et al, 
1994; with Chien, 1995; with Woodbury, 1995; with Choi, 1996).  
Flemming’s solo authored papers, cited above, constitute the “method” 
referred to in the title of this paper. 

The basic spatial layout problem he tackled takes the following form: 
“For a given set of rectangular spaces, find possible arrangements of the 
spaces such that no two spaces overlap [and satisfy given constraint].” 
Constraints, if any, may take on a variety of forms that relate to geometry, 
topology, shape, dimension, area, volume, adjacency, material property, 
costs, and so on (Flemming et al, 1992). Constraints may also apply to 
collections of spaces, or regions made up of specific spaces. In this paper, I 
consider unconstrained layouts of rectangular spaces in three dimensions 
following, in essence, the method of Flemming. Some of the results reported 
here have been published elsewhere (Krishnamurti and Earl, 1998), although 
the logic there was mainly number-theoretic – albeit with reference to 3-
dimensional maps – rather than graph-theoretic as is the case here. 

For any layout of n-dimensional rectangular spaces, n ≥ 2, termed n-
rectangles, there is always a smallest n-dimensional rectangular region that 
encloses the layout; this is referred to as the bounding or enclosing n-
rectangle. An arrangement of non-overlapping n-rectangles in an enclosing 
n-rectangle is termed an n-rectangulation. Each such arrangement falls, 
naturally, into one of several categories, for example: 
• Arrangements in which constituent n-rectangles pack the bounding 

region. These are ‘dense’ arrangements. 
• Arrangements of n-rectangles that do not completely fill the bounding 

region. These are ‘loose’ arrangements. 
• Arrangements that satisfy topological or geometrical constraints such as 

adjacency, tolerances, or minimum and maximum dimensions. These 
tend to be loose.  
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3-RECTANGULATIONS 

Definition: A 3-rectangulation is an arrangement of non-overlapping 3-
rectangles within a 3-rectangle. The arrangement is dense if the 3-rectangles 
cover the enclosing rectangle, and loose otherwise. A loose arrangement can 
be derived from a dense counterpart by designating certain rectangular 
spaces as ‘holes’ or voids. The number of constituent non-void spaces is 
referred to as its content. A 3-rectangulation with content p is denoted as a 
(3, p)-rectangulation.  

It is not within the purview of this paper to survey the literature 
pertaining to layouts Although, it is not hard to find practical examples 
involving elements that occupy volume, the literature on 3D layouts is 
sparse; in 2D, there are more exemplars.  Beyond art and architecture, spatial 
layout is important in many different disciplines arrived at through a variety 
of approaches — see, for instance, Preas and van  Cleemput (1979), Wong 
and Liu (1987), Rutenbar (1989) and Galle (1990). Current practice in 
creating 3D-layouts is, where possible, by extruding 2D-arrangements into 
the third dimension. For instance, in VLSI design, one, typically, employs 
optimization techniques especially when the number of spaces is too large – 
in any practical way – to handle by generative approaches. On the other 
hand, there are problems that cannot be solved even in this manner, for 
example, layout of engine body components. Potential solutions are 
confirmed by ‘expensive’ simulations (and, perhaps, even prototypes). There 
is the occasional algorithm to solve constrained packing problems; Szykman 
and Cagan (1997) provide an example in mechanical engineering design. On 
the whole, ceteris paribus, it is worthwhile and, perhaps even necessary, to 
examine properties of general three dimensional arrangements. 

T-figurations 

 

Figure 1: A 3-rectangulation and interior maximal planes 
 one from each of the three possible orientations.  After Earl (1978) 

Maximal lines act as separating walls for 2-rectangulations; in like fashion, 
maximal planes separate 3-rectangulations. A 3-rectangulation is formed by 
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a set of maximal planes of which six share boundary lines with the bounding 
3-rectangle and the rest have boundary lines coincident with other maximal 
planes but do not share boundary lines (Earl, 1978). In general, the maximal 
planes are not rectangular. Figure 1 is an example of a symmetrical 3-
rectangulation where the interior maximal planes in each of three possible 
orientations are identical in form. 

JOINTS IN 3-RECTANGULATIONS 

The intersection of three maximal planes defines a joint.  For a 3-
rectangulation, there are precisely eleven types of interior joints possible. 
See Figure 2, arranged in rows according to the number of 3-rectangles that 
have corners at joints.  

 

Figure 2:  The eleven interior joint types for 3-rectangulations and the associated 
incidence structure of 3-rectangles around a joint (After Earl (1978)) 
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If each constituent 3-rectangle is represented by a vertex, we obtain the 
incidence structure around a joint, also shown in Figure 2. Note that each 
graph can be obtained by a sequence of edge contraction (or vertex 
identification) from the incidence graph for the type 11 joint. 

Joints in space are analogous to junctions, the intersection of two lines in 
the plane, of which there are three types: L-, T-, and +-shaped. 

Each cross-section of a 3-rectangulation parallel to a coordinate plane, 
not coincident with a maximal plane, corresponds to a dense arrangement of 
rectangles within a rectangle, i.e., a 2-rectangulation. Of interest are those 3-
rectangulations the cross-sections of which correspond to trivalent 2-
rectangulations. [Flemming (1978) refers to trivalent 2-rectangulations as T-
plans because the interior maximal lines form T-shaped junctions.] 

 

Figure 3:  Rules to convert 3-rectangulations into T-figurations 
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Definition: A 3-rectangulation is trivalent – that is, each of its cross-
sections, in the above sense, is a trivalent 2-rectangulation (or T-plan) – if it 
contains interior joints of types 1, 2, and 3 and no other. If we apply the rules 
in Figure 3, repeatedly, to interior joints of type 4 through 11, every 3-
rectangulation can be converted to a trivalent 3-rectangulation. These rules 
are analogous to the rules that Flemming uses to convert 2-rectangulations to 
T-plans. Observe here that the resulting joints are either of type 1 or type 2. 
In the manner and spirit of Flemming, a trivalent 3-rectangulation will be 
referred to as a T-figuration. 

T-figurations exhibit interesting joint properties.. 
Each corner of a 3-rectangle is determined by three orthogonal planes 

which meet at the corner; thus, a joint formed by any two maximal planes 
and a third non-rectangular maximal plane (say, an L-shaped plane) cannot 
be of type 1 or 2. Hence: 
(2.1) Maximal planes of T-figurations without joints of type 3 are 
rectangular; conversely, T-figurations with just rectangular maximal planes 
do not have type 3 joints. 

A T-figuration with type 3 joints is said to be locked and unlocked 
otherwise. Figure 1 is an example of a locked T-figuration. Since type 2 
joints define corners of 3-rectangles and every face of a 3-rectangle belongs 
to a maximal plane, it follows that: 
(2.2) Maximal planes of unlocked trivalent T-figurations belong to at least 
four joints of type 2. 

We can make a stronger observation. Each face 
of any 3-rectangle in an unlocked T-figuration 
belongs to a maximal plane, say w. Since the 
neighbouring spaces of the 3-rectangle are either 3-
rectangles or the exterior regions, there is a pair of 
planes that form an I-shape with w. This is true in 
either direction orthogonal to the given plane. Thus: 
(2.3) Each boundary line of any maximal plane of 
unlocked T-figurations is coincident with but does not share a boundary line 
with another plane orthogonal to the plane. 

Finally, consider the two pairs of planes that bound a given plane. They 
must form joints of type 2 at the corners of the given plane. That is:  
(2.4) For each maximal plane of unlocked T-figurations there is a pair of 
planes orthogonal to it that bound it and form joints of type 2. 

Possible configurations of planes that bound a maximal plane of an 
unlocked T-figuration are shown in Figure 4. These configurations suggest a 
set, bound(w), which specifies for a maximal plane w the four maximal 
planes with which w has an incident boundary line. Whence: 
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Figure 4:  A maximal plane of an unlocked T-figuration is bound by pairs of parallel 
planes that form type 2 joints with it 

(2.5) For each maximal plane of unlocked T-figuration there are exactly 
four planes to form a configuration equivalent, under identity, rotation or 
reflection, to one of the configurations shown in Figure 4. 

Lastly, there is a connection between the content of an unlocked T-
figuration and the number of its interior maximal planes.  
(2.6) An unlocked trivalent (3, p)-rectangulation has p–1 interior maximal 

planes (Earl, 1978).  
By (2.6), an unlocked T-figuration with content p+1 

can always be constructed from one with content p by 
adding a new interior maximal plane. This property does 
not hold for locked T-figurations though. The 
figuration, shown on the left, is the smallest locked 
arrangement and has three L-shaped interior planes. 
Terminology: A T-figuration with content p is referred 

to as a T(p)-figuration. A T-figuration is said to be du if it is dense and 
unlocked, dl if it is dense and locked, lu if it is loose and unlocked, and ll if 
it is loose and locked. 

REPRESENTING THE MAXIMAL PLANES OF UNLOCKED T-FIGURATIONS 

An unlocked T-figuration can be oriented so that the faces of its constituent 
3-rectangles are aligned with the coordinate planes. In other words, each 
maximal plane can be associated with an orientation that indicates the 
coordinate plane to which it is parallel (namely, xy, yz or zx). 

The orientation of a maximal plane of an unlocked T-figuration can be 
used to distinguish it. As a rectangle, a maximal plane can be described by 
its minimum and maximum coordinates. Depending on orientation, one of 
the coordinate values is fixed for the descriptors of the maximal plane. For 
example, an yz oriented rectangle shares the same x coordinate value in both 
its min and max descriptors. Thus, a function fix can be specified for 
maximal planes, taking values from the set {x, y, z}.  

Maximal planes can be arranged so that no two are coplanar. In this case, 
the T-figuration is said to be in standard form. If the number of xy oriented 
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planes is nz, we assign constant z coordinates for the interior xy planes from 
the set {1, …, nz-1}. The two exterior xy oriented planes are assigned z 
coordinates of 0 and nz respectively. The maximal planes oriented in the 
other two directions are likewise treated. That is, we can define a function, 
coord, which can be used to compare two identically oriented planes for 
their relative position with respect to each other. The equation of the carrier 
plane coplanar with the maximal plane w is given by:  

 fix(w) = coord(w).  

Thus, given the maximal planes and functions fix, coord and bound, we can 
completely recover an unlocked T-figuration and vice versa. Note, however, 
that this representation is inadequate for locked T-figurations. 

Specifying T-figurations 

I now examine three approaches, originally applied to 2-rectangulations, that 
progressively define larger subsets of 3-rectangulations, culminating in the 
wall representation (Flemming, 1978), which will be considered in detail.  

T-FIGURATIONS AS SLICINGS 

Rectangular maximal planes suggest an approach to specifying an unlocked 
T-figuration by a procedure known as slicing (Supowit and Slutz, 1984). A 
3-rectangle is sliced into partitions by maximal planes parallel to one of the 
bounding planes. Each partition is then recursively sliced by maximal planes 
in an orientation orthogonal to the plane that defines the partition. This 
process is repeated till each partition is just large enough to house a given 3-
rectangular component. The slices form joints of type 1 or 2. A T-figuration 
that can be specified by slicing is said to be sliceable. 

A sliceable T(p)-figuration can be constructed from p–1 slices where each 
slice corresponds to a maximal plane. The slices that meet do so as T-shaped 
junctions. One of the slices has a boundary line coincident with the other 
slice. The two slices are respectively termed the base and crosspiece of the 
T-shaped junction formed by the two slices. Sliceable T-figurations 
correspond to a class of acyclic directed graphs. 

T-FIGURATIONS AS SUBREGION PARTITIONS  

Kundu (1988a) describes a data structure to represent a class of T-plans. A 
variant of this data structure can be defined for a class of T-figurations. The 
data structure is an extension of the slicing model, and includes partitioning 
operators to produce ‘pinwheel’ arrangements.  

Quite simply, the data structure is a tree where each node is associated 
with either a label if it is the root of a subtree, or a name that identifies a 3-
rectangle. Leaf nodes correspond to constituent 3-rectangles. The labels of 
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all other nodes identify the partitioning operation that is applied. Each 
subtree of a node corresponds to a partition of the 3-rectangular space 
represented by the node. The tree describes a partition of a 3-rectangle into 
3-rectangular regions some of which, in turn, are likewise partitioned. 

There are three slicing operators, labelled s, each oriented parallel to 
some coordinate plane (i.e., sx, sy and sz), and six pinwheel partitioning 
operators grouped into three pairs of enantiomorphs, p and q, each 
partitioning a 3-rectangular space into five spaces. 

 

Figure 5: Slicing s, and pinwheel partitioning operators, p and q. 

Other operators may be defined to generate configurations that cannot be 
produced by the slicing and pinwheel operations. Kundu (1988b) suggests 
two for T-plans: the double spiral and weave operators. Similar operators 
can be specified for T-figurations. 

Partitioning here has the property that any 
dense T-figuration can be subdivided into 3-
rectangular regions, termed sub-regions, each 
the union of one or more subregions. There 
are, of course, T-figurations that cannot be so 
described; the T-plan on the left is a cross-
section of a T-figuration that cannot be 
specified by this representation. Such T-
figurations can, however, be specified by the 

‘wall representation,’ which is considered next. 

WALL REPRESENTATION FOR T-FIGURATIONS 

The wall representation – wrep, for short – is analogous to a combination of 
the slicing and subregion models for du T-figurations (Flemming, 1978). 
Here, each maximal plane is treated as a wall. The wall representation, W 
(=W(R)), for T-figuration R is given by a set of walls, where each wall is 
given by the four argument relation:  

 wall (index, fix, S↓, S↑),  

where index uniquely identifies the wall, fix has been defined previously, S↓ 
is the set of spaces (3-rectangles) that are all directly below, to the front, or 
to the left of the given wall, and S↑ is the set of spaces that are all directly 
above, to the back, or to the right of the given wall.  
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Without introducing further notation, each argument will be considered 
as a variable as well as a function on walls. In particular, S↓(wall) gives the 
set of spaces directly to side ↓ of the wall and S↑(wall) gives the set of spaces 
directly to the other side ↑ of the wall. Adding a space to one side of a wall 
is expressed by assignments of the form: 

 S(wall) ← S(wall) ∪ {new-space} 

In addition we define truth functions, ∆↓ and ∆↑, to indicate whether a 
given space is to a specific side of a given wall according to the appropriate 
orthogonal relation. For a space below a xy wall, ∆↓(space, wall) is true, and 
false otherwise; for a xy oriented wall ∆↓ is defined as, ∆↓(space, wall): 
fix(wall) = z ∧  zmax(space) ≤ coord(wall), where ∧ denotes conjunction. 
Likewise, for a space above an xy wall, ∆↑(space, wall) is true, and false 
otherwise. ∆ relations on yz or zx oriented walls are likewise defined. 

Spaces on either side of a wall may be arranged as an ordered list:  
• For xy oriented walls, spaces are listed front-to-back left-to-right. 
• For yz oriented walls, spaces are listed below-to-above front-to-back. 
• For zx oriented walls, spaces are listed left-to-right below-to-above. 

In other words, for any ij oriented wall, the spaces on either side of the wall 
are specified in order of increasing j and then increasing i values. 

 The wall representation defines an oriented incidence relation between 
the maximal planes and spaces that make up a T-figuration. The region, 
exterior to the bounding 3-rectangle, features in this incidence relation. This 
exterior region is considered to be made up of six distinct spaces, each 
corresponding to a distinct orthogonal direction. For convenience, these six 
exterior spaces are identified by symbols Eabove, Ebelow, Efront, Eback, Eleft and 
Eright. The interior spaces are numbered from 1 to p. Likewise, if the six 
bounding planes of the enclosing 3-rectangle are labelled wabove, wbelow, wfront, 
wback, wleft and wright, the interior walls can be numbered from 1 to p–1. We 
can then specify bound for any exterior wall we as follows: 

w∈bound(we) if w∈{wabove, wbelow, wfront, wback, wleft, rright}∧ [fix(w) ≠ fix(we)]. 

Thus, bound(wabove) = {wfront, wback, wleft, wright}.  
The wall representation is independent of the dimensionality of the 

rectangles, and extends naturally to certain higher dimensional 
rectangulations. Note that this formulation for the wall representation is 
independent of the shape of the wall. Initially, we consider T-figurations 
with rectangular walls. 

RULES FOR CONSTRUCTING WALL REPRESENTATIONS 

By (2.5), a du T(p+1)-figuration can be constructed from a du T(p)-
figuration by adding a new wall. Let w1 be a wall in a T-figuration. A new 
space can be added to the right, to the back or above w1 – depending on 
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fix(w1) – by inserting a new wall parallel to w1. Consider the four walls, w2, 
w3, w4, and w5 in bound(w1). Suppose w2 and w3 are parallel. Then, w4 and w5 
are parallel. Let coord(w2) < coord(w3) and coord(w4) < coord(w5). Suppose 
w1 has bounding lines coincident with walls w2, w3, w4, and w5 as shown in 
Figure 6. [Should the walls correspond to one of the other configurations in 
Figure 4, the relationship between walls w1, and w2 through w5 can be 
likewise illustrated. 

 

Figure 6: General rule for creating a new space by inserting a wall 

A new space is created by enclosing it within walls w1 through w5 and a 
new wall parallel to w1. The new space is bordered by all six walls, and the 
new plane borders the spaces ‘enclosed’ by the five original walls as 
illustrated by the right hand side of Figure 6. For the other configurations in 
Figure 4, the right hand side is accordingly defined. 

The following determines the set of spaces ‘enclosed’ by the five walls:  

 B = {s∈S↑(w1) | ∆↑(s, w2) ∧ ∆↓(s, w3) ∧ ∆↑(s, w4) ∧ ∆↓(s, w5)} 

B is the set of spaces directly to ↑ of w1 which are simultaneously to ↓ of w3 
and w5 and to ↑ of w2 and w4. After insertion of wp, these spaces will be 
directly on side ↑ of wp with index p. [All interior walls are numbered from 1 
upwards and thus, are indexed by their number. Exterior bounding walls are 
numbered from –5 to 0.] The only space directly on side ↓ of the new wall 
wp is the new space p+1. It is clear that the new space is directly bordered by 
walls w2 through w5 with no changes to the other spaces bordered by these 
walls. However, the spaces bordered by w1 and p are affected. In other 
words: 

_________________________________________________________ 

RULE 1 (Simple Insertion) 
if index(w1) ∈{right, back, above}  
then index(wp) ← index(w1)   
  index(w1) ← p 
else index(wp) ← p  
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S↓(wp) ← { p+1} 
S↑(wp) ← B, 
S↑(w1)  ← [S↑(w1) – B] ∪ {p+1} 
S↑(w2) ← S↑(w2)  ∪ {p+1} 
S↓(w3) ← S↓(w3) ∪ {p+1} 
S↑(w4) ← S↑(w4) ∪ {p+1} 
S↓(w5) ← S↓(w5) ∪ {p+1} 
bound(wp) ← {w2, w3, w4, w5} 

__________________________________________________________ 

These nine assignments specify a general rule for constructing a wall 
representation Wp+1 from a wall representation Wp for certain configurations 
of walls w1 through w5. Note that the index of wp is p unless w1 is one of the 
bounding planes wright, wback or wabove, in which case the indices of walls wp 
and w1 are interchanged. 

The rule applies to certain other configurations.  
Consider any other wall wj orthogonal to w1 such that wj and w1 intersect 

at a line. Since walls w2 through w5 bound w1, either (a) wj is parallel to w2 
and coord(w2) < coord(wj) < coord(w3), or (b) wj is parallel to w4 and 
coord(w4) < coord(wj) < coord(w5). Moreover, w1 ∈bound(wj); otherwise, the 
3-rectangulation will not be trivalent.  

Consider case (a). That is, suppose wj is parallel to w2 (and w3). Then, 
there are walls wk ∈bound(wj) with wk = w4 or wk = w5, or w1 ∈bound(wk). A 
similar result holds for case (b) when wj is parallel to w4. Therefore:  
(3.1) In any unlocked T-figuration, for each wall w bound by a wall wb, w is 

bound by two walls orthogonal to both w and wb such that each also 
bounds wb or is bound by wb.   

This proposition reinforces the fact that for any T-figuration, the cross-
section of the walls that meet w1 forms a T-plan. See Figure 7.  

 

Figure 7: The spatial situations when a wall wb bounds wall w 

We introduce the following notation: whenever wall w bounds wall v, we 
write w├ v. In other words, w├ v implies w ∈bound(v) and conversely.  
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Suppose, in addition, w4├ wj and w5├ wj. Then, the general rule above 
can be applied in two ways: 
• By replacing all occurrences of w3 in rule 1 by wj to create the space p+1 

bounded by walls w1, w2, wj, w4, w5 and wp.  
• By replacing all occurrences of w2 in rule 1 by wj to create the space p+1 

bounded by walls w1, wj, w3, w4, w5 and wp. See Figure 8. 

 

Figure 8: An instance of the general rule to create a space by inserting a new wall. 
For illustration, the relative dispositions of w1 and the new wall have been switched 

In a similar fashion, we can apply the general rule when wj is parallel to 
w4 (and w5), w2├ wj and w3├ wj. In this case we replace the occurrence of w4 
(or w5) by wj in the set expressions. 

Suppose there are two walls wj and wk both parallel to w2 and bound by 
walls w4 and w5 that meet w1 on the same side. Suppose further that 
coord(wj) < coord(wk). Then, the rule can be applied by replacing all 
occurrences of w2 and w3 in the set expressions by wj and wk respectively, 
creating space p+1 bounded by walls w1, wj, wk, w4, w5 and wp (see Figure 9).  

 

Figure 9: Another instance of the rule to create a space by inserting a new wall.  
For illustration, the relative dispositions of w1 and the new wall have been switched. 
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In a similar fashion, we can apply the general rule if wj and wk are both 
parallel to w4, and bound by walls w2 and w3. In this case, occurrences of w4 
and w5 are replaced by wj and wk respectively in the set expressions. 

The following case is likewise handled. Suppose there are two walls wj 
and wk such that w2├ wj, w3├ wj, wj├ wk, and w4 (or w5) ├ wk. Then, 
occurrences of w3 and w5 (or w4) are replaced by wj and wk respectively. 
Alternatively, we can treat wk as the wall to which the rule is applied. 

The only case that remains to be considered is when there is a wall wj that 
meets w1 on one side, and a parallel wall wk that meets w1 on the other side. 
In this case a new space that forms a pinwheel arrangement with the spaces 
that currently border w1 can be created (see Figure 10).  w1├ wj, w1├ wk, and 
both wj and wk are bound by either w2 and w3, or w4 and w5. Otherwise, if 
both wj and wk are bound by a common wall other than say, w2 and w3, we 
will have a 3-rectangulation that is not trivalent and thus, a contradiction. 
Suppose wj and wk are both parallel to w2. Suppose, without loss in 
generality, that wj meets w1 from ↓ (that is, from left, front or below) and wk 
from ↑. In this case the rule is described by the following set expressions. 
Similar expressions can be defined when wj and wk are parallel to w4. 

 

Figure 10:  Examples of the rule for creating a pinwheel arrangement 
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_________________________________________________________ 

RULE 2 (Pinwheel Insertion) 

if coord(wj) < coord(wk)  
then B↓ ← {s ∈S↓(w1) | ∆↓(s, wj) ∧ ∆↑(s, w2)  ∧ ∆↑(s, w4) ∧ ∆↓(s, w5)} 
  B↑ ← {s ∈S↑(w1) | ∆↓(s, wk) ∧ ∆↑(s, w2)  ∧ ∆↑(s, w4) ∧ ∆↓(s, w5)} 
else /* coord(wj) > coord(wk) */  
  B↓ ← {s ∈S↓(w1) | ∆↑(s, wj) ∧ ∆↓(s, w3) ∧ ∆↑(s, w4) ∧ ∆↓(s, w5)} 
  B↑ ← {s ∈S↑(w1) | ∆↑(s, wk) ∧ ∆↓(s, w3) ∧ ∆↑(s, w4) ∧ ∆↓(s, w5)} 
index(wp) ← p 
S↓(wp) ← B↑ ∪ {p+1} 
S↑(wp) ← B↑ 
S↓(w1) ← [S↓(w1) – B↓]  
S↑(w1) ← [S↑(w1) – B↑] ∪ {p+1} 
S↑(w2) ← S↑(w2) ∪ {p+1} 
S↓(w3) ← S↓(w3) ∪ {p+1} 
S↑(w4) ← S↑(w4) ∪ {p+1} 
S↓(w5) ← S↓(w5) ∪ {p+1} 
if coord(wj) < coord(wk)  
then bound(wp) ← {w2, wk, w4, w5} 
  bound(w1)  ← {wj, w3, w4, w5} 
else bound(wp) ← {wk, w3, w4, w5} 
  bound(w1)  ← {wj, w2, w4, w5} 

__________________________________________________________ 

The completeness and correctness of the two insertion rules will be 
established in the next section. However, since each du T-figuration has a 3-
rectangular space in any one of its corners, a du T(p+1)-figuration can 
always be constructed from a du T(p)-figuration by the insertion of a wall, 
and thus – informally – establishes sufficiency of the simple insertion rule. 
The pinwheel insertion rule is required when spaces are generated according 
to some numerical order. In other words, the two rules are sufficient to 
construct any labelled wall representation from the wall representation of a 
given T-figuration. 

It is convenient to start the generation with a single 3-rectangle bounded 
by the six exterior planes. By appropriately choosing wall w1, the rules 
extend the new space along one of three directions. When the rules are 
restricted to apply along just two directions, the set expressions correspond 
to the rules given by Flemming (1978) for generating wall representations in 
the two-dimensional case. The difference between Flemming’s formulation 
and the one given here is that his directly employs an ordering on the spaces 
to easily identify the elements of B, the spaces that are shifted when the new 
wall and space are inserted. The same approach can be adopted here, but 
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would require fairly involved expressions – albeit necessary – which I have 
avoided for sake of clarity. 

Wall incidence graphs for du T-figurations 

The incidence structure for the walls of a du T-
figuration is now examined. Let the interior and 
exterior walls be {r1, r2, …, rp–1} and {rabove, rbelow, 
rleft, rright, rback, rfront} respectively. Suppose that the 
xy-oriented enclosing walls, i.e., those with fixed z 
coordinates, bound the other four enclosing walls 
and the zx oriented walls bound the yz oriented 

walls. The six walls divide the region exterior to the enclosed region into six 
distinct regions.  

Definition: A T-figuration R can be represented by a digraph, WG(R) = 
(V, E), where each vertex vj = v(rj) represents wall rj. Conversely, wall rk = 

r(vk) corresponds to vertex vk. V = Vext ∪ Vint where the exterior vertices are 
given by Vext = {vabove, vbelow, vleft, vright, vback, vfront} and interior vertices are 
given by Vint = {vk | 1 ≤ k ≤ p–1}. An edge, (vi, vj) ∈E, is incident from vi to vj 
if and only if ri and rj form a base cross-piece pair; that is, whenever rj├ ri. 
Vertices u and v are adjacent whenever (u, v) ∈E, or (v, u) ∈E. WG(R) is the 
wall incidence graph – wig, for short – of T-figuration R.  

WG(R) has the following properties: (1) Each interior wall is bound by 
four walls; that is, for v ∈Vint, outdegree(v) = 4. (2) No interior wall bounds 
an exterior wall; for ve ∈Vext and vi ∈Vint, (ve, vi)∉E. (3) The subgraph 
induced by the exterior vertices, Gext = (Vext, (Vext × Vext) ∩ E), is shown in 
Figure 11.  

 

Figure 11: Graph induced by the exterior vertices 

(4) Each T(p)-figuration has p–1 interior walls and 6 exterior walls. The 
outdegrees of the exterior vertices are 4, 4, 2, 2, 0 and 0. Thus, WG(R) has 
p+5 vertices and 4p+8 edges. (5) The vertices can be coloured according to 
the orientation of their corresponding walls such that no two adjacent 
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vertices are coloured the same. That is, each vertex v(r) can be assigned the 
colour fix(r); or, colour(v(r)) = fix(r). No edge connects vertices of the same 
colour. Of the four edges incident from an interior vertex, two are to vertices 
of one colour and the other two to vertices of another colour. That is, WG(R) 
is vertex 3-colourable. (6) Each interior vertex v is associated with 4 vertices 
that belong to bound(v). These vertices form a weakly connected closed path 
consisting of vertices of just two colours, which are termed as a weak 4-
cycle. v is the center of an outwardly weakly connected wheel, denoted by 
Wv, formed by the weak 4-cycle of its bounding vertices. See Figure 12.  

 

Figure 12: An outwardly connected wheel of order 4 at a vertex. 

(7) For v ∈Vint, Wv is unique. There are sixteen possible configurations for 
Wv, which fall into four equivalence classes under rotation and reflection. (8) 
A weak cycle is strong if it is a directed cycle. There are no strong cycles of 
odd length in WG(R). (9) There are no two strong 4-cycles in WG(R) that 
share exactly three vertices. 

In general, strong cycles in a wall incidence graph can share vertices as 
illustrated in Figure 13, where two strong cycles share three walls, 
highlighted by bold black lines.  

 

Figure 13: Two strong cycles that share three walls 
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Figure 14 illustrates two strong 4-cycles that share two walls. Note: 
strong cycles that share vertices are always oriented in opposite directions. 

 

Figure 14: Strong 4-cycles that share two common walls (v1 and v4) 

(4.1) Every du T-figuration can be produced by simple insertion and 
pinwheel insertion rules. 

Outline of proof: The proposition is established by induction on the 
number of vertices. The proposition is clearly true for G(1). Suppose it is 
true for all G(q), q ≤ p. Consider any G(p+1).  

There are two cases to consider.  
(i) The graph is acyclic. 
The graph has a vertex v with degree = 4. Moreover, the vertices adjacent 

to v have indegree > 0. Removal of v and all its incident edges (which 
number exactly 4) will result in a graph with p+5 vertices and 4p+8 edges. 
The resulting graph – by the induction assumption – satisfies the properties 
of a wall incidence graph. In other words, it is a G(p). Or, G(p+1) is 
produced from G(p) by simple insertion. 

(ii) The graph has a strong cycle. 
The graph has a strong 4-cycle on two colours. Moreover, there is a 

strong 4-cycle with vertices, in cyclic order, v1, v2, v3, and v4 such that there 
are two vertices v5 and v6 of the third colour to which all four vertices are 
incident. Let uj denote the fourth edge incident from vj, 1 ≤ j ≤ 4. 

v1, …, v6 partition the remaining vertices into two classes, say V1 and V2, 
where the vertices in V1 are outside the 4-cycle and those of V2 are inside.  

In principle, by removing V2 and associated inside edges we will have a 
G(p′), p′<p+1, which by induction can be constructed by the simple and 
pinwheel insertion rules. There are two cases to consider. 

(a) See Figure 15. If V2 is empty, then by identifying, say v1 and v3, into a 
single vertex, removing the edges (v1,v2), (v3,v4), (v3,v5), (v3,v6), and replacing 
edges (v2,v3) and (v3,u3) by (v2,v1) and (v1,u3) respectively, and combining 
adjacency lists of v1 and v3, we produce the required graph G(p′). 
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Figure 15: Illustrating step (a) in the induction step in the proof of proposition (4.1) 
(Inside of the closure of the strong 4-cycle is empty) 

(b) See Figure 16.  If V2 is not empty, its vertices and associated edges are 
removed from the original graph and we can then apply case (a) above to the 
resulting graph. Furthermore, the vertices in V2 and its associated edges 
together with six new vertices, designated as exterior vertices, arranged 
according to Figure 11 and labelled as vabove, vleft, … according to the original 
vertex colours of v1, v2, …, v6, define an G(p′′), p′′<p+1, which by induction 
can be generated by the simple and pinwheel insertion rules.  � 

 

Figure 16: Illustrating step (b) in the induction proof of proposition (4.1) 
(Inside of the closure of the strong 4-cycle is not empty) 

ALGORITHM TO REALISE A T-FIGURATION IN STANDARD FORM 

The proof for (4.1) can be used to realise G(p) as a T(p)-figuration.  
Step 1: Partition the vertices according to their spatial orientation by a 

depth-first graph search. In the description below, ∨, ∧ and ¬ denote 
disjunction, conjunction, and negation respectively. Start the search at a 
distinguished vertex and initialize its colour to {x}. For each vertex w 
adjacent to v, the current vertex, one of two possibilities can occur: 
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• w has not been previously visited: w cannot have the same colour as v. 
Set colour(w) ← ¬ colour(v) 1 and recursively search from w.  

• Otherwise, w has been previously visited: v cannot have the same colour 
as w. In this case, set colour(v) ←colour(v) ∧ ¬ colour(w). 

The procedure assigns two possible colours to a vertex when it is first 
visited. Subsequent visits either leave its colour unchanged or colours it 
uniquely. Since G(p) is vertex 3-colourable and each vertex is adjacent to 
vertices of two distinct colours, an instantiation of vertex colouring is always 
possible. Since the graph is connected and the procedure is a depth-first 
search of the undirected version, each edge is traversed exactly twice. In 
other words, the procedure produces a valid colouring of the vertices. It can 
be readily modified to count the number of x, y, and z vertices, denoted by 
nx, ny, and nz respectively. 

Step 2: Assign descriptors to the vertices each coplanar with a grid 
plane. Each vertex v can be uniquely identified by an equation of the form 
colour(v) = coord(v). The enclosing walls have equations given by x = 0, x 
= nx−1, y = 0, y = ny−1, z = 0 and z = nz−1. In addition, each vertex 
corresponds to a rectangular wall, the min and max coordinates of which are 
specified by the equations of the planes that bound it. Initially, set: 
minx ← miny ← minz ← 0, maxx ← nx−1, maxy ← ny−1 and maxz ← nz−1. 
This step depends on the nature of the graph. 

(a) Acyclic graphs.  
For an acyclic G(p) there is at least one interior vertex bounded by 

exterior vertices; that is, there is a wall w bound by four exterior walls. For 
ease of argument, suppose w to be an x-wall. Split the graph into two graphs 
such that w is external in both. Let the graph with external x-wall with 
coordinate minx have cx x-walls. Set coord(w) = minx + cx –1. Repeat the 
procedure for each graph, in one setting maxx to equal the coordinate of w 
and in the other setting minx to equal it, until there are no unassigned interior 
walls. A y- or z- coloured slicing wall is similarly treated. The T-figuration 
thus realised has no two vertices corresponding to coplanar walls. 

(b) Graphs with strong cycles.  
Each strong 4-cycle C in splits the graph into two graphs: one is the 

current graph replaced by three ‘tagged’ vertices (explained below), and the 
other is formed by c(C) and all vertices inside it. Suppose the 4-cycle C is 
given by v1, v2, v3,, and v4. Then, either (i) v1 and v3 are identified as v13

C and 
renaming v2 and v4 as v2

C and v4
C respectively, or (ii) v2 and v4 are identified 

as v24
C and renaming v1 and v3 as v1

C and v3 
C respectively. Suppose (i). In this 

case, we replace edge (v1, v2) by (v2
C, v13

C) and (v3, v4) by (v4
C, v13

C). All edges 

                                                 
1  Vertex colour is assumed to be represented by a 3-bit number, and its arithmetic 

by bitwise-and and -or. Thus, an x vertex is represented by 001, a y vertex by 
010, a z vertex by 100, (x ∨ y ∨ z) by 111, the colour ¬ x by 110 and so on. 
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incident on v1 and v3 are now incident on v13
C. All interior vertices of c(C) are 

removed from the original graph. c(C) and all vertices inside it form the 
second graph.   

Each tagged vertex is associated with the index of the cycle that is found. 
A vertex may be tagged by the indices of more than one cycle. Eventually all 
the graphs will be acyclic. We can then assign coordinates to the vertices 
using procedure (a).  

We now consider the strong cycles in reverse order of their detection. For 
each cycle C, we reassign the coordinates of the vertices of the graphs 
determined by c(C). This is equivalent to adding some constant to the 
currently assigned vertex coordinates. Given the coordinates of c(C) we can 
add a constant to the coordinates of vertices with currently assigned 
coordinates higher than the tagged vertices in the original graph. Suppose 
coord(v2

C) < coord(v4
C). Let the difference coord(v4

C) – coord(v2
C) = k. That 

is, there are k–1 vertices with fix value equal to fix(v2
C) = ƒ. We may assume 

that these are on the same side of v13
C as v4

C. If not, we can renumber the 
vertices on the same side as v2

C, which have higher coord values than v4
C. 

Suppose there are m vertices in c(C) with fix value ƒ. We add m-2 to the 
coord values of vertices v with fix(v) = ƒ and coord(v) ≥ coord(v4

C). We also 
add coord(v2

C) + k – 2 to interior vertex in c(C) with fix value equal to ƒ. 
This is illustrated in Figure 17.  

 

Figure 17: Replacing three tagged vertices and a T-figuration by a 4-cycle in the 
process of realizing a T-figuration 

Vertices in the other orientations are similarly treated. Each tagged vertex 
is untagged by the index of C. Eventually, when all the strong cycles have 
been considered, a finite process, we have an assignment of vertex 
coordinates that again corresponds to a T-figuration in standard form. � 
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From dense to loose configurations 

We have just seen that a du T-figuration can be assigned coordinates in 
which each wall is aligned with one of the coordinate planes. Let the min 
and max wall coordinates be denoted by (xmin, ymin, zmin) and (xmax, ymax, zmax) 
respectively.  

ORTHOGONAL SPATIAL RELATIONS ON 3-RECTANGLES 

There are six basic orthogonal relations which can be defined between pairs 
of 3-rectangles, a and b, not all that hold simultaneously. 

 above(a, b) ⇔ zmin(a) ≤ zmax(b)  

 below(a, b) ⇔ above(b, a) ⇔ zmax(a) ≤ zmin(b) 

Likewise in the y- and x-directions, the relations back, front and left, right 
respectively taken in pairs can be defined. These relations are transitive; that 
is, above(a, b) ∧ above(b, c) ⇒ above(a, c). 

directly-above(a, b) ⇔ 
above(a, b) ∧ [∀r ≠ a, b ¬ (above(a, r) ∧ above(r, b))] 

The relations directly-below, directly-back, directly-front, directly-left, 
and directly-right are similarly defined. The relation above is the transitive 
closure of the directly-above relation. Likewise, the other orthogonal 
relations are transitive closures of their respective directly- counterpart. 
These relations can be employed to define relations that partition the region 
exterior to a given 3-rectangle in other ways. For example,  

strictly-above(a, b) ⇔  
above(a, b) ∧ ¬ [ right(a, b) ∨ left(a, b) ∨ back(a, b) ∨ front(a, b)], 

specifies a region exterior to a 3-rectangle in which only the above 
orthogonal relation holds and no other. ¬ denotes negation.  

NOTATION  

D denotes the set of the six directly-orthogonal relations, and D∗, the set of 
powers of elements of D.  That is: δ∗∈D∗ if and only if ∃ δ∈D, an integer 
k > 0 and δ∗ = δk.  Let ℜ be the set of the six orthogonal relations. For each 
δ∈D there corresponds a general orthogonal relation ∆∈ℜ, and for each 
∆∈ℜ, there is a corresponding directly- relation δ∈D. That is, for any two 3-
rectangles u, v and relation δ, δ∗(u, v) ⇒ ∃ ∆∈ℜ, ∆(a, b). Conversely, 
∆(a, b) ⇒ ∃ δ∗∈D∗, δ∗(a, b). Thus, for any δ∈D acting on a set of 3-
rectangles, ∆=*δU .  

The inverse relation ∆−1 of a relation ∆ is defined by the following table: 
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∆ left right front back below above 

∆−1 right left back front above below 
 

The inverse notation applies to δ. For ease, the following short-hand is 
employed: δr ≡ δright ≡ directly-right, δb ≡ δback ≡ directly-back, and δa ≡ δabove 
≡ directly-above. The other three relations are denoted as inverses of these. 
The subscript notation extends to ∆.  

Orthogonal relations are equivalent to elements of the cyclic group c6: 
 

σ front back below above right left 
 
Then, σ3∆ = ∆−1. With respect to a wall, ∃ κ, 0 ≤ κ ≤ 5, ϕ = σk∆  represents 
the right relation. Then, {ϕ, σ ϕ, σ2 ϕ} represent the ↑ side of the walls, and, 
with  ϕ−1 = σ3ϕ , the relations {ϕ−1, σ ϕ−1, σ2 ϕ−1} the ↓ side. 

REGION ADJACENCY GRAPH OF A T-FIGURATION 

Definition: For any T(p)-rectangulation, Rp, a labelled digraph on p vertices, 
Gp = G(Rp) = (Vp, Ep), can be defined as follows: each vertex represents a 3-
rectangle and edges satisfy the condition: (a, b) ∈Ep ⇔ [δa(b, a) ∨ δb(b, a) ∨ 
δr(v, u)]. Equivalently, (u, v) ∈Ep ⇔ [δa

–1(a, b) ∨ δb
–1(a, b)  ∨ δr

–1(a, b)]. 
Here, a and b denote both the vertices and 3-rectangles that these represent. 
Gp is the region adjacency graph – rag, for short – of Rp. 

Let λ denote an edge labelling function. Then, λ(a, b) ≡ right ⇔ δr(b, a), 
λ(a, b) ≡ back ⇔ δb(a, b) and λ(a, b) ≡ above ⇔ δa(b, a). An edge (a, b) in 
Gp indicates the presence of a wall w between a and b in Rp. That is, if 
(a, b) is an edge in Gp, then either a ∈S↓(w) and b ∈S↑(w), or b ∈S↓(w) and 
a ∈S↑(w). The edge label can be used to identify the orientation of the wall. 

Consider the neighbourhood of 3-rectangles around joints of types 1, 2 
and 3 shown in Figure 18.  

 

Figure 18: Neighbourhood of 3-rectangles around a joint 
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For unlocked T-figurations – that is, those with joints of types 1 and 2 – 
there is at most one directed edge between any two interior vertices. For 
locked T-figurations, there are at least two vertices with three labelled edges 
between them. For the orientation shown, δr(b, a), δb(a, b) and δa(a, b) hold. 
In all cases, the graph is weakly cyclic. 

Consider the subgraph around a type 3 joint, involving the five vertices. 
There are four directed edges in each of the three labels. Of the vertices 
corresponding to interlocking 3-rectangles, there is always one which has 
two edges directed towards it and two directed away from it, of the other 
two, one has four (three) edges directed away from it, and the other has the 
same number of edges directed towards it. a and b are each incident to six 
edges, a has two (or three) edges directed towards it, and b has four (or 
three) edges directed towards it. This pattern occurs in all possible 
orientations of a type 3 joint. 

REACHABILITY PROPERTIES FOR T-FIGURATIONS 

In this section I enunciate a property that relates the orthogonal relations to 
the constituent 3-rectangular spaces of a T-figuration. Let a be an arbitrary 
3-rectangle within Rp. For each a, define the sets: 

 S∆(a) = {b | ∆(b, a)}, δ∈D. 

S∆ specifies a reachability function in the direction of ∆. That is, if b∈S∆(a), 
then there exists a trail from a to b along ∆. 

Since each internal 3-rectangle is bounded by six walls, it follows that 
there are at least six distinct neighbouring spaces directly related to it. [By 
assigning a vertex to the region exterior to the T-figuration, we can deal with 
those 3-rectangles that neighbour onto the exterior.] 

Secondly, suppose a and b are two internal 3-rectangles such that the 
relation ∆(b, a) holds. Suppose c is a space and ∆(c, b) holds. Since ∆ is 
transitive, it follows that ∆(c, a) holds. In other words, S∆(b) ⊆ S∆(a). That is, 
if there is a trail from a to b, then there is trail from a to all vertices to which 
there is a trail from b. Thus, 

(5.1) For each δ ∈D, for each constituent 3-rectangle a∈Rp,  
b ∈S∆(a) ⇒ S∆(b) ⊆ S∆(a). 

(5.2) For any δ ∈D, for each constituent 3-rectangle a∈Rp,  
)(1 aS −∆
= {b | a ∈S∆(b)} 

The following proposition, stated without proof, shows that from any 
interior vertex in the graph of a du T-figuration, every other vertex is 
reachable by a trail or a reverse trail.  



ON A METHOD OF FLEMMING 55 

(5.3) Suppose Rp is dense. Then, for each internal 3-rectangle a∈Rp, 
)(

δ
aS

D
∆

∈
U  = Rp – {a}.  

Moreover, if Rp is unlocked, the sets S∆(a) are pairwise disjoint. 

TAGGED RELATIONS AND TRAILS  

The proposition (5.3) for T-figurations is similar to the structure property 
that Flemming (1980: Theorem 3) enunciates for T-plans. While (6.3) is 
tight for du T-figurations, it is unsatisfactory for dl T-figurations, owing to 
the non-disjointedness of the structural sets. This is due to the fact that there 
are the multiple relations between the non-interlocking rectangles around a 
type 3 joint. We can get round this situation by considering the adjacency 
relationship in the following manner. 

Consider a type 3 joint where a and b are the non-interlocking 3-
rectangles. Without loss in generality, we may suppose that δr(b, a) holds. 
We express this by a tagged edge (a, b, tag) where tag is a 3-digit binary 
number r b a where κ = 1 if δκ(b, a) holds and 0 otherwise. Thus, the region 
adjacency graph can always be described by at most one directed edge, 
tagged or otherwise, between any pair of vertices. For ease, for a tagged 
edge has no edge label. The region adjacency graph so specified is weakly 
cyclic. Note that for each tag value, there are two possible configurations of 
the interlocking 3-rectangles.  

If we now consider structural sets in terms of just ‘untagged’ 
relationships, the structural sets, once again, are pairwise disjoint. 

ORTHOGONAL STRUCTURES 

The region adjacency graph – where the edges are tagged or untagged – does 
not take into consideration the exterior of the T-figuration. This can be 
rectified by associating a vertex E with the exterior space. All other vertices 
are then deemed as interior. Suppose Ε is specified by its ‘inverse’ 
coordinate in the sense that its minimum coordinates are given by 
(xmax, ymax, zmax)(Ε) and its maximum coordinates by (xmin, ymin, zmin)(Ε). We 
can then specify edges (Ε, a) with label λ∈{right, back, above} if δλ(Ε, a) 
holds and edges (a, Ε) if δλ(a, Ε) holds. In this way, all 3-rectangles on the 
boundary of the enclosing 3-rectangle are joined by edges to the exterior 
space. 

Definition: A sequence v1, v2, …, vk, k ≥ 2, of distinct vertices defines a 
trail if and only if each successive pair of vertices (vi, vi+1), 0 < i < k, in the 
sequence is an edge in the graph and each edge of the trail is labelled the 
same. A sequence of distinct vertices defines a reverse trail if the reverse of 
the sequence defines a trail. A trail exists between a pair of vertices if one is 
the first vertex and the other is the last vertex of the trail. A trail is simple if 
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there is a directed edge between the first and last vertex in the sequence, and 
nonsimple otherwise. Two trails are parallel if they have the same label, and 
if they are between the same pair of vertices and they differ in at least one 
vertex in their sequences. Two trails are perpendicular if they have the 
distinct labels, and if they are between the same pair of vertices and they 
differ in at least one vertex in their sequences. For any trail v1, v2, …, vk, k ≥ 
2 defined by δ∈D, for each pair of vertices vi, vj, 0 < i < j ≤ k, the 
relationships ∆(vj, vi) and ∆−1(vi, vj) hold. 

The augmented adjacency graph, AG(Rp), with p+1 vertices has the 
following properties. Let Rp denote the set of internal and external spaces of 
a T(p)-figuration. Then, 

(i) ∀a∈Rp, ∀δ∈D, Ε∈S∆(a) 
In other words, the exterior is reachable by a trail (or reverse trail) from any 
vertex in each of the six directions. 

(ii) ∀a∈Rp, ∀δ, δ'∈D, δ ≠ δ', U )(aS∆ = Rp – {a} 

If Rp is du, S∆(a) ∩ S∆'(a) = {Ε}. That is, every other vertex is reachable by 
a trail (or reverse trail) from any vertex. Moreover, if Rp is unlocked, all trails 
between two interior vertices must be parallel. 

Definition: A graph is an orthogonal structure if and only if  
(i) for each pair of interior vertices, there is at least one trail between them 

and all trails between them are either parallel or perpendicular; 
(ii) for every interior vertex and the exterior vertex, there is at least one trail 

in each of the three labels between them; and 
(iii) all parallel trails have at least three vertices. 

Condition (i) states that: if a and b are two distinct interior vertices, 
∃δ∈D, ∆(a, b), and ∀δ'∈D, δ≠δ', either ¬ ∆'(a, b)  or  [∆'(a, b) or ∆'-1(a, b)] 
Condition (ii) states that: for any interior vertex a, ∀δ∈D, either ∆(a, Ε) or 
∆-1(a, Ε) must hold. Condition (iii) states that: any two distinct relationships 
of the same kind, between the same pair of 3-rectangles, differ transitively 
by at least one 3-rectangle. 

(5.4) Every loose T-figuration can be represented by an orthogonal 
structure and conversely. 

Proof: We follow Flemming’s proof for T-plans (Flemming 1981: 
Theorem 1). Every loose T-figuration can be made dense by suitably filling 
the holes by 3-rectangles in such a way that the 3-rectangulation is trivalent 
and unlocked. The graph of this dense 3-rectangulation can be defined by 
directed edges between 3-rectangles that share a maximal plane according to 
the directly- relations (δr, δb or δa). By the structure property and the 
definition of the minimum and maximum coordinates of the exterior vertex, 
it follows that the graph satisfies conditions (i), (iii) and (iii) above. 
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For every trail <u, v, w> such that v represents a filled hole, it can be 
replaced by a directed edge (u,w). Repeating this process and removing all 
multiple edges between the same pair of vertices results in a graph that 
satisfies the conditions for an orthogonal structure which represents the loose 
arrangement. 

The converse is established by assigning to each rectangle v, its 
maximum coordinates (xmax, ymax, zmax)(v), given by 1+ the length of the 
longest trails from Εleft to v, Εfront to v, and Εbelow to v respectively. By 
condition (i) the rectangles do not overlap. By condition (ii), there is a trail 
of each colour between each interior vertex and the exterior vertex Ε. [Note 
that it does not alter the argument if Ε is considered as split into six exterior 
vertices Εleft, Εfront, Εbelow, Εright, Εback and Εabove.] . � 

Since dense T-figurations are a special case of loose T- figurations: 

(5.5) Every dense T-figuration can be represented by an orthogonal 
structure and conversely.  

An orthogonal structure does not represent all possible orthogonal spatial 
relations that can exist simultaneously between a pair of 3-rectangles. For 
example, a constituent 3-rectangle may be simultaneously above and to the 
right of another. Nonetheless, these structures have interesting properties, 
and the reasons, given by Flemming (1986; 1988; 1989 [in regard to the 
LOOS system]) for considering orthogonal structures in two dimensions, I 
believe, apply equally to the three dimensional case.  

Epilogue 

There is still work on 3-dimensional arrangements left unfinished, but for a 
variety of reasons it has not been possible for me to carry out further 
examination at the present time. For example, one could look at properties of 
orthogonal structures and compare rules for generating lu arrangements with 
those for du arrangements. Locked T-figurations, on the other hand, perhaps, 
merit an article on their own. Nonetheless, if one were to examine the 
incidence structure of the 3-rectangles around a joint, we would observe that 
a type 3 joint can be obtained by edge contraction from a type 7 joint (see 
Figure 19). It is interesting to note that these are the only joints that occur as 
enantiomorphs.  

A type 7 joint can be replaced by an arrangement of walls that form two 
joints of type 2 and one joint of type 1. There are four possible ways that a 
type 7 joint can be so converted (see Figure 20).  In examining the 
corresponding incidence structures of 3-rectangles arranged around the joint, 
if the edges shown dotted are removed and emboldened edge contracted, we 
obtain a type 3 joint, and hence a locked T-figuration. 
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Figure 19: Transforming a type 7 joint to a type 3 joint by edge contraction 

 

Figure 20: Conversions of type 7 joint and corresponding incidence structure 

Now consider the wall adjacencies around a type 7 joint replaced by 
types 1 and 2 joints by the rules in Figure 3. We obtain the subgraph shown 

to the left. To obtain a type 3 joint, we 
would have to identify the vertices 
labelled y and the vertices labelled z to 
obtain a graph structure. The difficulty 
here is that the vertices now represent 

walls that are not rectangular; consequently, the resulting graph structure 
will not have the properties of a normal wall incidence graph. To develop a 
wall incidence structure for locked T-figurations would require a different 
kind of representation for the geometry of the walls.  

IN APPRECIATION – UJF 

It is fitting to end where I started – with due mention and acknowledgement 
of Ulrich Flemming and a body of his work. His contribution to the area of 
spatial layouts has been tremendous and his influence, considerable. In 
applying his method, I hope to have conveyed a measure of this 
accomplishment. All told, a lot has been achieved, some still remains to be 
done, and much has he inspired. 
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