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Stockouts and Restocking:

Monitoring the Retailer From the Supplier’s Perspective

Abstract:

Suppliers and retailers typically do not have identical incentives to avoid stockouts. Thus,

the supplier needs to monitor the retailer’s restocking efforts with the available data. We in-

troduce a general model for this purpose and illustrate it using a specific application provided

by a supplier to a national grocery chain. The model distinguishes between store stockouts

(zero inventory in the store) vs. shelf stockouts (an empty shelf, but some inventory in other

parts of the store), thereby identifying the cause of the stockout to be either a supply chain

or a restocking issue. We find that the average stockout rates vary widely between stores,

identifying two stores with stockout rates twice as high as for most other stores. Moreover,

almost all stockouts are shelf stockouts. Thus, the model identifies stores that may have

restocking issues. Stockouts lead to major losses in expected sales, where on average more

than 60% of demand is lost when a stockout occurs. Finally, we also find major difference

in shrinkage between stores, providing useful information to regional store managers.

Keywords: Out-of-Stock, Inventory, Bayesian Estimation, Particle Filter
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INTRODUCTION

It is well known that stockouts have a major impact on profits (e.g. Gruen and Corsten

2008, Anderson et al. 2006). Given differences in the retailer’s and the supplier’s profit

functions, the retailer’s and the supplier’s incentives in trying to avoid stockouts are generally

not perfectly aligned. Imagine a situation in which a retailer carries two brands of a certain

product, and consumers exhibit only weak brand preferences. If one of the brands is out of

stock, the consumer will most likely simply buy the other brand rather than go to a different

store or wait for his next shopping trip. Campo et al. (2003) conclude that retailers’ losses

from stockouts can remain very limited, while the suppliers’ losses will be substantial. Thus,

the retailer may expend less effort than desired by the supplier.

Given this discrepancy in interests, it is essential for the supplier to estimate stockouts

in order to monitor the retailer’s stocking efforts. Yet, physically checking the shelves in the

store is typically expensive. Thus, the supplier needs to deduce the occurrence of stockouts

from the available data. More importantly, the supplier also needs to know the root cause

of the stockouts. If stockouts happen because there are no products in the store (a “store

stockout”), the issue lies within the supply chain and the supplier itself may work on fixing

the problem. However, if there is a stockout despite positive inventory in the store (a “shelf

stockout”), the problem lies with the retailer who does not restock the shelves quickly enough,

requiring a different solution.

In this paper, we present a model that allows the supplier to (a) determine the amount

of stockouts and (b) distinguish the two types of stockouts, using only shipment and sales

data that is readily available to the supplier. The model consists of two interrelated models,

a sales model and an inventory model. The sales model yields daily estimates of stockout

probabilities for each product at each store. The inventory model probabilistically tracks

daily inventory levels, allowing for unobserved shrinkage. While the amount of stockouts

could be estimated using a macro-level framework, the micro-level (i.e., daily or even shorter
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timeframe) analysis is necessary to link stockouts and inventory levels in order to distinguish

the two types of stockouts.

Marketing studies concerning stockouts typically use data with information about product

availability on the shelf based on physical checks and focus on estimating the effects of

stockouts on demand and the resulting substitution patterns (e.g., Anupindi et al. 1998;

Kalyanam et al. 2007; Musalem et al. 2010). In contrast, our model structure is crucial for

a context where the supplier monitors the retailer. Instead of relying on information about

the occurrence of stockouts as an input to the model, it estimates, among other things, the

probability that a stockout occurred on a given day.

The results of our model not only indicate that the stockout rates vary widely across

stores but our model also shows sales losses to be quite large when products are out of

stock, given that stockouts arise due to unexpected demand shocks. We find that the loss

in expected sales when a stockout occurs is on average 60 to 80%, i.e., the stockouts lead to

major reductions of the supplier’s profits. As for variations in stockouts, while seven out of

10 stores have stockout rates of less than 6%, two stores have stockouts rates of more than

10%. Thus, the model identifies stores that seem to have management issues leading to the

higher stockout rates. Over 95% of stockouts are shelf stockouts, a situation that is clearly

unacceptable to a supplier.

GENERAL MODEL

In this section, we present the general model applicable to the problem described in

the introduction. This framework can be used for any situation in which a supplier needs

to monitor the retailer’s restocking efforts. Since the purpose of the model is application-

driven, the distributional assumptions on the functions of the general model should match

the structure of the data generating process of a given application. In contexts as here where

there is relatively little observed information, information on the structural relationships

between variables is essential to estimate the model. This is akin to the developments in the
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marketing literature on choice models in which the hypothesized structure of the latent choice

process is directly modeled. This allows for insights into the unobserved choice process using

only limited amounts of observed data (i.e., choice outcomes). Rather than solely relying

on theory, the structure in our model can also come from information supplied by store

managers or from inspection of the data, as we show below.

Data Generating Process

Figure (1) gives an overview of the underlying data generating process, presented as

the path of an individual product through the system. The process starts with (observed)

shipments to the individual stores. Total inventory can be separated into backroom in-

ventory and shelf inventory. Backroom inventory refers to the products stored in the back

of the store, while shelf inventory refers to the products actually on the shelf at a given time.

Obviously, shipped products first become part of the backroom inventory, before turning into

shelf inventory through restocking. Positive demand during non-zero shelf inventory leads to

observed sales. However, if there is positive demand and zero shelf inventory, a stockout

occurs. The positive demand during a stockout implies that at least one unit of sales was

lost due to the stockout. So while there will be no sales during a stockout, stockouts have

an impact on observed data by reducing realized sales (as indicated by the dashed line in

Figure (1)). Note, however, that the type of stockout makes no difference for the stockout’s

impact on sales; thus, when talking about the relationship between stockouts and sales, we

do not distinguish the two types. Finally, products may also leave inventory without being

registered as sold through shrinkage. Examples for shrinkage are theft or spoilage.

<< Insert Figure (1) about here >>

Zero Inventory 6= Stockout & (Shelf) Stockout 6= Zero Inventory. Intuitively, there seems

to be a deterministic relationship between inventory and stockouts. Whenever there is zero

inventory, we must have a stockout; and whenever we have a stockout, we must have zero

inventory. However, in this paper we distinguish between zero inventory and a stockout.
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First, notice that the definition of a stockout above invokes the notion of positive demand,

i.e., it is possible to have zero (shelf or total) inventory without observing a stockout. This

definition has the advantage of estimating the “extent of out of stocks that actually matter

to the retailer and the upstream supply chain members” (Gruen et al. 2002, p. 11) because

it focuses on the impact on sales. If there are no units on the shelf, but nobody is trying

to purchase the product at that time, neither the retailer’s nor the supplier’s profits are

affected.

Second, a stockout implies zero shelf inventory, but not zero total inventory as there may

well be products in the backroom at the time of a stockout. This subtle difference is at

the heart of the distinction between store stockouts and shelf stockouts (i.e., the equation

Stockout == Zero Inventory is only true when talking about a store stockout).

Stockout 6= Zero Sales & Stockout 6= (Sales==Inventory). Similarly, one may intuit a

very simple relationship between stockouts and sales, namely that a stockout implies zero

sales. While it is true that sales are zero for the duration of a stockout, daily sales may not

be zero. In particular, there may be a stockout exactly because positive demand depleted the

available shelf inventory. However, this should not lead one to the erroneous conclusion that

a stockout implies that observed sales are equal to previous total inventory. Once again, one

needs to realize that there may still be backroom inventory despite a stockout.

Model

For the remainder of the paper, we use the subscripts s, v, and t to refer to the different

stores, products(vegetables in our application), and days (time), respectively. However, for

the presentation of the general model, we suppress both s and v.

Depending on whether there was a stockout or not, the observed sales are either equal to

the unobserved demand or less than the unobserved demand. We thus have
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(1) SALESt =


Dt(Xt, γt) with prob. 1− ρt

SOt(Xt, γt) < Dt(Xt, γt) with prob. ρt

where Dt(·) is the unobserved demand, while SOt(·) is the unobserved distribution of sales

if there were a stockout (whether or not there actually is a stockout is of course to be

estimated). Xt is a vector of variables affecting demand on a given day. This vector may

include marketing variables like price and promotions as well as other factors. γt represents

any unobserved demand shocks. Obviously, these same factors may also affect sales on a day

with a stockout.

The probability of a stockout on day t, ρt, is a function of shelf inventory being zero or

not (however, as explained in the following paragraph, we model only total inventory) as

well as the unobserved demand shocks, i.e.

(2) ρt = f(I{INVsvt=0}, γt)

While zero inventory does not imply a stockout (see above), it certainly makes it more

likely. Similarly, large demand shocks may make stockouts more likely, as unexpectedly

large demand makes timely restocking less likely.

In order to be able to distinguish between store and shelf stockouts, we need to estimate

total inventory as time progresses. Ideally, one would like to distinguish shelf and backroom

inventory. However, that is not possible with only sales and shipment data. Thus, we restrict

ourselves to estimating total inventory, with the understanding that a stockout implies zero

shelf inventory (but not vice versa). In other words, a stockout at a time for which the

estimated total inventory is zero is a shelf stockout, whereas a stockout at a time for which

the estimated total inventory is positive is a store stockout.
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The progression of inventory is governed by the following equation:

(3) INVt = INVt−1 + SHIPt − SALESt − SHRINKt

In words, inventory at the end of today is equal to yesterday’s closing inventory plus today’s

shipments minus today’s sales and shrinkage. We refer to shipments minus sales as the

“observed part of inventory” (normalized such that the smallest value is equal to zero). Since

total inventory must be non-negative at all times, the joint distribution g of starting inventory

INV0 and the vector of SHRINK needs to ensure non-negative inventory for all days.

Additional insight into the timing of shrinkage may be gained from directly modeling the

process of reordering. Note that shipment data also reveal order timing, provided that the

lag between order and delivery is known. If the timing of orders is influenced by the current

inventory levels (as in a pull strategy), observing orders provides information on inventory

levels, which in turn provides information on shrinkage. Thus, we let

(4) ORDERt ∼ h(INVt,Zt)

where Zt is a vector of other variables that may affect the ordering process. These rela-

tionships between the variables provide information to inform both model structure and

estimation, yielding enough information in our application to obtain estimates that are pre-

cise enough for inferences and managerial decisions.

APPLICATION

We now apply this general model to a specific application. The application is motivated

by a supplier to a national grocery chain. The supplier suspects high stockout rates in the

stores due to the differing incentives to avoid stockouts discussed in the introduction. We

first briefly describe the data, before specifying distributional assumptions on the general
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model based on interviews with store managers and detailed inspection of the data.

Data

The data come from a supplier to a major US grocery store chain. It consists of daily

sales and shipment data for 181 days (from May 27, 2007 to November 23, 2007) from 10

grocery stores located in different US states for 17 different products in the frozen vegetable

category (for one of the stores we have data for only 16 of the 17 products; thus, in total we

have 169 time-series of 181 days each). These products include, for instance, frozen sweet

corn, frozen sweet peas, and frozen mixed vegetables. However, the grocery stores carry

frozen vegetables not only from this one supplier, but also from a competing supplier.

Summary statistics. Figure (2) is a histogram plot of sales across all stores, products, and

days.1 While the mode of sales is 2 and the mean is 5.05 units, the maximum of observed

sales is 64 units of one product in one store on one day, consistent with a category that

exhibits high positive demand shocks that could lead to stockouts. Mean daily sales vary

between stores and products. Tables (1) and (2) give mean daily sales per store and per

product, respectively. Mean daily sales per store range from 2.18 to 7.58. Mean daily sales

per product range from 2.11 for Garlic Peas and Mushrooms to 15.34 for Sweet Corn.

<< Insert Figure (2) about here >>

<< Insert Tables (1) and (2) about here >>

Stores receive shipments in multiples of 12, i.e. one case consists of 12 units. Summing

over all stores and products, we observe shipments on about one out of three days (36.4%).

The vast majority of shipments (89.3%) consist of only one case per product. Another 7.7%

are two-case shipments. The largest observed shipments consists of 6 cases. Not surprisingly,

average shipments per store and average shipments per product (in units) closely resemble

the numbers reported for average sales, as shown in Tables (1) and (2), respectively.

Data preparation. For each day, we observe the number of units sold as well as the dollar
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revenue per product and store. Thus, we calculate prices as dollar revenue divided by the

number of units sold. For days with no units sold, this is undefined. However, since prices

rarely change in the course of the time-series for a given product at a given store, we can fill

in the missing price data with great confidence.

Moreover, we are missing data for a total of 329 individual store-product-day points

(distributed over 15 of the 169 store-product time-series). In addition to this, we also exclude

some of the data for the following reason. The model assumes that the shipments follow a pull

strategy, i.e. products are ordered when inventory runs low. This is a reasonable assumption

for most of the data. However, for part of the data, the shipments are likely the result of

a push strategy, i.e. the national headquarters decided to send shipments irrespective of

current inventory levels, presumably for some kind of display or promotion. In particular,

this happens for five products (across all ten stores) towards the end of the time series.

During this period, shipment volumes increase significantly (up to 63 cases per shipment),

and consequently occur less frequently. The rare shipments in this period occur on the same

day for all stores. Since the inventory model informs the timing and amount of shrinkage by

linking the probability of orders to the unobserved inventory and shrinkage, the independence

of the shipments from inventory in this period defeats the purpose of the inventory model.

Thus, we restrict ourselves to the more common case of a pull strategy and exclude the data

from the period of the push strategy. For two products, this affects the last month of the

data; for the other three, we must disregard the last two months. In total, this affects 2,704

of the 30,589 store-product-day combinations in our data.

Similar to the promotions at the end of the data, for some stores and products the

beginning of the time-series seems to be the week after some sort of promotions just ended.

This is evident as significant amounts of inventory are sold off during that time. In this

period, no shipments are received during that period despite positive sales. Yet, we do not

exclude this data, as those observations still accord with our inventory model in that the

lack of shipments in this period is due to high inventory levels (as it would be when following
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a pull-strategy), not to independence from inventory levels. Except for one product at one

store, sales for these periods do not differ from the rest of the data, suggesting that the

promotion had already ended. Figure (3) shows the sales pattern for the exception. Since it

is obvious that the sales in the first week are noticeably higher than for the remainder of the

time despite zero shipments during those days, we assume that this store ran the promotion

one week longer than the other stores. We therefore define a dummy variable for promotion

that equals one for this one week, store, and product, and zero for all other days, stores, and

products.

<< Insert Figure (3) about here >>

Model

Sales. We start the applied version of the model by specifying the distributional as-

sumptions on the two distributions combining to generate observed sales (cf. equation (1)).

Sales are commonly modeled using the Poisson distribution (e.g., Anupindi et al. 1998; Nee-

lamegham and Chintagunta 1999). However, as we model the observed sales as a mixture of

two unobserved distributions, we cannot test a priori whether a Poisson distribution, in par-

ticular its property that the variance is equal to the mean, is appropriate for Dsvt and SOsvt.

We therefore choose to model both Dsvt and SOsvt by the more flexible Conway-Maxwell-

Poisson (CMP) distribution (Conway and Maxwell 1961; Shmueli et al. 2005). The CMP

distribution has two parameters: the first parameter, λ ≥ 0, can be interpreted as a measure

of central tendency, while the second parameter, ν ≥ 0, governs the level of dispersion. If

the decay parameter ν is 1, the CMP reduces to the Poisson distribution; if 0 ≤ ν < 1

(ν > 1) the CMP distribution has thicker (thinner) tails compared to the Poisson, modeling

overdispersed (underdispersed) data relative to the Poisson. Thus, the CMP distribution

allows for modeling both over- and under-dispersed data; the posterior distribution for the

ν parameter indicates whether the commonly used Poisson distribution would have been

appropriate.
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We then let the unobserved demand be given by

(5) Dsvt ∼ CMP(λDsvt, ν
D)

where λDsvt is a function of the observed demand shifters Xsvt and the unobserved demand

shocks γsvt. In particular, Xsvt includes variations in price as well as seasonality, weekend,

holiday, and promotion effects. We denote these by PRICEsvt, SEASONt, WEt, IDt

(Independence Day), LDt (Labor Day), THt (Thanksgiving), and PROMOsvt, respectively.

The measure of central tendency for the Dsvt distribution is then given by

(6)
log(λDsvt)| ~βsv, γsvt = β0sv + β1svlog(PRICEsvt) + β2svWEt + β3svlog(SEASONt)

+β4svIDt + β5svLDt + β6svTHt + β7svPROMOsvt + γsvt

where

(7) βmsv ∼ N(β̄msv, σm) for m = 0, 1, ..., 6

and are mutually independent. We do not impose a hierarchy on β7sv since there is only one

store-product for which this parameter is meaningful.

As prices do not change at all for some products at some stores, we normalize the

log(PRICEsvt) such that its mean is equal to zero for each store-product time series to avoid

the problem of separate identification of β0sv and β1sv in those cases. Similarly, the mean of

log(SEASONt) is normalized to 0, where SEASONt is a sine curve with wavelength of one

year fitted to the average sales per day across all stores and products (excluding Thanks-

giving Day as well as the five products for which we excluded the end of the time-series,

as they would have biased the estimate for seasonality due to its extraordinarily low and

extraordinarily high sales,respectively). log(SEASONt) then ranges from -.11 to .22. WEt,

IDt, LDt, and THt are dummy variables taking the value 1 if day t was a weekend day,
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Independence Day, Labor Day, or Thanksgiving Day, respectively, and 0 otherwise. Figure

(4) shows the average sales per day with the fitted sine curve. Moreover, the weekend spikes

in sales amount are obvious, as is the expected low number of sales on Thanksgiving. The

impacts of Independence Day and Labor Day on average sales are not as strong. PROMOsvt

is the dummy variable discussed in the section on data preparation to capture the effect of

the promotion.

<< Insert Figure (4) about here >>

If within-brand/across-product substitution effects were expected, equation (6) could be

extended to include incorporate those effects. However, the category in our application is

known to be one of the least brand-loyal in the U.S. (Mitchell 2011). The grocery chain in our

data does carry a second brand of frozen vegetables, making substitution more likely to be

between-brand/same-product (leading to the discrepancy of interests between supplier and

retailer discussed in the introduction). Since we cannot model between-brand substitution

with our data, we do not incorporate substitution effects in our model.

For the model of the unobserved demand shocks, γsvt, we use the same multivariate

normal distribution for each daily vector of the 170 store-product shocks, ~γt. We let the

variance of this distribution be given by a Kronecker product of two matrices S and V , a

10 by 10 and a 17 by 17 matrix, respectively.2 This achieves two goals: (1) It reduces the

dimensionality, so rather than having to work with a 170 by 170 covariance matrix, we can

work with two smaller matrices. And (2) it allows us to introduce some meaningful structure

into the random shocks. In particular, S represents covariances across stores, i.e., it captures

effects that may affect one or more products similarly across several stores like national

advertising campaigns. Similarly, V captures covariances across products, i.e., effects which

affect some or all products within the same store. Depending on the product category,

these correlations may be caused by differences in weather conditions at the different stores,

or other local events like community celebrations. Taking the Kronecker product of these
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two matrices parsimoniously combines the two sources of covariance for each store-product

combination. We thus have

(8) ~γt|~ω, S, V ∼ MVN(~ω, S ⊗ V ) ∀t

A natural choice for modeling the observed sales in the presence of a stockout would

be to let them equal demand minus some lost sales (e.g., following a binomial distribution

conditional on demand). If demand were Poisson distributed (i.e., νD = 1), this would result

in a Poisson distribution for SOsvt with parameter (1− p)λDsvt (where p is the probability of

the binomial distribution for lost sales). For νD 6= 1, this relationship still holds approxi-

mately. For computational speed, we therefore choose to model SOsvt directly with a CMP

distribution exhibiting the same level of dispersion as Dsvt. In addition, sales should be

higher despite a stockout on days on which demand was higher. We therefore also link the

first parameters of the SOsvt and the Dsvt distributions by a reduction parameter δsv. Taken

together, we get

(9) SOsvt ∼ CMP(δsvλ
D
svt, ν

D)

The final piece of equation (1), the probability of a stockout on a given day, is described

in equation (2). We use a Beta distribution for function f in equation (2), i.e.

(10) ρsvt|asvt, bρ ∼ Beta(asvt, bρ)

where

(11) log(asvt) = a0s + a1sI{INVsvt=0} + a2sγsvt
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and

(12) a0s ∼ N(ā0, τ0)

Inventory. We now turn our attention to inventory, orders, and shrinkage. Rather than

specifying g, the joint distribution for starting inventory and daily shrinkage, directly, we

define it by a set of marginal distributions combined with a set of constraints (equations (17)

and (18)) to ensure non-negativity of inventory.

The marginal distribution for starting inventory is simply given by a prior based on

conversations with several store managers (see next subsection). The situation is slightly

more complicated for the marginal distributions of daily shrinkage.

Careful inspection of the data suggests that shrinkage seems to occur on both the unit-

and the case-level. While unit shrinkage (e.g., due to theft or misplaced items) is the probably

more commonly thought of type of shrinkage, Figure (5) shows a likely instance of case

shrinkage. Figure (5) is a time-series of the observed part of inventory for one product at

one store; it suggests that a case may have disappeared around the apparent jump at day

100 (and potentially even a second case later in the time series). Causes for case shrinkage

may be improperly recorded deliveries or incorrect handling of a case at the point of receipt

or restocking (causing a whole case to thaw and go bad). We believe that unit shrinkage is

more likely to be caused by the consumer and case shrinkage is more likely to be caused by

store employees.

<< Insert Figure (5) about here >>

Total shrinkage on a given day is then given by SHRINKsvt = Su,svt +M · Sc,svt, where

the subscripts u and c refer to unit- and case-wise shrinkage, respectively, and M = 12 is

the number of units per case.

As (unit and case) shrinkage is also discrete and non-negative for all days, the Poisson (or
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the NDB or the geometric) distribution again would be a standard choice for the marginal

distribution. However, due to the non-negativity constraint on inventory, the distribution of

shrinkage is actually truncated. Typically, truncation leads to proportionally increased prob-

abilities for the non-truncated values. Since the truncation differs from day to day, depending

on the remainder of the time-series, the probabilities of the non-truncated values would be

increased by different amounts for different days. This would lead to the paradoxical result

that low amounts of shrinkage are more likely on days with low inventory compared to days

with high inventory. In order to avoid that, we could implement a zero-inflated truncated

distribution, i.e. the sum of the truncated probabilities is added to the probability of zero

shrinkage. This keeps the absolute probabilities of positive amounts of shrinkage indepen-

dent of the available inventory; in turn, the probability of whether or not shrinkage occurs

at all depends on inventory, with shrinkage being less likely for lower amounts of inventory.

Therefore, we choose to implement a slightly more complex distribution for shrinkage.

In particular, we model the marginal distribution for both unit and case shrinkage in two

parts. The first part, a Bernoulli distribution, models the occurrence of shrinkage. Shrinkage

is likely to be very rare. Yet, when it occurs it is caused by some event (e.g., a thief being

in the store or a store employee being distracted) that may affect more than just one unit

or case. The second part, a CMP-binomial distribution, models the amount of shrinkage,

given that shrinkage occurred. The CMP-binomial distribution can be derived from the

CMP distribution and can be viewed as the result of correlated Bernoulli draws (rather

than independent Bernoulli draws which would lead to the standard binomial distribution;

see Shmueli et al. 2005). It has three parameters: the number of draws, the probability

of a success, and a parameter governing the association between the draws. If this third

parameter is less than 1, the Bernoulli draws are positively correlated; if it is greater than 1,

the Bernoulli draws are negatively correlated. If it is 1, the Bernoulli draws are independent,

and the CMP-binomial distribution reduces to the standard binomial distribution.

The Bernoulli distribution keeps the probability of shrinkage independent of inventory,
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while the CMP-binomial distribution keeps the (marginal) probability of each individual

available unit to be shrunk constant. The relative and absolute probabilities of different

amounts of shrinkage then vary with inventory. We think that it is more appropriate in this

context to keep (marginal) individual probabilities constant than to keep either relative or

absolute probabilities of the overall amount of shrinkage constant.

We thus have

(13) Sc,svt|bc,s, nc,svt, pc,s, νc ∼ Bernoulli(bc,s) · (CMP-Binomial(nc,svt, pc,s, νc) + 1)

(14) Su,svt|bu,s, nu,svt, pu,s, νu ∼ Bernoulli(bu,s) · (CMP-Binomial(nu,svt, pu,s, νu) + 1)

where the two Bernoullis are correlated with ηs. This correlation allows for the possibility

that one event can cause both unit and case shrinkage simultaneously. The number of draws

for the CMP-binomial are given by

(15) nc,svt = max(0, floor(
ˆINV svt

M
)− 1)

(16) nu,svt = min(M − 2, ˆINV svt − 1)

where ˆINV svt is the estimate of inventory before the occurrence of shrinkage for this day.

The -1 in equation (15) is due to the +1 in equation (13), i.e. the fact that if shrinkage

occurs, at least 1 case is shrunk. Similarly, the -2 (and the -1) in equation (16) is partly due

to the +1 in equation (14), but also to the fact that, for simplicity and identification, we

assume that the maximum amount of unit shrinkage is M − 1 (otherwise it will be counted

as case shrinkage).

Note that the parameters governing the probability of shrinkage occurring are defined on
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a store-level. Thus, the model allows separating out stores that may have greater issues with

shrinkage.

These marginal distributions could result in negative inventory on some days. We there-

fore impose the following constraint on the resulting joint distribution to ensure non-negative

inventory for all days:

(17)
t∑
1

(Su,svt +M · Sc,svt + SALESsvt) ≤ INV0,sv +
t∑
1

SHIPsvt ∀s, v, t

However, for some days, we impose a stronger constraint, reflecting the belief that in-

ventory was very likely equal to zero on those days. This addition to the model again was

motivated by inspection of the observed part of inventory. See Figure (6) for an example

of a sales pattern and the corresponding observed part of inventory. The combination of

zero sales and the flat line in observed inventory from day 15 to 25 strongly suggests that

inventory in this store was zero on those days (and the store managers agreed). Yet, since

the observed part of inventory is one unit lower than the flat line on day 7, this implies that

there must have been at least one unit and/or one case (if starting inventory was higher

than in our plot) of shrinkage between day 8 and day 15. Thus, this stronger constraint can

greatly help the estimation of the occurrence of shrinkage. We determine the days for which

to use the stronger constraint by the following fairly strict criteria:

1. The future observed part of inventory must be non-decreasing.

2. We observe at least two weeks of future data.

3. The observed part of inventory is not higher than on the previous day.

4. We observe at least two consecutive days with zero sales.

<< Insert Figure (6) about here >>
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Condition (1) is a necessary condition for zero inventory on a given day. Condition (2)

increases our confidence in asserting zero inventory for a certain day by making sure that

we observe enough future data to make condition (1) meaningful. Condition (3) rules out

days on which we know a shipment was received that may satisfy the other conditions. And

finally, condition (4) further tightens the criteria by requiring that the effect persists for

at least two days, thereby resulting in a visible flat line in a plot of the observed part of

inventory, to make it less likely that the observed pattern is just a coincidence of one day

with zero sales and zero shipments. Based on these criteria, we have 173 days for which

to include the stronger constraint. Referring back to Figure (5), notice that the flat line

before day 100 also satisfies the above criteria (as sales are zero for three consecutive days),

implying that shrinkage in the preceding days is very likely.

Let all days satisfying the above criteria for store s and product v be denoted by T ∗sv.

The stronger constraint for those days still makes sure that inventory was non-negative, but

it also reflects the belief that inventory most likely was zero on those days:

(18)

T ∗sv∑
1

(Su,svt+M ·Sc,svt+SALESsvt)

 < INV0,sv +
∑T ∗sv

1 SHIPsvt with prob. 1− πsvT ∗sv

= INV0,sv +
∑T ∗sv

1 SHIPsvt with prob. πsvT ∗sv

∀T ∗sv and ∀s, v

The top of the right hand side of equation (18) is the same non-negativity constraint as

in equation (17), while the lower part results in zero inventory on T ∗sv.

As discussed in the general model, we can use the placement of orders for further informa-

tion on the exact timing of shrinkage. (Moreover, modeling the ordering process is necessary

to estimate the missing data.) From talking to several local managers of the national grocery

chain, we know that the lag between the placing of the order and the receipt of the shipment

is typically two days. Therefore, the number of cases ordered on a given day is

(19) ORDERsvt =
SHIPsv,t+2

M
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From inspection of the data, it is obvious that the distribution of orders is highly under-

dispersed relative to a Poisson distribution. We therefore again use the more flexible CMP

distribution and let the distribution of orders be given by

(20) ORDERsvt|λOsvt, νO ∼ CMP(λOsvt, ν
O)

As argued above, λOsvt then depends on inventory, providing information on shrinkage. In

particular, we include a variable calculated from today’s inventory plus tomorrow’s shipment

(which is already ordered and therefore known) relative to the average sales (denoted by

SALESsv) in the two days needed for the shipment to arrive. Moreover, λOsvt also depends

on the lagged dummies for the seasonal trend and for weekends (as defined above), as higher

orders should be expected when the store expects a demand spike two days later. The changes

of expected demand level and their effect on orders is captured by these two variables. Thus

we have

(21) log(λOsvt) = κ0sv − κ1sv
INVsvt + SHIPsv,t+1

2 · SALESsv
+ κ2svlog(SEASONsv,t+2) + κ3svWEsv,t+2

and

(22) κlsv ∼ N(κ̄l, ςl) for l = 0, 2, 3

and

(23) κ1sv ∼ Gamma(κ̄1, ς1)

Notice the gamma-hierarchy on κ1sv; this ensures that the effect of inventory on orders is

negative, as it should be. See the Limitations section below for a discussion of this restriction.

Priors. Table (3) gives an overview of the priors we choose for the parameters.
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<< Insert Table (3) about here >>

Sales: For β̄m and σm (for m = 0, 1, ..., 6) we specify normal distributions with mean 0 and

variance 100 and an inverse gamma distribution with parameters 2.5 and 2.5, respectively,

as uninformative priors. The prior for β7 for the one store-product combination with the

promotion at the beginning of the time-series is also a normal distribution with mean 0 and

variance 100. Since exp(γsvt) has a multiplicative effect on λsvt, we can reasonably expect that

it is closely clustered around 1. In equation (8), we specify a multivariate normal distribution

for γsvt which is equivalent to a multivariate log-normal distribution for exp(γsvt). Since the

mode of a log-normal distribution is equal to the exponent of its mean minus its variance, we

choose a prior such that, in expectation, the mean is equal to the variance. In addition, the

variance should be fairly small since very large shocks are unlikely. We thus let the prior for

~ω be a multivariate normal distribution with mean ~.001 and a variance conditional on S and

V given by the .001S⊗V . S and V are distributed according to inverse Wishart distributions

that combine, in expectation, to values of .001 on the diagonal of their Kronecker product.

We let the parameters for the inverse Wishart distribution for S be given by 150 and 4 ·RS,

where RS is a correlation matrix with .2 for all off-diagonal elements. Similarly, for V the

parameters of the inverse Wishart distribution are 150 and 4 ·RV , where RV is a correlation

matrix with .1 for all off-diagonal elements. The difference in off-diagonal elements reflects

our belief that shocks affecting sales of the same product across stores are slightly more likely

than shocks that affect different products in individual stores. Finally, while this choice of

priors for ~ω, S, and V does not retain conjugacy for S and V , it still allows for simple Gibbs

drawings of S conditional on V and vice versa.

As prior for νD, we choose a gamma distribution with parameters 2 and 1, resulting in

a mode of 1 (which would reduce the CMP distribution to a Poisson distribution) but also

allowing over- and under-dispersion of the data. For δsv for all s and all v, we choose a beta

distribution with parameters 2 and 2.5. Thus, high values for δsv are unlikely, fitting the
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idea that there should be an impact on sales for an empty shelf to be counted as a stockout.

Finally, for the priors related to ρsvt, the probability of stockouts, we let bρ follow a fairly

diffuse gamma distribution with parameters 2 and 1. Since Gruen and Corsten (2008) and

Andersen Consulting (1996) find that average rates of stockouts should not be significantly

greater than 10%, we choose a prior for ā0 that, while allowing for some uncertainty, ensures

that exp(a0sv) is small relative to bρ, namely a normal distribution with mean -2.5 and

variance .5. The variance τ0 follows an inverse gamma distribution with parameters 4 and 2.

For a1sv and a2sv (for all s and v) we choose gamma distributions, as both should definitely

have a positive effect. For a1sv, we choose parameters 30 and .125; for a2sv, we choose

parameters 10 and 3 (recall that all γsvt will be fairly small in absolute value).

Inventory: We believe that shrinkage should be fairly rare, with unit shrinkage being

somewhat more likely than case shrinkage. Thus, we let the priors for bu,s and bc,s be beta

distributions with parameters (1, 20) and (1, 30), respectively. We use a uniform uncondi-

tional prior for the correlation between unit and case shrinkage. (Note that conditional on

bu,s and bc,s the correlation may not be able to take all values from -1 to +1.) For the

CMP-binomial distribution, we let the probability for each unit or case to be shrunk, i.e.

pu,s and pc,s, be distributed according to a beta distribution with parameters 1 and 20 (all of

the above specifications are independently for all s). For the measure of correlation between

the Bernoulli draws, we use a gamma distribution with parameters 11 and .1 for both νu and

νc. Thus, a standard binomial distribution (i.e., no correlation between the Bernoulli draws)

is the prior mode (ν = 1), but the prior also allows for positive and negative correlation

between the Bernoulli draws.

As mentioned above, the criteria for the days on which we impose the stronger constraint

on the joint distribution for starting inventory and shrinkage are fairly strict, i.e. we are very

confident that inventory was very likely zero. Moreover, this probability of zero inventory,

πsvT ∗sv
, is set against the very small probabilities of shrinkage which also means that it needs
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to be fairly large to be effective. Finally, the more days we observe after a day satisfying the

the criteria, the more confident we are that inventory actually was zero on that day. These

reasons lead to a beta distribution with parameters dsvT ∗sv
and 1 as a prior, where dsvT ∗sv

is

the number of days observed after T ∗sv until the next missing data point or the end of the

data.

We use the same uninformative priors for κ̄n and ςn for n = 0, 2, 3 as for β̄m and σm in

the sales model, namely a normal distribution with mean 0 and variance 100 and an inverse

gamma distribution with parameters 2.5 and 2.5, respectively. For the gamma-hierarchy on

κ1sv, we specify two gamma priors, with κ̄1 and ς2 both following a gamma distribution with

parameters 4 and .5. For νO we use a gamma prior with parameters 2 and 2, reflecting

the finding from inspection of the data that orders seem to be underdispersed relative to a

Poisson distribution.

Finally, based on discussions with store managers, we choose a prior for starting inventory

with most of its mass around the size of one case, but also allowing for some variation

around it. Rather than using a Poisson distribution or the NBD, we choose a truncated

and discretized normal distribution. Since we observe the tail ends of a promotion for some

products with inventory being sold off (see section on data preparation), starting inventory

has to be in the tail of the marginal distribution in those cases in order to assure non-

negative inventory for all other days. We prefer the discretized normal distribution to the

Poisson and the NBD as its tail decreases more quickly, thereby still providing meaningful

information for starting inventory in those instances. We discretize the normal distribution

by letting the probability for integer x be given by the difference between the normal cdf at

x+ 0.5 and the normal cdf at x−0.5. Let DTyN denote this discretized normal distribution,

truncated from below at y. The prior for starting inventory (for all stores and products)

then is DT0N(M, (.75M)2).

ESTIMATION
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The model defined in equations ((5)) to ((23)) is estimated using an MCMC algorithm

(Casella and George 1992; Gelfand and Smith 1990). We define a binary auxiliary variable

zsvt to denote the occurrence of a stockout (Tanner and Wong 1987). Note that with several

parameters having to be estimated for all store-product-day combinations (ρsvt, zsvt, γsvt,

Su,svt, Sc,svt) we have far more than 150,000 parameters to estimate! This is feasible thanks

to the hierarchical structure of the model, resembling a frequentist random effects model.

After a burn-in period of 5,000 draws, we use 45,000 draws for the estimation. Convergence

was checked by the Heidelberger and Welch convergence diagnostic as implemented in the

boa package for R (Heidelberger and Welch 1983; Smith 2007).

The hierarchical parameters in equations (7), (12), and (22) are estimated in a Gibbs-

sampler fashion, as they have either conjugate priors, or priors leading to a closed-form

conditional distribution (for S and V ). Most of the remaining parameters are estimated

with a Metropolis-Hastings sampler.

However, the inventory trajectory, i.e. starting inventory, shrinkage, and missing data,

are estimated using a particle filter (see Arulampam et al. (2002) for a tutorial). In essence,

we construct a discrete representation of the posterior distribution conditional on the cur-

rent draw for all other parameters and then take a random draw from it. We implement

this approach because traditional Metropolis-like methods showed very slow mixing behavior

and/or took very long to compute. The particle filter results in a new draw from the condi-

tional posterior joint distribution for starting inventory, shrinkage, and the missing sales and

shipment data in every step of the MCMC. Thus, we can simply use it as a drawing method

in our Gibbs-sampler estimation.

The discrete representation of the posterior is achieved by recursively filtering a set of

n so-called particles according to importance weights updated in a Bayesian fashion. For

our application, this means we start by drawing the starting inventory for all particles and

update the weights accordingly, then we draw shrinkage (and the potentially missing data)
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for day 1 and update the weights, then repeat those steps for day 2, and so on. The

updating of the weights follows a similar rationale as is implemented in the Metropolis-

Hastings sampler. Let φ(·) denote the proposal density from which shrinkage and, if miss-

ing, the missing data (or starting inventory for initializing the particles) are drawn. Let

ψt(Su,svt, Sc,svt, ORDERsvt, SALESsvt|·) denote the probability of observing Su,svt, Sc,svt,

ORDERsvt, and SALESsvt conditional on the other model parameters and the inventory

trajectory of that particular particle up to t, as defined by the model. Then the weight for

particle k after drawing day t is given by updating its weight after day t− 1 by

(24) wk,t = wk,t−1
ψt(·|·)
φ(·)

Thus, the greater the probability of the data as defined by the model, the greater the particle’s

weight; at the same time, the higher the probability of drawing the certain values, the lower

the weight. This is very similar in spirit to the Metropolis-Hastings algorithm. The discrete

approximation to the posterior distribution is then given by normalizing the weights such

that they sum to 1.

In order to avoid degeneracy of the algorithm (i.e., the problem that only one particle may

have significant weight compared to all the others) we implement a sequential importance

sampling (SIS) particle filter with resampling (Carpenter et al. 1999). In the SIS with

resampling algorithm, after each updating of the weights an estimate of the effective sample

size (i.e., the number of particles with non-neglegible relative weights), Neff , is calculated

by

(25) Neff =
(
∑

k wk,t)
2∑

k w
2
k,t

(Liu and Chen 1998). If Neff falls below a pre-specified threshold, a new set of n particles is

resampled randomly from the previous set of particles proportionally to their weights (also,

the weights are reset to 1/n for all particles after resampling). We implement this approach
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with n = 150 particles and resample whenever Neff < 15.

In a final step, we randomly draw one of the particles representing the approximation to

the posterior distribution.

RESULTS

The results not only confirm that the suspicion of the supplier was at least partially

justified, but also show that each stockout has an immense impact on the supplier’s profit.3

The average rate of stockouts across stores, products, and days estimated by the model

is 6.37%.4 This rate is below the average rate of about 8% reported by previous studies

(Gruen and Corsten 2008; Andersen Consulting 1996); however, those studies are based on

all instances when no units are on the shelf, whereas our model counts only the instances

in which sales are actually lost. More interestingly, though, we also find a wide range of

stockout rates across stores. Seven of the ten stores actually have an average stockout rate

of less than 6%, the best being only 3.94%; in contrast, two stores have mean stockout rates

of over 10% (10.62% and 11.79%)! This clearly suggests that these stores have significant

potential for improvement.

From the posterior estimates for δsv we can derive how much of the unobserved demand

is lost on average for the supplier due to a stockout. On average, δsv is .44, translating

to a decrease in expected sales of 60 to 80% for each stockout. The posterior means for

individual store-product combinations range from .05 to .76. This means that in the worst

case expected sales decrease by 98%, but even in the best case expected sales drop by 39%

due to a stockout!5

This strong impact is due to two factors: First, we defined stockouts such that at least

one sale must be lost due to the empty shelf. For the slowly moving products with on average

only two or three sales per day, one lost sale obviously is a large percentage lost in sales.

However, this reasoning does not explain the high percentages for faster moving products.
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Second, then, is the finding that more positive demand shocks lead to a higher chance of a

stockout (a2s from 6.99 to 17.98). Thus, unobserved demand tends to be particularly high

on days with a stockout, which in turn implies that more sales are lost due to a stockout.

This endogeneity of demand and the occurrence of a stockout is not unexpected, but it lends

additional urgency to the supplier’s quest to avoid stockouts.

Moreover, as to be expected, the probability of a stockout increases significantly if inven-

tory is 0 on a given day (a1s from 1.37 to 1.89). Yet, the average stockout rate for days with

zero inventory is only 34.96%. In addition to our definition of stockouts as instances with

lost sales, this is mainly due to the fact that our inventory measure is only a snapshot at

midnight every day. Thus, on a day with zero inventory in our estimation the store may have

had inventory (and therefore sales) until just before midnight. We are confident that zero

inventory would have a stronger impact on the probability of stockouts if data on shorter

time intervals were available. However, since we have only daily data, we cannot confirm

this conjecture.

Somewhat surprisingly, only 4.46% of the stockouts are store stockouts, while the re-

mainder are shelf stockouts. This rate of store stockouts is significantly lower than what

has been reported in the literature so far (Gruen and Corsten 2008). However, this may be

explained by the short lead times (relative to case-size and average daily sales). Given that

daily sales are only a fraction of case-size for most products, a store should generally be able

to order and receive more units before running out of units completely, thereby avoiding

store stockouts.

To gain more understanding of what makes a product more likely to stock out, we look at

the effect of the coefficient of variation of sales (defined as the ratio of the variance of sales to

the mean of sales). We find that it is related to both the amount of stockouts as well as the

ratio of store to shelf stockouts. Not surprisingly, the higher the relative variance, the higher

the stockout rate (correlation coefficient = .343). Obviously, it is easier to avoid stockouts
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when sales are more regular. Similarly, the ratio of store to shelf stockouts increases with

higher relative variance of sales (correlation coefficient = .299), i.e. a larger share of the

stockouts are not due to poor shelf replenishment, but to the lack of units in the store. Due

to the higher relative variance, it is more likely that an unexpected spike in demand occurs

that depletes inventory before new shipments can arrive. This supports the argument above

that, absent a large positive demand shock, lead times are short enough to ensure stock in

the store.

To illustrate the results of the model, we refer back to the product and store whose

observed part of inventory was depicted in Figure (5). Figure (7) shows the corresponding

sales pattern and the daily mean probability of stockout as estimated by the model. As a

simple inspection of the sales pattern may have already suggested, the model finds that a

stockout was most likely during the few days before day 100 with several zero sales days in a

row (not surprisingly, the model also estimates a high probability of zero inventory for those

days, leading to store stockouts). The results are also reasonable in that in general stockouts

are more likely for days with lower sales. However, the model has better discriminating

abilities than these simple intuitions. For instance, the estimated probabilities of stockouts

for days with zero sales is on average 60%, but ranges from only 15% to an almost certain

95%. For days with sales of one unit, stockouts are significantly less likely (25% on average),

yet specific days still have probabilities of stockouts of over 75%. Even days with two or more

sales may still have probabilities of over 25%, i.e. on some days with more sales stockouts

are estimated to be much more likely than on some days with no sales at all.

<< Insert Figure (7) about here >>

Shrinkage

While shrinkage is of less interest to the supplier, the results provide some valuable

insights for the retailer’s store managers. As with stockouts, we find a fairly wide variation

of shrinkage levels across stores. Posterior means for bu,s range from .26% to 5.65%, i.e. from
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less than one incident of unit-shrinkage per year to more than 20 incidents per year. Similarly,

for bc,s the means range from .10% to .56%; so while case shrinkage is reasonably unlikely

for all stores, it is more than five times as likely in some stores than in others! Moreover,

the posterior means for bu,s and bc,s are strongly correlated (correlation coefficient = .61),

showing that the same stores that have problems with unit shrinkage also have problems

with case shrinkage. The correlations between case and unit shrinkage range from .0666 to

.3195.

Finally, to illustrate the estimation results for shrinkage provided by the particle filter,

we again refer back to the store and product depicted in Figure (5). Remember that we

believed that true inventory was likely zero at the flat line before day 100, implying at least

some sort of shrinkage. While the particle filter estimates essentially no case shrinkage up

to the flat line, the probability of case shrinkage increases to almost 30% on day 98 and to

about 20% on day 99. After that, the probability for case shrinkage decreases sharply again,

yet remains slightly elevated for the next 10 days relative to the rest of the days. Overall,

we estimate at least one case of shrinkage for this particular store and product in more than

80% of all iterations of the MCMC. About 30% of the draws result in two cases of shrinkage.

Similarly, the probability of unit shrinkage increases slightly before day 98 and then spikes

very clearly on day 98. This shows how the stronger constraint on inventory can help with

the estimation of the timing of shrinkage.

Similarly, for the example given in Figure (6) we expected to observe shrinkage between

day 8 and the flat line starting at day 15. In almost 70% of the draws of the MCMC we

observe unit and/or case shrinkage in that one week, and in more than 85% of the draws in

the time from day 8 to day 20 (as the first few instances of zero sales may also have been

coincidences).

Limitations

As mentioned above, the inventory model assumes that orders are the result of a pull-
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strategy, i.e., the amount ordered is inversely related to the current inventory. For this

reason, we excluded some data for which this assumption was clearly invalid (see section

on data preparation), and then estimated the missing data. However, for a few of those

store-product combinations, the assumption seems not to have been satisfied even before

this apparent change in ordering strategy. For those instances, the correlations between the

relative inventory measure we use in equation (21) and the placed orders are close to zero,

i.e. orders are independent of inventory (if lead time was indeed two days). With orders

being independent of inventory, there is nothing in the model to prevent very high levels of

inventory (since κ1sv will tend towards zero). In general, this should not be a problem since

the other parameters in equation (21) should be calibrated to result only in appropriately

low amounts of orders. However, keep in mind that (1) the data we excluded was at the

end of the time-series and (2) that the variable for the seasonality increases with time but

shows relatively little variation earlier in the time-series (see Figure (4)). Due to the little

variation of seasonality for the days with non-excluded data, a wide range of values for the

coefficient associated with seasonality in equation (21) (i.e., κ2sv) can fit the observed data;

yet, highly positive values lead to high estimated orders for the excluded data. Once high

orders are estimated for the excluded data (i.e., at the end of the time-series), this reinforces

the positive estimates for κ2sv. With orders not depending on inventory levels, we therefore

estimate inventory levels for the last few days in those instances up to double of what we

observe earlier in the time series, which seems unlikely.

This issue is also the reason for specifying a gamma hierarchy for κ1sv in equation (23).

This ensures that the effect of inventory on orders can at least not be positive. Otherwise,

the effect described above could spiral even further out of control. In particular, the higher

estimated orders despite high inventory levels would lead to positive estimates for κ1sv.

However, once κ1sv is positive, the higher inventory levels result in higher estimates for

orders, which results in higher inventory levels, etc.

Thus, it is critical for the performance of the model that the ordering process in fact
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follows the assumed pull-strategy. Moreover, knowing the exact lead times between orders

and shipments is crucial. For instance, if lead times for these store-product combinations

were not two always days, as claimed by the store managers, that might cause this issue even

despite a pull-strategy being in place. Thus, we believe that with more accurate information,

this problem could be avoided. Moreover, note that this is not an issue with complete data,

i.e., if there is no missing data to be inferred.

DISCUSSION

Based on the results of our model, the concern of the supplier who provided us with

the data seems justified. Even though stockouts are relatively infrequent, stockouts tend to

occur when demand is unusually high, and the model estimates reveal large losses for the

supplier. As for stockout rates, they are significantly higher than what is acceptable to a

supplier at least for two of the stores. Both the very small amount of store stockouts and

the fact that other stores have significantly lower stockout rates suggest that this is a store

management (i.e., restocking) issue rather than a problem with timely re-ordering or with

the supply chain. This is useful information to the supplier, as now he can address those

stores specifically.

The model is also useful to the regional or national management level of the grocery

chain, as it now can distinguish well-managed from not so well-managed stores. Choosing

the right amount of inventory is a tricky decision; more inventory leads to higher inventory

holding costs, but lower inventory leads to higher chance of stockouts. Foo (2007) reports

that companies may classify products into different tiers and set target service levels (or

alternatively target stockout rates) for each of them. Obviously, managers choose those

levels they consider to be profit maximizing. Therefore, any deviation (no matter in which

direction!) is detrimental to profits. With our model, management can check whether the

individual retail stores adhere to the pre-specified values.

In further research, it would be interesting to conduct the same analysis for different
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products in the same stores to see whether the stockout problems in the less well-managed

stores persist throughout categories. Alternatively, it could be due to the misalignment of

interests between suppliers and retailers mentioned in the introduction, i.e. the retailer has

less incentives to avoid stockouts if there is an alternative brand and switching costs are low.

In this case (1) the stockout rates for the alternative brand should be low (or stockouts of

the two brands at least not overlap) and (2) stockout rates for categories with high brand

loyalty should be low.
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FOOTNOTES

1 All statistics reported in this section exclude certain day-store-product combinations,

as explained in the next subsection.

2 This implies that these shocks are also estimated for the missing store-product combi-

nation. We therefore treat the complete time series as missing data to be estimated in the

MCMC.

3 We focus on the most interesting results concerning stockouts and shrinkage in the main

body of the paper. See the appendix for results of the remaining parameters.

4 For the stockout rates, we report the means of the auxiliary variable zsvt indicating the

occurrence of a stockout, rather than the mean of ρsvt; however, results are very close.

5 We compute these values using the average of the unobserved demand (on a non-

holiday weekday). Due to the non-linear nature of the CMP distribution, these values are

only approximate at other levels of demand.
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Table 1: Mean Daily Sales and Shipments by Store

Store 1 2 3 4 5 6 7 8 9 10

Sales 5.36 2.49 6.02 5.70 5.67 2.18 4.09 7.58 6.92 4.62
Shipments 5.28 2.50 6.07 5.68 5.70 2.10 4.00 7.48 6.89 4.62
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Table 2: Mean Daily Sales and Shipments by Product

Product Sales Ship. Product Sales Ship.

Sweet Corn 15.34 15.27 Asparagus and Gold&White Corn 3.86 3.95
Broccoli Cut 8.43 8.31 Brocc./Carrots/Peas/Chestnuts 3.82 3.61
Mixed Vegetables 7.92 7.94 Whole Green Beans 3.63 3.56
Sweet Peas 7.71 7.72 Baby Brussel Sprouts 3.56 3.43
Brocc./Caulifl./Carrots 6.58 6.61 Corn on the Cob 3.17 3.14
Green Beans 5.87 5.82 South-West Corn 2.55 2.61
Broccoli and Cauliflower 4.76 4.79 Garlic Cauliflower 2.38 2.40
Broccoli Florets 4.28 4.08 Garlic Peas and Mushrooms 2.11 2.15
Asian Medley 4.19 4.27
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Table 3: Overview of Prior Specifications

Sales Inventory

β̄m for m = 0, 1, ..., 6 N(0,100) bu,s ∀s Beta(1,20)
σm for m = 0, 1, ..., 6 Inv. Gamma(2.5,2.5) bc,s ∀s Beta(1,30)
β7 N(0,100) ηs ∀s Uniform(-1,1)

~ω|S, V MVN( ~.001, .001S ⊗ V ) pu,s ∀s Beta(1,20)
S Inv. Wish.(150, 4 ·RS) pc,s ∀s Beta(1,20)
V Inv. Wish.(150, 4 ·RV ) νu Gamma(11,.1)
νD Gamma(2,1) νc Gamma(11,.1)
δsv ∀s, v Beta(2,2.5) πsvT ∗sv

∀T ∗sv and ∀s, v Beta(dsvT ∗ , 1)
ā0 N(-2.5,.5) κ̄l for l = 0, 2, 3 N(0,100)
τ0 Inv. Gamma(4,2) ςl for l = 0, 2, 3 Inv. Gamma(2.5,2.5)
a1sv ∀s, v Gamma(30,.125) κ̄1 Gamma(4,.5)
a2sv ∀s, v Gamma(10,3) ς1 Gamma(4,.5)
bρ Gamma(2,1) νO Gamma(2,2)

INV0,sv DT0N(M, (.75M)2) ∀s, v
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Table 4: Posterior Means and Asymptotic Standard Errors (in Parentheses) for Sales and
Orders

Sales Inventory

νD .5300 (.00076) νO 3.8515 (.00309)
β̄0 .6156 (.00134) κ̄0 2.7659 (.00951)
β̄1 -.3111 (.00329) κ̄1 3.0549 (.03166)
β̄2 .2573 (.00028) κ̄2 5.0405 (.00939)
β̄3 .5474 (.00159) κ̄3 .9624 (.00094)
β̄4 -.2651 (.00132)
β̄5 .0849 (.00102)
β̄6 -1.2731 (.00502)
σ0 .1847 (.00034) ς0 2.5931 (.03322)
σ1 .3877 (.00397) ς1 .4301 (.00443)
σ2 .0355 (.00003) ς2 29.9161 (.16736)
σ3 .6248 (.00173) ς3 .1348 (.00038)
σ4 .1408 (.00055)
σ5 .1120 (.00037)
σ6 .3391 (.00389)
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Figure 1: Overview of the Data Generating Process (Observed Data in Bold)
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APPENDIX

Remaining Results

Table (4) presents the means and standard deviations for the hyper-parameters for the

CMP distribution for sales without a stockout and for the CMP distribution for orders, as

well as for νD and νO.

<< Insert Table (4) about here >>

Sales. First note that the CMP distribution for sales is highly overdispersed, as indicated

by the mean of νD being .53. Thus, a model using the standard Poisson distribution for sales

would have been strongly misspecified. This overdispersion also means that small changes

in λDsvt lead to larger changes in the mean of the demand distribution, a fact to keep in mind

when analyzing the remaining parameters.

The results for β̄1 to β̄6 are as expected. Lower prices lead to higher demand (β̄1 =

−.31; values in parentheses refer to the mean); the relatively high variance across stores and

products for the price parameter (σ1 = .39) is due to the problem that for many store-product

combinations prices change only very rarely, if ever. This translates to a price elasticity of

-.4 to -.6 (depending on the amount of average sales, due to the non-linearity of the CMP

distribution for demand). This elasticity is well within the range of commonly observed

price elasticities, though - not surprisingly given the category and low prices - towards the

more inelastic side (see Bijmolt et al. (2005) for a meta-analysis). Also, demand is 40-60%

higher on weekends (β̄2 = .26) and increases as the season progresses towards the winter

time (β̄3 = .55). This translates to an elasticity of demand with respect to season of about .7

to 1 (however, given the wide range of β3 (σ3 = .62) this may vary more for individual store-

product combinations). It is reassuring, though, that the elasticities are close (on average)

to 1, which would be the expected average value given how SEASON was defined.

The holidays have different effects on demand: On Independence Day, demand is 30-40%
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lower on average (β̄4 = −.27); Labor Day, in contrast, is probably regarded as an extra

weekend day to do shopping by many people, leading to a weak (10-20%) positive effect on

demand (β̄5 = .08; the lower bound of the 95% highest probability density interval is .008).

Finally, Thanksgiving has a very strong (80-90%) negative effect since most likely the stores

were closed for at least part of the day (β̄6 = −1.27).

The posterior means of the means for the multivariate normal distribution for the random

shocks (~ω) range from .00079 to .00153, with an overall mean of .00104. The variances (i.e.,

the diagonal of S ⊗ V ) have posterior means ranging from .00090 to .00137, with an overall

mean of .00109. Thus, variances are very close to the means, leading to modes around one

for exp(γsvt).

Finally, the posterior means for ā0 and bρ are -4.46 and .19, respectively, resulting in a

strongly U-shaped beta distribution for the probability of stockouts.

Inventory. In contrast to the distribution for sales, the CMP distribution for orders is

strongly underdispersed relative to a Poisson distribution (νO = 3.85), as expected from

inspection of the data. As a result, the changes in λOsvt have to be fairly large even for small

changes in the mean probability of orders. Thus, the size of the κ̄ parameters and the β̄

parameters cannot be directly compared. But again, as expected, the probability of orders

increases with upcoming weekends (κ̄3 = .96), as well as with the season (κ̄2=5.04). However,

the effect of the season is not very consistent across stores and products (ς2 = 29.92); the 95%

credible interval of κ2sv is strictly positive for only 82 of the 170 store-product combinations,

and even strictly negative for seven of them. The posterior means for the hierarchy on κ1sv,

the effect of inventory relative to expected sales, are κ̄1 = 3.05 and ς1 = .43. Combining them

to get the resulting gamma distribution at each iteration and then averaging over them, the

posterior mean and variance of the distribution are 1.29 and .56, respectively.

The parameters for the CMP-binomial distributions for shrinkage given that an incident

occurs are as follows: First, the probability of shrinkage for one case/unit is almost indepen-
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dent of any other case/unit, as evidenced by the posterior means for νu and νc being .9971

and 1.0044, respectively. The marginal probability of each available unit to be shrunk, pu,s,

ranges from 1.11% to 3.42% across stores (remember that the +1 in equation (14) implies

that at least one unit is shrunk if an incident happens). Similarly, the marginal probability of

each available case to be shrunk ranges from 4.32% to 5.31%. In comparing those rates, one

should keep in mind that at any day there are less cases that can be shrunk than individual

units, i.e. these values do not necessarily imply that shrinkage of two cases is more likely

than shrinkage of two units, conditional on occurrence of the respective type of shrinkage.


