
GKS Inquiry Functions within PROLOG

P. Sykes and R. Krishnamurti

1 Introduction

GKS, the international standard for 20 graphics software, provides a set of func­
tionalities which are specified in a language independent manner. However, for
GKS to be used, a binding must be defined for some host programming language.
To date a FORTRAN binding [1] has been accepted, and proposals for bindings in
Pascal [8] and Ada are under consideration in ISO. Possible bindings for C [7] and
ALGOL 68 [5] have also been proposed.

A language binding for the PROLOG programming language is currently under
development [9], and a draft version is being implemented within an enhanced ver­
sion of the C-PROLOG interpreter [6] running on UNIX. GKS is designed to be
implemented in the natural programming language of the host system and to have a
language dependent layer as an interface to each of the other programming
languages on the system. Our PROLOG implementation, therefore, forms an inter­
face to a library of GKS functions written in the C programming language.

Different PROLOG implementations may have different syntactical rules for
differentiating between variables and atoms. The convention adopted in this binding
document is that adopted by the C-PROLOG interpreter. Variables start with an
upper case letter or an underscore, atoms start with a lower case letter or may be
any string enclosed within single quotes.

The draft ANSI standard GKS document [1,3] specifies guidelines for language
bindings. These essentially constrain a binding, in effect, to provide a one-to-one
mapping of GKS abstract functions to atomic language functions, and to specify
data types corresponding to the GKS abstract data types. The rules also require the
binding to observe good software engineering principles, a requirement which we

P. R. Bono et al. (eds.), GKS Theory and Practice
© EUROGRAPHICS The European Association for Computer Graphics 1987

270 Programming Language Interfaces

have taken to mean that the functions names be mnemonic and that the pa-rameter
lists be kept to manageable proportions. Within a PROLOG environment it is possi­
ble for the programmer to define mUltiple predicates having the same name but with
differing argument lists. That is, the arguments may differ in length and/ or type.
This feature has been utilized to provide the binding with a degree of flexibility.
This is illustrated in this paper in one area, namely that of the GKS inquiry func­
tions.

In their paper on a C binding, Rosenthal and ten Hagen [7] added two more rules
to the list, namely,

(a) The GKS specification should not be interpreted literally as to prevent the
application programmer making use of the full range of the host language's
facilities.

This rule is particularly relevant to a PROLOG graphics binding. Prolog is a
declarative language. Any binding in PROLOG must either be declarative or must
at least look declarative. A PROLOG binding that forces procedural programming
techniques on the applications programmer will not find widespread acceptance by
the PROLOG community.

(b) The GKS document should not be interpreted literally as to force inefficient
techniques on the implementor.

PROLOG provides a flexible environment for programming that may be attri­
buted to many factors among which are the following. First, arguments to a PRO­
LOG predicate are not strongly data typed. That is, for example, some clauses of a
PROLOG predicate may have arguments that are instanced to simple constants or
atoms whilst others may have the same arguments instanced to compound terms or
structures. Second, arguments to a predicate do not have fixed scope in that they
may, in general, serve as either input or output. Third, PROLOG permits definitions
for predicates with the same name that differ in parameter lengths. In other words,
a predicate is uniquely specified only by both its name and its parameter length
(arity). A consequence of this is that GKS functions may be used in ways which
were not foreseen in the original standard specifications.

Most PROLOG implementations whether they are compilers or interpreters art
written partially in some host language and partially in PROLOG. The simplest way
to implement a PROLOG binding is to write it essentially in PROLOG rather than
in the host language of the Prolog compiler/interpreter. This ensures that the bind­
ing is specified in a manner that makes it more natural to use within a PROLOG
environment.

2 The PROLOG Binding

The PROLOG under development at EdCAAD provides for this mapping of GKS
functions to PROLOG predicates. We have adopted a naming convention for the
predicates that does not err on the side of being too terse, yet is still reasonably com­
pact. All the GKS predicates have the prefix gL and all GKS inquiry predicates
have the prefix gLq_. Wherever possible and without ambiguity as to the intended
functionality, the predicate names are abbreviated. The naming convention is given

GKS Inquiry Functions within PROLOG 271

in the document describing the suggested binding [9].
The data types in the standard are merely tools for describing the semantics of the

standard. They should be replaced by actual data types conforming to the host
language. PROLOG has no context independent notion of data typing. Also PRO­
LOG has no context independent semantics for operators, though the operator syn­
tax must be strictly obeyed in a PROLOG term. For example, < is a PROLOG
infix operator. Any expression involving < must be of the form LHS < RHS where
LHS and RHS are valid PROLOG terms. However, PROLOG will not interpret
this expression as the conditional

LHS "less than" RHS

unless it is stated as a PROLOG goal. Moreover, PROLOG permits overloading of
operator type. Thus, for example, the operator + is both prefix and infix. There is
no reason why it can't be declared postfix as well.

We have found it convenient to employ some PROLOG operators, for instance,
X:Y to describe coordinate pairs, and Attribute = Value to name parameters in
lengthy argument lists. In many cases we have parameters that are structures; for
example, the polyline representation is denoted by the PROLOG functor
line (Id, Type, Width, Colour). In fact, the structured parameters may themselves have
arguments which need not be atomic, for example, data record items.

Lastly, it should be noted that PROLOG clauses are logical implications that
either succeed (when true) or fail (when false) and take one of the two following
forms:

1* 1 *1

1* 2 *1

Goal.

Goal:- condition,
condition2

conditionn

In the first case, 'Goal' is treated as a fact which succeeds whenever its arguments, if
any, are matched. In the second case, 'Goal' succeeds only if each condition 1
through n succeeds and fails otherwise. Each condition, in turn, is a PROLOG goal.

3 Inquiry Functions

The GKS inquiry functions return information about the current state of GKS. In a
conventional von Neumann language the value of the return parameter would be
tested and the program would continue as required. The PROLOG equivalent of
this may be described as

272 Programming Language Interfaces

gLqJunction(Var),
test (V ar, value),

etc

/* get value of Var * /
/* succeeds if Var is value * /

/* carry on only if test succeeds * /
A more natural implementation would require the inquiry and the test to work in

one go. Thus, we have

gLq_function (value), /* succeeds if the inquired function matches value * /
This is the preferred form where the returned value is usually one in a set of
enumeration types. A typical PROLOG application would then have several clauses
of the form:

gLqJunction (value 1),
!,
do_actio~l.

gLqJunction (value 2), , .,

gLqJunction (valuen),

!,
do_actioll.Jl.

The effect of this is that PROLOG would first determine if the result of the inquiry
was value 1 and if so then it would 'do_actio~l'. The goal can fail in two ways.
Either if the inquiry failed in which case the next 'inquire_and_do' clause is tried, or
the 'do_action' clause fails in which case the goal fails. The cut (!) operator acts as a
barrier to prevent PROLOG from backtracking and trying other 'inquire_and_do'
clauses in the event of a successful inquiry. PROLOG would repeat this process
with each of the 'inquircanlLdo' clauses in the given order until either one succeeds
or the entire goal fails.

Many GKS inquiry functions return several values. In a conventional von Neu­
mann language each of these parameters is specified by its position in the parameter
list which has a predetermined length. In PROLOG it is possible to allow the pro­
grammer to state which of the parameters he is interested in and in a similar manner
to the example above to state what he expects it to be. Furthermore the parameter
may be specified by name and not by position.

or

GKS Inquiry Functions within PROLOG 273

The general format of an inquiry function is

gLq_GKSYUNCTION (Attribute = Value)

gLq_GKS_FUNCTION ([List of Attribute = Value terms])

The list may contain as many different attributes as required.

4 Examples

Consider the function INQUIRE WORKSTATION NUMBERS. This returns three
small integers corresponding to the maximum number of workstations that are
simultaneously open, active or have associated segments. The FORTRAN binding
implements this as

SUBROUTINE GQWKM (ERR, MXOPWK, MXACWK, MXASWK)

which returns in the four arguments an error indicator and the three maximums. (In
the PROLOG binding an error situation corresponds to a failure of the inquiry
goal.)

The obvious equivalent PROLOG predicate is:

gLq_wsjllax([open = Mxop, active = Mxac, as soc = Mxas]),

However, if all the parameters are not required the PROLOG binding allows the
applications programmer to use this inquiry function in the following ways:

gLq_wsjllax(open = Mxop),

to ask the maximum number of open workstations;

gLq_wsjllax(open = 3),

will succeed only if the maximum number of open workstations is 3;

gLq_wsjllax(M = 3),

will instantiate M, in tum via 'backtracking', to each one of open, active or as soc
provided the corresponding maximum number of workstations equals 3, and fails
otherwise;

gLq_wsjllax([open = 3, active = Mxac]),

succeeds only if the maximum number of open workstations is 3 and instantiates
Mxac to the maximum number of active workstations.

The last case is :

gLq_wsjllax (L),

instantiates L to a list with the three members of the form Attribute = Value.
Combinations of the above cases are also permitted. For instance,

gLq_wsjllax ([open = 3 I L]),

will succeed if the maximum number of open workstations is 3 and instantiates L to

274 Programming Language Interfaces

a list of the other parameters. The order of the arguments is not important. Thus,
the inquiry

g~q_wsJDax([open = Afxop, active = Afxac])

is the same as

g~q_WSJDax([active = Afxac, open = Afxop])

The above mechanism works equally well with enumerated data types. For
instance, consider the GKS functionality INQUIRE SEGMENT ATTRIBUTES
which returns for a given segment name, its transformation matrix, relative priority,
and three enumerated types which correspond to the visibility, highlighting and
detectability of the segment. The PROLOG implementation allows the programmer
to form the query in such a way that his code is not cluttered with unwanted vari­
ables. For instance, the goal

g~q_seg(SEG, [norm = AfAT, detect = yes]),

will return the transformation matrix in AfAT for segment SEG only if it is detect­
able.

Some of the GKS inquiry functions return so many arguments that even this
implementation would be unwieldy. For instance, the functionalities INQUIRE
CURRENT PRIMITIVE ATTRIBUTE VALUES and INQUIRE CURRENT
INDIVIDUAL ATTRIBUTE VALUES have 11 and 13 arguments respectively.
The arguments relate to the various graphics primitives - for example, polyline, text
etc - and their attributes.

It is possible to implement these as single predicates each with a list of ten or
more arguments, some of which are points, some integers, some names, some enum
types and some lists; or as in the FORTRAN binding and indeed as suggested in
other bindings, to implement these as separate inquiry functions, one for each attri­
bute. The method chosen for the PROLOG binding is to allow the application to
specify which attribute of some primitive is required. As in the previously con­
sidered inquiry function, it is desirable to have the goal succeed if the return value
matches what is expected. Therefore in this example, the PROLOG goal

g~qJine (index = Ll)

will succeed with the variable LI instantiated to the current polyline index. Similar
goals can be specified for the other primitives. The general form of the primitive
attribute inquiry function takes the form:

g~q_ <primitive> (List of one or more Attribute = Value terms)

where < primitive> is one of the GKS output primitives. The attribute(s) depends
on the primitive.

In the example above, the attributes are atomic constants. It is possible to have
attributes which are structures. For instance, to inquire the line type aspect source
flag we can invoke the predicate:

g~q_asf(line(type) = Flag).

This form allows the application programmer to program goals such as :

GKS Inquiry Functions within PROLOG 275

/* Gather 'in a bag' the primitives and their indices whose asfs are bundled
'bag' has three arguments (Element, Condition, Bag)
= .. is a PROLOG operator that takes Prim with Index to form

the term Prim(Index) */
inquircbundled_asf(Bag) :-

bag «Prim, Index),
(gkA_asf(Attribute = bundled),
Attribute = .. [Prim, Index]),

Bag).

The last example we consider also deals with structured parameters. Consider the
function INQUIRE PREDEFINED PRIMITIVE REPRESENTATION. For each
primitive, namely, polyline, polymarker, text etc most GKS implementations hold in
the workstation description table a structure representing the primitive representa­
tion. For a polyline, this representation has four attributes, namely, the polyline
index, the line type, the line width scale factor and polyline colour index. While the
applications programmer may wish to query a particular attribute, from an imple­
mentation standpoint this would require accessing the internal GKS tables once for
each attribute queried. In general it is faster for our implementation for the C-GKS
internal structures to be accessed once and for the applications programmer to
extract the particular attributes of interest. This is easily done in PROLOG with the
use of the don't care variable '_'. Thus, the call,

gLqJep(WS, line(/D, _, _, Colour))

will instantiate Colour to the polyline colour index only if polyline index equals ID
on workstation WS. Other variations can easily be described.

5 Concluding Remarks

In this paper we have attempted to show that it is possible to define a PROLOG
binding for GKS in a manner that makes declarative graphics programming a viable
proposition yet at same time conforming to the guidelines laid down by the GKS
standards specifications. The few examples presented in this paper highlight some of
the potential flexibility that PROLOG achieves through the use of named attributes
and structured arguments. Moreover, this flexibility is achieved without sacrificing
both the readability and conciseness of the application programmers code.

Since we have only barely hinted at implementation details, it should be remarked
that the interface to the GKS functions as illustrated by the examples above can be
written entirely in PROLOG though at the present time this is likely to result in an
unreasonably slow implementation. Our particular implementation is written in
PROLOG and calls GKS routines written in C. (A full implementation [4] of C­
PROLOG/ GKS is now available.) The C-GKS system [2] on which our implementa­
tion is based utilizes macros for the inquiry functions which in turn take as argu­
ments pointers to the various GKS tables. It is a relatively straightforward matter to
translate PROLOG attribute names to the C table pointers.

276 Programming Language Interfaces

Acknowledgements

This work has been carried out as part of the ACORD project supported by the
ESPRIT programme.

References

1. Anon, "Special GKS Issue," Computer Graphics (1984).

2. M. Bakker (ed.), The GKS Reference Manual, Stichting Mathematisch Cen­
trum, Stichting Computer Grafiek, Systeem Experts b.v. (1986).

3. G. Enderle, K. Kansy, and G. Pfaff, Computer Graphics Programming: GKS -
The Graphics Standard, Springer-Verlag (1984).

4. R. Krishnamurti (ed.), "Prologj GKS Reference Manual," Technical Report,
EdCAAD, University of Edinburgh (1987).

5. R. R. Martin and C. Anderson, "A proposal for an ALGOL 68 Binding of
GKS," Computer Graphics Forum 4(1), pp.43-57 (1985). (Reproduced in this
Volume.)

6. F. C. N. Pereira, "C-Prolog User's Manual," Technical Report, EdCAAD,
University of Edinburgh (revised 1984).

7. D. S. H. Rosenthal and P. J. W. ten Hagen, "GKS in C," pp. 359-370 in Euro­
graphics '82, ed. D. S. Greenaway and E. A. Warman, North-Holland (1982).

8. M. Slater, "Pascal Interface for GKS 7.2," BSI OISj5jWG5j207, BSI Working
Group on Computer Graphics (1984).

9. P. Sykes and R. Krishnamurti, "A Proposal for a Prolog binding to GKS,"
Technical Report, EdCAAD, University of Edinburgh (revised 1985).

