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Abstract

While the assumption of utility-maximizing consumers has been challenged for

decades, empirical applications of alternative choice rules are still very recent. We

add to these growing body of literature by proposing a model based on Simon’s idea of

a “satisficing” decision maker. In contrast to previous models (including recent models

implementing alternative choice rules), satisficing depends on the order in which al-

ternatives are evaluated. We therefore conduct a visual conjoint experiment to collect

search and choice data. We model search and choice jointly and allow for interdepen-

dence between them. The choice rule incorporates a conjunctive rule and, contrary

to most previous models, does not rely on compensatory tradeoffs at all. The results

strongly support the proposed model. We find that search is indeed influenced by

product evaluations. More importantly, the model results strongly support the satis-

ficing stopping rule. Finally, we discuss the different nature of choice predictions for

the satisficing model and for a standard choice model and show how the satisficing

model results in predictions that are more useful to retailers.

Keywords: Non-Compensatory Choice, Eye-Tracking, Visual Conjoint Experi-

ment
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1 Introduction

The large majority of choice models in the marketing literature focus on understanding the

influence of product attributes or marketing variables on consumer choice. Implicitly, these

models assume that the consumer has all information, or at least enough information to

form a consideration set according to some rule. Yet, in reality a consumer needs to acquire

information first before that information can, in turn, influence his decision. Thus, Pieters

and Warlop (1999) suggest that visual attention may help understand consumer choice.

Using eye-tracking methodology, they find that consumers do not gather all information

about the alternatives. Moreover, they show that the percentage of people that look at

the different alternatives is predictive of the alternatives’ choice shares. In addition, they

find directional support that skipping pieces of information (brand information, ingredient

information, and/or the pictorial) for an alternative is negatively related to its choice share.

In our data, the percentage of people who skipped some information for an alternative is an

even better predictor of choice shares (Pearson’s r = −.75) than the percentage of people

who looked at a given alternative (r = .36). As discussed in more detail in our review of the

literature, the phenomenon of skipped information within a product cannot be satisfactorily

explained by standard utility maximizing models, even if allowing for search cost. Yet, the

high correlation between choice shares and percentage of skipped information suggests that

being able to understand why people skip some attribute information may be important for

understanding consumer choice behavior.

The assumption that consumers are utility-maximizers has been criticized for a long time

on grounds of the unrealistically high cognitive burden these rules impose on the decision

maker (Simon 1955) as well as due to common violations of basic axioms of utility maximizing

rules (e.g., transitivity; Loomes et al. 1991). Instead, consumers are believed to use simplified

choice heuristics when making their choices (Gigerenzer and Todd 1999). While several

simple alternative choice rules were proposed several decades ago (e.g., Coombs 1951), such

rules have only been incorporated into empirical choice model very recently (e.g., Gilbride

and Allenby 2004). We contribute to this new stream of research in the marketing literature

by proposing a choice model based on Herb Simon’s idea of “satisficing” choice (Simon 1955).
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Satisficing is a simple choice rule in which the first alternative that is “good enough”

according to some criterion is chosen. The outcome of a satisficing choice then is search path

dependent. Moreover, the search path may be dependent on what “good enough” means.

This interdependence between search and choice allows us to parsimoniously explain the

phenomenon of skipped information in the framework of a simple choice rule. To do so, we

model the search path and the resulting choice jointly. To gather the necessary data, we

conduct a visual conjoint experiment. Using realistic stimuli in a conjoint design, we collect

search path information using eye-tracking technology as well as the resulting choice data.

The satisficing choice rule implies a distinct stopping rule for the search process. Our

results strongly confirm this stopping rule, providing evidence that consumers may in fact

use a satisficing choice rule rather than a utility maximizing model in the product cate-

gory that we studied. The satisficing choice rule is further supported by the results of a

holdout prediction task in which the proposed satisficing model comfortably outpredicts a

multinomial logit model.

The remainder of the paper is organized as follows: We will first briefly review the

relevant streams of literature, then describe the experiment and the data, before explaining

the proposed model and estimation. Finally, we present the results and conclude with a

general discussion.

2 Literature Review

We first review the traditional approach to choice models and its merits but also argue

why that approach cannot convincingly explain the observed data with skipped information.

Then we review the literature on bounded rationality, and show that a satisficing choice rule

in contrast can explain the observed data very parsimoniously. Finally, given our use of an

eye-tracking experiment, we briefly review the relevant work on eye-tracking based search

models.

2



2.1 Maximizing Choice

At least since Guadagni and Little (1983) introduced the multinomial logit model to the

marketing literature in their seminal paper, the idea of a compensatory utility maximizing

choice has been the predominant framework for empirical analyses of consumer choice. The

theory of utility maximizing choice has its foundations in the tenets of microeconomics.

Typically, utility is specified as a linear combination of the alternative’s attributes, thereby

making it a compensatory process (i.e., a “bad” value for one attribute can be compensated

for by a “good” value for another attribute). The approach has proven to be straightforward

to implement yet to yield valuable managerial insights, for instance enabling managers to

segment the market (e.g., Kamakura and Russell 1989) or to understand the impact of

marketing decisions (e.g., Gupta 1988). Building on this framework, the more recent advent

of structural models has allowed researchers to examine consumers’ strategic and forward

looking behavior (e.g., Sun 2005).

However, the assumption of a rational consumer with unlimited cognitive capabilities, as

theoretically appealing as it may be from a normative standpoint, has long been challenged as

an appropriate representation of actual human decision makers (e.g., Simon 1955; Kahneman

and Tversky 1979). Even proponents of the utility maximizing approach typically agree that

decision makers may not actually make decisions following the rules of the model, but rather

they act as if they did. The models then are seen as a description of the outcome rather

than the process. Nonetheless, following Shugan’s call for incorporating a “cost of thinking”

(Shugan 1980) to allow for more realistic models, the literature on choice models has started

to account for limited consumer search and introduced “cognitively less demanding” (for the

decision maker) models .

Importantly, Hauser and Wernerfelt (1990) and Roberts and Lattin (1991) incorporated

consideration sets into choice models, i.e. they proposed a two stage process in which only

a subset of the available alternatives is selected in the first stage for a utility maximizing

choice in the second stage. The formation of the consideration set was originally dependent

on cost-benefit tradeoffs for including an additional brand into the consideration set, or,

with the rise of structural models, an explicit tradeoff of search cost and expected benefit
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(Mehta et al. 2003). Yet, these models of “constrained utility maximization” typically in

fact increase the computational burden of the decision maker rather than decrease it. In

Gigerenzer and Todd (1999)’s words, “[t]he paradoxical approach of optimization under

constraints [i.e., optimization including a search or other sort of cost] is to model “limited”

search by assuming that the mind has essentially unlimited time and knowledge with which

to evaluate the costs and benefits to further information search” (p. 11).

Yet, even if we embrace constrained utility maximization as an appropriate framework

to model consumer decision making, we encounter serious problems in trying to explain

the search patterns observed in our visual conjoint experiment (to be described in section

3). Incorporating cost of thinking (i.e., search cost and or cost for evaluating information)

in the model framework can easily explain why consumers may not evaluate all available

alternatives. If consumers use a stopping rule for search based on cost-benefit tradeoffs, it

may be optimal to not search all available options. However, search costs do not plausibly

explain why consumers may start evaluating some alternatives but not collect all information

about them, a frequent pattern in the search process. One explanation might be that search

cost within a product is higher than across products. However, this does not seem likely

since (a) search cost should be very low within a product as the shopper only needs to

move his eyes minimally, and (b) integration of information should not be very difficult since

the product category (instant [Ramen] noodles) does not involve difficult tradeoffs between

attributes. Alternatively, incomplete search within a product could occur in a search cost

framework if a given consumer cares a lot more about one attribute (say, flavor) than another

(say, price). In that case, knowing that a product has a flavor he really dislikes may make

it unprofitable for him to acquire the other attributes for this product, as even the lowest

price may not offset the disutility caused by the flavor. However, in our data we find that it

is not always the same attribute that is missing (within a person), so therefore this cannot

be the correct explanation.

As we will show below, though, both limited search across alternatives as well as limited

search within alternatives can be easily explained by a model that is not based on a utility

maximizing framework but instead uses a satisficing choice rule.
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2.2 Bounded Rationality

In his above mentioned critique of the rational utility-maximizing agent, Simon says “the

task is to replace the global rationality of economic man with a kind of rational behavior

that is compatible with the access to information to the computational capacities that are

actually possessed by [...] man” (Simon 1955, p. 99).1 This is the foundation of what has

become to be known as “bounded rationality”. In this view, decision makers are aware of

their cognitive limits and therefore rely on simplified choice rules (depending on the task).

The best-known of these simplified choice rules are the lexicographic rule, the conjunctive

and disjunctive rules, and elimination by aspects.

In the lexicographic rule (von Neumann and Morgenstern 1947), a decision maker focuses

on the attribute that is most important to her and simply chooses the alternative that is

best on that particular attribute. If there is a tie, she compares the tied alternatives on her

second most important attribute and chooses the alternative that is preferred according to

that attribute. The process continues until a unique choice is found (or until all attributes

are exhausted).

In the conjunctive and disjunctive rules (Coombs 1951; Dawes 1964), the decision maker

has individual threshold levels for all attributes. In the conjunctive rule, every product

that passes all of these thresholds is acceptable to him, whereas in the disjunctive rule all

products that pass at least one threshold are acceptable.

Finally, elimination by aspects (Tversky 1972) essentially is a combination of the lex-

icographic and the conjunctive rules in which a decision maker first focuses on the most

important attribute, but not only the best alternative makes it to the second round, but all

alternatives passing the threshold for the particular attribute.

Notice that all of these choice rules are non-compensatory, i.e. a “bad” value for one

attribute may be enough for not choosing a particular product, irrespective on how good it

may be on other attributes. Thus, these decision rules tremendously simplify the decision

process, as the decision maker does not have to evaluate any tradeoffs between attributes.

1Following the rules of the well-known children’s game, we attempt to do exactly as ‘Simon says’ in this
paper.
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Despite the fact that these models were proposed several decades ago, and despite more and

more behavioral evidence that central assumptions of the utility maximizing framework seem

to be violated in reality (see Bettman et al. 1991 for a review of consumer decision making),

most empirical applications of non-compensatory models stem only from the last decade.

Several of these applications have extended the linear utility framework to be able to

capture screening rules based on these simplified rules (e.g., Swait 2001; Elrod et al. 2004),

while others have directly modeled the simplified rules (see Gilbride and Allenby 2004 and

Jedidi and Kohli 2005 for the conjunctive and disjunctive rules, Kohli and Jedidi 2007 for

the lexicographic rule, and Gilbride and Allenby 2006 for elimination by aspects). However,

note that these simplified choice rules (1) assume that the decision maker knows the values

of at least one attribute for all alternatives and (2) that the conjunctive and disjunctive rule

only result in a set of acceptable set of products. Thus, the disjunctive and conjunctive rules

so far have either been used to predict a whole set (acceptable MBA candidates, Jedidi and

Kohli 2005) or are followed by or combined with a compensatory choice rule (Swait 2001;

Elrod et al. 2004; Gilbride and Allenby 2004).

“Satisficing”, a term coined by Simon combining “satisfactory” and “sufficing”, in con-

trast results in a unique choice and can explain limited search. The decision process is very

simple: Start by evaluating one alternative. If it is satisfactory (according to a criterion to

be defined), choose that product and stop searching. If not, evaluate the next alternative.

Continue this process until you have found a satisfactory alternative.

It is obvious why people following a satisficing choice rule may not search all alternatives.

However, depending on the satisfaction criterion, satisficing can also explain incomplete

information acquisition within a product. For instance, say the satisfaction criterion is given

by a conjunctive rule. Then, once the decision maker knows that the product fails to meet

the threshold on one attribute (be it price, flavor, or brand) there is no reason to continue

the search within this product.

One difficulty for the empirical application of a satisficing rule is that the choice outcome

depends on the sequence of evaluation. If there is more than one satisfactory product, the

decision maker will choose whichever she comes across first. Thus, it is essential to know
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the search sequence. We therefore use eye-tracking technology to record the sequence of

information acquisition in our visual conjoint experiment.

2.3 Eye-Tracking

Eye-tracking hardware has improved tremendously over the last 15 years, allowing for un-

obtrusive observation of a person’s eye fixations. In an early application, Russo and Leclerc

(1994) relied on human coders to code the location of the fixations based on a video of the

participants’ face. They identified three processing stages in consumer choice: Orientation,

evaluation, and verification. In the verification stage, most relevant to our work for reasons

that will become clear later, participants continue to search and acquire information despite

already having made a choice. In the study by Pieters and Warlop (1999) the data collection

was automated, but consumers had to keep their heads fixed to the apparatus. Improve-

ments in soft- and hardware nowadays allow participants to move freely in about a 25x25x25

inch box, while the location of their eye fixations is determined based on the eyes’ reflection

of infrared signals.

Applications of eye-tracking in marketing research have brought valuable insights in con-

sumers’ processing of print ads (e.g., Pieters et al. (2002)), the optimal design of TV com-

mercials (Teixeira et al. 2010), and the effect of in-store marketing activities (Chandon et al.

2009), among others. For a review of the findings from eye-tracking applications in market-

ing, see Wedel and Pieters (2008). Most relevant to our application, though, is the research

explaining consumer search patterns. van der Lans et al. (2008a) show that consumer search

is influenced both by features of the stimulus, so-called bottom-up effects, and by strategic

or intentional strategies, so-called top-down effects. Liechty et al. (2003) propose a hidden

Markov Model to capture two distinct types of search, local search and global search. In

the local search state “stimuli are explored in detail by extracting information from spe-

cific and adjacent locations”, whereas the global state “is characterized by longer saccades”

(i.e., movements between fixations) and “stimuli are explored to identify locations to extract

information” (Liechty et al. 2003, p. 520).
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3 Visual Conjoint Experiment

As discussed above, the empirical application of a satisficing model requires knowledge of

both search path and product choice. Moreover, since search and product choice may be

inter-dependent, we model the search path and the choice jointly. To collect the data needed

to do this, we conduct what we term a “visual conjoint experiment”, i.e., we develop a

standard conjoint design, but then translate the resulting choice sets into realistic images of

shelves from which participants make their selections.

3.1 Participants

The experiment was conducted at the Doha, Qatar campus of Carnegie Mellon University.

Participants were 75 undergraduate students from the Doha, Qatar campuses of Carnegie

Mellon University, Texas A&M University, Georgetown University, Northwestern University,

and Cornell Medical College. 11 of these participants are excluded from the analysis due

to calibration problems and/or incomplete eye-recordings, leaving a total of 64 students

(29 female, 35 male) in the sample.2 Participants’ age ranges from 17 to 23 years, with

a mean of 19.88 years. Participants’ nationalities are predominantly (∼55%) South Asian

(e.g., Indian, Pakistani, Bangladeshi), and Middle Eastern countries combine for a total of

18 participants (28%).3 Six out of the 64 participants were U.S. American. Subjects were

paid approximately $14 (depending on their choices), and sessions lasted between 30 and 60

minutes.

3.2 Stimuli and Procedure

We choose instant noodles (also known as “Ramen noodles”) as the product category. Prod-

ucts vary on price, flavor, and brand. We use four brands, five equidistant price levels

(ranging from ∼$1.10 to ∼$1.90 for a five pack of noodles), and ten flavors. The brands

and flavors were selected from brands and flavors present in the local market. Similarly, the

2The calibration procedure is explained in the following subsection.
3Many of the participants have lived in Qatar for most, if not all, of their lives.
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price levels span the price range found in the local market. The conjoint design consists

of 15 choice sets with 15 alternatives each. We translate each choice set into an image of

three shelves with five alternatives each. To approximate a realistic amount of clutter on the

shelves, each alternative has four facings. See Figure 1 for an example. We used a 50 inch

HD television (1920 x 1080 pixels) in the experiment, which allowed for the products to be

approximately real-life sized and made all information easily readable.

Figure 1: Example stimulus

Subjects participated in the experiment in individual sessions. After reading the instruc-

tions, including a list of the available brands and flavors as well as an example stimulus, the

eye-tracking software was calibrated. For the individual specific calibration, subjects were

asked to follow a dot moving around the screen with their eyes to “teach” the software how

eye movements relate to location on the screen. Calibration was repeated after one third

and after two thirds of the experiment to ensure high quality data. After calibration, the

first stimulus appeared on the screen and participants could take as long as they needed

to make a decision. Once they reached a decision, they clicked a button on a presentation

clicker which caused the screen to blur and the products were overlayed with letters from A
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to O. This was done to prohibited acquisition of additional information after a choice has

been made; note that Russo and Leclerc (1994)’s verification state, if present, then inher-

ently becomes a part of the recorded search path. Subjects then indicated their choice by

announcing the corresponding letter to the experimenter, or said that they chose not to buy

anything from this particular choice set (Pieters and Warlop 1999). After the last choice,

participants completed a questionnaire to collect, among other things, explicit measures of

their preferences.

To ensure that the task was incentive compatible, one of the choice sets was selected at

the end of the experiment and the corresponding purchase realized (i.e., participants received

their chosen item and paid the respective price from their participation fee).

3.3 Data

For each participant, we then have the 15 choice outcomes, the questionnaire responses, as

well as the sequence of the locations of eye fixations for each choice set. Since our interest

lies mainly in information acquisition, we aggregate the pixel-level data into meaningful

areas of interest (AOI), namely the price tag, the flavor information, and the rest of the

package for each of the alternatives, plus fixations on the background (Pieters and Warlop

1999; Shi et al. 2010). Following Shi et al. (2010) we exclude fixations on the background as

well as consecutive repeat fixations on the same AOI, as they are not informative about a

consumers information acquisition process. Thus, we have 45 AOIs (15 products with 3 AOIs

each) which provide an exhaustive and mutually exclusive partition of each stimulus. Since

the packaging distinguishes brands and brands are well-known, we assume that participants

learn a product’s brand by looking anywhere on the packaging (including the flavor AOI),

whereas they have to fixate on the corresponding AOI to learn the flavor or price.

Figure 2 shows the average number of fixations per choice set. It is obvious that partici-

pants tend to search longer in the first few images, most likely to get used to the task. For

the effect of number of fixations on the likelihood of termination (see section 4.2.3), we there-

fore normalize the number of fixations by the average number of fixations for the respective
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Figure 2: Average Number of Fixations per Choice Set

Table 1: Brand Choice Shares

Fantastic Indomie Koka Maggi
19.0% 22.4% 12.7% 45.9%

choice set.4 The number of fixations within a subject varies greatly across choice sets; even

when only considering the last 11 choice sets (i.e., when average fixations have stabilized)

the mean (across participants) standard deviation (for one participant across choice sets) is

13.9 fixations. This suggests that participants do not simply follow a fixed-search stopping

rule, but employ a more variable stopping rule depending on the information acquired in a

particular search.

Tables 1 and 2 provide a summary of brand and flavor choices, respectively, giving a

first indication of consumer preferences. The Maggi brand as well as the chicken and onion

chicken flavors are clear consumer favorites. Overall, participants decided not to buy in 7.0%

of choices.

4Results are qualitatively equivalent if we instead exclude the first three choice sets. We prefer the
normalization as to not lose the information contained for other parts of the model.
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Table 2: Flavor Choice Shares

Beef Cheese Chicken Curry Lobster
6.6% 11.8% 23.1% 12.0% 4.7%

Mushroom Onion Chicken Shrimp Tomato Vegetable
4.6% 18.0% 6.9% 5.8% 6.5%

4 Model

For ease of presentation, we split the model into two interrelated parts: search and choice.

Though we present them separately, satisficing truly combines both as the choice depends

on the sequence and the search depends on previous judgments of satisfaction. To accom-

modate for the verification stage identified by Russo and Leclerc (1994), we relax Simon’s

strict satisficing rule to allow for continued search after encountering the first satisfactory

alternative. Nonetheless, even in the relaxed version the probability of stopping the search

should increase significantly after encountering the first satisfactory alternative. The pres-

ence or absence of this effect can then be interpreted as an indicator for whether participants

in fact used a satisficing choice rule or not.

4.1 Choice

We use a conjunctive rule as the satisfaction criterion to be used within the satisficing choice.

That is, for each of the three attributes an individual has a set of acceptable levels, and only

if she (1) has learned all three attribute levels for a given product and (2) all three attribute

levels are acceptable, the product is judged to be satisfactory to her.5 In contrast, as soon as

at least one unacceptable attribute level has been found for a product, the product is judged

to be unsatisfactory. If no unacceptable attribute level has been encountered yet and not all

attribute levels for a given product have been learned, the products status is undetermined.

Note that this implies that all products are undetermined at the beginning of the search and

5To avoid confusion, we will use un/satisfactory for the product level and (not) acceptable for the attribute
level for the remainder of the paper.
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can change status at any point during the search.

More formally, let ΓiA denote the acceptable set for attribute A ∈ {B,F,P} (brand, flavor,

and price) for individual i and Iijf be the cumulative information set of individual i in choice

set j as of (and including) fixation f . Further, let a represent the distinct levels of attribute

A and let ajx denote the particular attribute level of product x in choice set j. Sijxf and Uijxf

are indicators for whether product x has been judged to be satisfactory or unsatisfactory,

respectively, as of fixation f in choice set j by individual i.

Suppressing i and j for readability and using I· to represent the indicator function, we

then have

Sxf =
∏
A

Iax∈ΓA
· Iax∈If

(1)

and

Uxf = max
A

(Iax /∈ΓA
· Iax∈If

) (2)

The product over all attributes in equation 1 reflects the notion that all attributes of a

product have to be known and acceptable for the product to be satisfactory. In contrast, a

product is unsatisfactory if at least one attribute is known and unacceptable, as captured

the maximum-operator in equation 2.

Since we allow for a verification stage in the search process, it is possible that a decision

maker finds more than one satisfactory alternative before terminating the search. In order

to keep the choice model as close to Simon’s original idea of satisficing, i.e., all a consumer

cares about is passing a certain threshold rather than some relative ranking, we posit random

choice between all satisfactory alternatives. We also introduce the notion of a “trembling

hand” to allow for unobserved error. In game theory, a “trembling hand” allows for non-

zero probabilities of actions off the equilibrium path (Osborne and Rubinstein 1994). In

our context, it allows for non-zero choice probabilities for undetermined alternatives as well

as for no-choice (which should in theory never be chosen in the presence of a satisfactory

alternative). However, we posit a choice probability of exactly zero for all unsatisfactory

options as well as all options which were never fixated on at all.

Let Cijx be product x’s choice index at the end of consumer i’s search in choice set j.
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We then let Cijx = 1 for all products that are satisfactory at the end of the search, Cijx = 0

for all products that are unsatisfactory at the end of the search and for all products never

fixated on, and Cijx = τi, 0 < τi < 1 for all other products and for no-choice. Product x∗’s

choice probability is then given by

Pr(x∗) =
Cx∗∑
xCx

Consumer heterogeneity in preferences is captured by a hierarchical structure. For brands

and flavors, the individual level acceptability follows a Bernoulli distribution, i.e.,

Ia∈ΓiA
∼ Bern(γ̂a) for A ∈ {B,F} (3)

For prices, we estimate the highest price acceptable (of the prices used in the experiment);

the individual level threshold prices follow a multinomial distribution, i.e.,

p̂i ∼ MN(1, ~p) (4)

and

p ∈ ΓiP if and only if p ≤ p̂i (5)

Finally, τi follows a Beta distribution, i.e.,

τi ∼ Beta(τ̂1, τ̂2)

4.2 Search

Following the literature based on Liechty et al. (2003), we model consumer information

search with a modified hidden Markov model. There are two unobserved search states,

namely local and global search, as well as a termination state, defined by the button press

of the participant at the end of his search.
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4.2.1 Global Search

Recall that global search consists mainly of large “jumps” across the stimulus to explore

different areas (Liechty et al. 2003). Since this implies moving to an area that has previously

been only in peripheral vision, targeting a specific location for the next fixation is difficult for

the participant. Therefore, we assume product-level effects for the probabilities of moving,

and the probability of the exact location within that product (i.e., which AOI) is proportional

to the size of the respective AOI.

In the global state, eye movements are largely influenced by the saliency and/or luminance

of image areas (van der Lans et al. 2008b). Since these are confounded with brand through

brand-specific packaging, we use separate brand intercepts to capture this effect. Moreover,

the status of the alternative may influence the probability of moving to a respective product.

If a product has already been judged to be satisfactory or unsatisfactory, there is no reason

from an information acquisition viewpoint to return to that product later in the search.

Notice that by incorporating the status into the search probabilities, these probabilities

become path-dependent and vary with time.

Let AOIs be denoted by h. Further, let bj(h) and pj(h) be the brand and product that

h belongs to in choice set j, respectively, and let rj(h) be the ratio of h size in choice set j

relative to the size of pj(h). With this notation (but suppressing i and j again), the above

considerations can be expressed as follows.

Let ~Sf−1 and ~Uf−1 be the vectors containing the all product-level indicators Sx,f−1 and

Ux,f−1. The probability of moving to AOI h at fixation f in the global state g conditional

on the statuses of all alternatives (summarizing the previous search) is then given by

ηfg(h|~Sf−1, ~Uf−1) =
ψfg(h|·)

Ψfg

where

ψfg(h|·) = r(h) · exp(φg0b(h) + φg1Sp(h),f−1 + φg2Up(h),f−1) (6)

and Ψfg =
∑

h ψfg(h|·) is the appropriate normalizing constant and φs are parameters to be

estimated.
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4.2.2 Local Search

In contrast to global search, local search is aimed at gathering specific pieces of information in

the same area of the image as the previous fixation (Liechty et al. 2003). Thus, re-fixating on

the same product or moving to an adjacent product should be most likely. Moreover, staying

in the same area of the image allows for targeted search for specific attribute information. In

the local state, people may also use systematic search strategies such as search by attribute.

Finally, similar to the global state, we expect people to be less likely to return to a product

that has already been determined to be unsatisfactory.

Let Rijf (h|hij,f−1), Nrijf (h|hij,f−1), and Nlijf (h|hij,f−1) be dummy variables for whether

moving to AOI h would constitute a re-fixation on the same product, a move to the neigh-

boring product to the right, or a move to the neighboring product to the left, respectively.6

In case the product last fixated on was on the left (right) edge of the shelf, Nlijf (h) (Nrijf (h))

equals one for the AOIs corresponding to the product(s) directly above and/or below that

product. Further, let Lijf (h|hij,f−1) (or short Lijf (h)) be the sum of these three indicators,

thereby defining the “local” area around the last fixation. Finally, to keep track of the

type of information represented by a given AOI, let A(h) denote whether h is a price tag

(A(h) = P ), flavor information (A(h) = F ), or the remaining packaging (A(h) = B). This

helps to investigate target information search as well as search by attribute.

Similarly to the specification for the local state and once again suppressing i and j, we

then have

ηfl(h|hf−1, ~Uf−1) =
ψfl(h|·)

Ψfl

where

ψfl(h|·) = exp

 φl0Lf (h) + φl1Rf (h) + φl2Nrf (h) + φl3Up(h),f−1

+
∑

A[φl4AIA(h)=A · Lf (h)] +
∑

A[φl5AIA(h)=ALf (h) · IA(h)=A(hf−1))]


(7)

and Ψfl =
∑

h ψfl(h|·) again is the appropriate normalizing constant. φl0 to φl2 represent

6For readability, we will omit the conditioning term for the remainder of the paper as it can be easily
derived from the first set of subscripts.
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the effects of staying in the same area as well as potential incremental effects of refixating on

the same product or moving to the right (both relative to moving to the left). The second

line captures the targeted search for information (φl4A only comes into play if moving to

AOI h is a “local” move to attribute A) as well as the strategic search by attribute (φl5A

only comes into play if moving to AOI h is a “local” move and both the current AOI and h

correspond to attribute A).

4.2.3 Transition Probabilities

To complete the hidden Markov model for the search, we need to specify the transition

probabilities between the states. Letting sijf ∈ {g, l, t} be the state of the fth fixation of

individual i in choice set j, the transition probabilities take the general form

Pr(sijf = s∗|f, sij,f−1, hij,f−1, ~Sij,f−1, ~Uij,f−1) =
πijf (s∗|·)∑

s πijf (s|·)
(8)

For the transition to the global and to the local state, we again allow transitions to

depend on the status of the product last fixated on. If the status is already determined to

be either satisfactory or unsatisfactory, transition to the global state may be more likely in

order to move to a different area of the image. Moreover, it should depend on the previous

state, allowing for auto-correlation between states. Again suppressing i and j, we thus have

πf (g|·) = exp(λg0 + λg1Isf−1=g + λg2Sp(hf−1),f−1 + λg3Up(hf−1),f−1) (9)

and

πf (l|·) = exp(λl0 + λl1Isf−1=g + λl2Sp(hf−1),f−1 + λl3Up(hf−1),f−1) (10)

Most interestingly, though, explicitly modeling the transition to the termination state

allows for better insights into what causes consumers to quit searching (Liechty et al. 2003).

This is of particular interest in our application, since the satisficing choice rule has a very

distinct stopping rule that we can directly model. Though the stopping rule is not deter-

ministic due to allowing for the verification stage, satisficing implies that transitioning to
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the termination state should be significantly more likely after finding the first satisfactory

alternative. In addition, people probably are more likely to quit searching, the longer the

search has been. With the understanding that the transition to the termination state occurs

after the last recorded fixation, we then let

πf (t|·) = exp(λt0 + λt1Isf−1=g + λt2f
∗ + λt3 max(~Sf−1)) (11)

where f ∗j is the running count of fixations normalized by the average number of fixations for

the respective choice set, as explained in section 3.3. If consumers use a satisficing rule, λt3

(capturing the implied stopping rule of the satisficing model) should be positive. Moreover,

its magnitude relative to λt2 determines how important that effect is relative to the effect of

the number of fixations (which can be interpreted as a proxy for search cost and/or fatigue).

4.2.4 Heterogeneity

Similar to the choice part of the model, all parameters in the search part of the model allow

for inter-individual heterogeneity through a normal hierarchical structure, i.e., we have

φi· ∼ N(φ̄·, σ·)

and

λi· ∼ N(λ̄·, ς·)

5 Estimation and Identification

The model is completed by a set of uninformative priors (see appendix A.1 for details) and

estimated with an MCMC algorithm in a Bayesian framework (Gelfand and Smith 1990;

Casella and George 1992). The MCMC allows for efficient integration over the inherent

discontinuities of the model caused by the indicator nature of acceptability and satisfac-

tion judgments. We use 100,000 draws after discarding 30,000 draws as a burn-in period.

Convergence is assessed using the the Heidelberger and Welch convergence diagnostic as
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implemented in the boa package for R (Heidelberger and Welch 1983; Smith 2007).

Several restrictions have to be placed on the above model for identification. Analogous

to standard choice models, the brand intercepts in equation 6 for the global search are not

separately identified. We therefore normalize φg0i,Fantastic to zero. Equation 7 for the local

search is also not uniquely identified. In particular, since the brand, flavor, and price AOIs

collectively make up the complete product, φl0i is not separately identified from the set

{φl4Bi, φl4Fi, φl4Pi} and only weakly identified from the set {φl5Bi, φl5Fi, φl5Pi} (recall that

consecutive repeat fixations on the same AOI are excluded from the data and that R·(h)

therefore does not play into the systematic search by attribute). We therefore normalize φl4B

and φl5B to zero. Moreover, the initial fixation in each search sequence is assumed to be in

the global state and its location to be exogenous (van der Lans et al. 2008a).

Once again analogous to intercepts in standard models, only two out of the three λs0 and

the three λs1 parameters for the transition probabilities are identified. (Note that λs0 + λs1

is the intercept conditional on the last fixation being in the global state.) We thus normalize

λg0 and λg1 to zero. The identification of λg2 and λl2 as well as of λg3 and λl3 relies on

fitting the relative probability of termination. However, as reported below we find that the

probability of termination is so low (at least before finding a satisfactory option) that only

the difference of these parameter is well informed, as the termination probability changes

only minimally for a wide range of absolute values of these parameters. We therefore set

πijf (g|·) = 1 for all i, j, and f . However, this still allows us to investigate the relative impact

of an alternative’s status on transitioning to the global vs. the local state as well as, more

importantly, the use of the stopping rule implied by the satisficing choice.

In addition to the “full model” described above, we also estimate an “independent model”

in which all search model parameters corresponding to the status of the alternatives (φg1i,

φg2i, φl3i, λl2i, λl3i, and λt3i) are set to zero. This allows us to analyze the influence of

modeling the two parts jointly on the obtained results.
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6 Results

Analog to the presentation of the model, we separate the presentation of the results into

search and choice. We focus on the results of the full model and discuss the results of the

independent model wherever they allow extra insight into the model.7 Finally, we present a

holdout prediction analysis and compare the result against standard logit models.

While we will analyze all parameter results in detail, it is worth highlighting the results or

the parameters corresponding to the alternatives’ statuses. Since estimating these indicators

and having both choice and search depend on them is one of the main features of the

proposed model, it is important to check whether they do in fact affect search and choice in

reasonable ways. As discussed below, we find that all of the parameters corresponding to

the alternatives’ statuses - including the one for the stopping rule - are non-zero (i.e., the

95% highest density interval of the posterior does not include zero) and all but one have the

expected sign. The one exception is explained by a closer look at the data. Thus, the results

suggest that these un/satisfactory judgments are in fact meaningful and have real impact on

continued search.

6.1 Search

Table 3 presents the posterior means and standard deviations for the population level hier-

archies for the search model parameters.

For the brand intercepts in the global search, it is interesting to compare them to the

choice shares given in Table 1. Recall that packaging is confounded with the brands in

our experiment, so one could expect the search parameters to reflect some of the brand

preferences. However, excluding the most preferred brand of Maggi, the order of parameter

estimates is actually reversed to the order of brand shares. This suggests that while colors

(e.g., yellow for Maggi) may be useful for top-down search goals (van der Lans et al. 2008a),

this process is far from perfect.

7None of the results of the independent model differ qualitatively from the full model unless mentioned.
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Table 3: Posterior Means (and Standard Deviations) for the Search Parameters

Global Search

φ̄g0,Indomie -.28 (.13)∗∗ σg0,Indomie .80 (.20)

φ̄g0,Koka .12 (.07)∗ σg0,Koka .15 (.05)

φ̄g0,Maggi .48 (.08)∗∗ σg0,Maggi .32 (.08)

φ̄g1 1.06 (.10)∗∗ σg1 .44 (.13)

φ̄g2 -.94 (.09)∗∗ σg2 .25 (.09)

Local Search

φ̄l0 3.01 (.09)∗∗ σl0 .43 (.09)

φ̄l1 1.14 (.05)∗∗ σl1 .12 (.03)

φ̄l2 .04 (.04) σl2 .07 (.02)

φ̄l3 -.62 (.04)∗∗ σl3 .08 (.02)

φ̄l4,F lavor -.08 (.04)∗∗ σl4,F lavor .09 (.02)

φ̄l4,P rice -.77 (.06)∗∗ σl4,P rice .22 (.05)

φ̄l5,F lavor -.38 (.06)∗∗ σl5,F lavor .12 (.03)

φ̄l5,P rice 1.14 (.08)∗∗ σl5,P rice .33 (.08)

Transition Probabilities

λl0 1.54 (.12)∗∗ ςl0 .78 (.16)

λl1 -.08 (.14) ςl1 .88 (.23)

λl2 -.28 (.06)∗∗ ςl2 .08 (.02)

λl3 -.47 (.05)∗∗ ςl3 .07 (.02)

λt0 -5.17 (.21)∗∗ ςt0 1.26 (.35)

λt1 .11 (.10) ςt1 .18 (.08)

λt2 1.68 (.15)∗∗ ςt2 .64 (.24)

λt3 2.34 (.14)∗∗ ςt3 .41 (.17)

∗
90% Highest Density Interval does not include zero

∗∗
95% Highest Density Interval does not include zero
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As expected, a consumer is less likely to return to an alternative already judged to be

unsatisfactory (φ̄g2 = −.94). In contrast, a consumer is more likely to return to an alternative

already judged to be satisfactory (φ̄g1 = 1.06). We did not expect this result, since there

should be no reason to return to an already determined alternative from an information

acquisition viewpoint. One possible explanation might be that consumers make explicit

comparisons between different satisfactory alternatives, going back and forth between them.

However, a look at the search paths suggests that this result may mainly be driven by an

end-of-search effect, as almost everyone finishes her search by returning to the product she

chose, which of course is satisfactory.

Similarly to the global search, fixating on an alternative that is already determined to be

unsatisfactory is less likely in local search (φ̄l3 = −.62). Confirming the characterization of

the local search, the probability of staying in the “local” area is about ∼90% based on the

results for φ̄l0 to φ̄l2. Refixating on the same product is most likely (φ̄l1 = 1.14), and moving

to the right is somewhat more likely than moving to the left (φ̄l2 = .04). The remaining

parameters have to be interpreted relative to the normalized brand parameters and with

the previous ones in mind. The negative signs of φ̄l4,F lavor and φ̄l4,P rice are probably due to

the relative differences in size of the AOI relative to the remaining package. However, when

combined with φ̄l1, the sum is still positive, suggesting that targeted information search

within the same product is still more likely than moving to the next product. Finally, we

find support for strategic search by attribute only for search by price (φ̄l5,P rice = 1.14), but

not by flavor (φ̄l4,F lavor = −.38). This is probably caused by the considerable clutter on

the shelves, which makes it difficult to move from one flavor AOI to another flavor AOI, in

particular since the location of the flavor information on the package differs by brand. For

price, this is a lot easier since all prices are in one line at the bottom of each shelf. Notice

that the effect for search by price is of the same magnitude as the effect for refixating on

the same product; thus, if the last fixation was on a price tag, a consumer is equally likely

to stay on the same product or to move to the neighboring price tag. However, there is

considerable heterogeneity across participants in how much strong this systematic search

effect is (σl4,P rice = .33), suggesting that some people may be more likely to use search by

attributes than others.
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As the final part for the search model, let’s move to the transition probabilities. In

general, transitioning to the local state is a lot more likely than transitioning to the global

state (λ̄l0 = 1.54). This is reflected in the finding that almost 80% of all fixation are estimated

to occur in the local state. However, there seems to be no consistent impact of the previous

state on those transition probabilities (λ̄l1 = −.08). The high level of heterogeneity across

participants (ςl1 = .88) suggest that there may be inter-individual differences; looking at

individual-level estimates, we find that 14.1% of participants are more likely to stay in the

global state if the last fixation was also in the global state (relative to moving to the global

state if the last fixation was in the local state), while 12.5% are more likely to move to the

local state.

Similarly, participants are equally likely to quit their search after the local state as after

the global state (λ̄t1 = .11), with the initial stopping probability not surprisingly being

extremely low (λ̄t0 = −5.17). More interestingly, however, is a look at how the stopping

probability changes over time. As one might expect, people become more likely to stop

their search the longer they have already searched (λ̄t2 = 1.68); this effect holds true for

90.6% of the participants, where the others do not seem to be affected by the length of their

search. In contrast, we find support for the increase in stopping probability implied by the

satisficing choice rule for all participants, i.e. having found the first satisfactory alternative

significantly increases the stopping probability (λ̄t3 = 2.34). To understand the relative

magnitudes of these two effects, recall that the number of fixations is relative to the average

number of fixations for a given choice set. Thus, the impact of finding the first satisfactory

alternative on the stopping probability is 1.4 times larger than the effect of having searched

the average search length (or alternatively, about 50 times larger than the impact of one

additional fixation).

In the independent model, the satisficing stopping rule is not part of the model since λt3i

is set to zero. We find that in this case the initial probability to stop searching immediately

is significantly higher (λ̄t0 = −3.78), i.e., the intercept picks up some of the effect that is now

missing from the model. More interestingly though, we also find that the effect of the length

of the search increases significantly (i.e., no overlap of the 95% highest density intervals) to

λ̄t2 = 2.47, also picking up some if the missing effect. The fact that the probability of having
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Table 4: Posterior Means (and Standard Deviations) for the Choice Parameters

Brand Flavor Price
γ̂Fantastic .79 (.05) γ̂Beef .46 (.06) ~p4.00 .03 (.02)
γ̂Indomie .73 (.05) γ̂Cheese .60 (.06) ~p4.75 .04 (.02)
γ̂Koka .58 (.06) γ̂Chicken .88 (.04) ~p5.50 .23 (.05)
γ̂Maggi .98 (.01) γ̂Curry .65 (.06) ~p6.25 .21 (.05)

γ̂Lobster .35 (.06) ~p7.25 .48 (.06)
γ̂Mushroom .46 (.07)
γ̂OnionChicken .84 (.05)
γ̂Shrimp .44 (.06)
γ̂Tomato .45 (.06)
γ̂V egetable .45 (.06)

found at least one satisfactory alternative increases with the length of the search is trivially

true, as by definition there is no satisfactory alternative at the beginning of the search and

almost always at least one at the end of the search. Taken together with the results from the

full model and the independent model, this essentially gives the standard three equations

used for testing for mediation (Sobel 1982). The results can then be interpreted as evidence

that the effect of the length of search is partially mediated by the indicator for having found

at least one satisfactory alternative.

Taken together, these findings lend strong support to the hypothesis that consumers do

in fact use the stopping rule implied by the satisficing choice rule.

6.2 Choice

Table 4 presents the posterior means and standard deviations for the population level hier-

archies for the choice model parameters.

By and large, these estimates conform roughly to the choice shares presented in Tables 1

and 2. Every participant chose Maggi at least once, which is reflected in the high probability

of acceptability (γ̂Maggi = .98). At first glance, it might be surprising that the population

level probability of the highest price being available is almost 50%. However, a closer look
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at the data reveals that in fact 48% of the participants chose a product priced at QR 7.00 at

least once (implying that that price is acceptable to them), so the estimate is perfectly on

target. Keeping in mind that even this highest price is only $1.90 for a five pack of noodles,

this is not all that surprising. In contrast, only one person never chose a product that cost

more than QR 4.00.

To further test the face validity of our results, we correlate the individual-level results with

the explicit measures of brand and flavor preference collected in the questionnaire. Across

all participants, the correlation is .47 for brands and .57 for flavors. These correlations

are strong considering the numerous ties in the explicit measures due to using a five point

Likert scale and, more importantly, the numerous ties in the model estimates due to its

deterministic nature (if a person chose several different flavors, they all have a probability

of being acceptable of 1). For the individual-level correlations based on only four and ten

values, respectively (to avoid scale issues across participants), the mean correlation is .60 for

brands and .61 for flavors.8

Note that the model is absolutely deterministic in one direction: If someone chose a

flavor/brand at least once, that flavor/brand has to be acceptable for that person. While

this feature may seem odd when thinking in compensatory terms, it perfectly makes sense if

one truly believes that a person uses a non-compensatory rule. If the flavor/brand were not

acceptable, a product with that flavor/brand could have never been chosen.9

However, the reverse is not true. One might think that the model should always estimate

that a flavor/brand never chosen was unacceptable to that particular person. Yet, that is

not the case. There are two reasons for that: (1) If a person acquires very little information

before making a choice, he may rarely have encountered a certain flavor, if at all. In that

case, there is simply little information on the respective parameter, making the estimation

largely reliant on the hierarchy. (2) Including the status of an alternative into the search cost

can provide additional information about whether a certain flavor/brand was acceptable or

not, even if it was never chosen. Say a person never chose mushroom flavor, but whenever

8Individual level correlations could not be calculated for 27 individuals for brands and for one individual
for flavors due to no variation in the explicit and/or estimated preference measures.

9See appendix A.2 for brief description and results of a probabilistic version of the model.
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she sees mushroom flavor, she also gathers the corresponding price information rather than

moving on to the next product. In that case, it should be very likely that she does actually

find mushroom an acceptable flavor. To understand this dynamic, we take a closer look

at the individual-level parameters of acceptability for brands and flavors that were never

chosen.

For the full model, we find nonetheless that for 68% of these cases, the probability that

a non-chosen brand or flavor is acceptable is below 5%. However, the remaining 32% have

considerable variation, with a mean probability of acceptability of 34% and even 2% of cases

for which this probability is over 90%.

For the independent model, reason (2) mentioned above does not apply anymore. Thus,

by comparing the two models, we can analyze how much of this variation is due to not

very informative data and how much of it is due to the joint modeling of search and choice.

Looking at the hierarchy parameters, we find that all flavors are estimated to be more likely

to be acceptable than in the full model, on average by 7.5%. Since the independent model

is also deterministic for flavors chosen at least once, this increase in acceptability must be

caused by participants who never chose the respective flavor. A look at the individual-level

estimates confirms this insight. For the non-deterministic cases, only 20% have a probability

of the non-chosen brands and flavors being acceptable of less than 5% (down from 68%).

Thus, using a status-dependent search helps overcome the potential problem of sparse data

and draw the individual-level estimates away from the hierarchy.

As a final test for face validity, we identify three participants as vegetarians (defined by

never choosing a non-vegetarian flavor and giving the lowest possible explicit rating to all non-

vegetarian flavors). Naturally, the model should also be able to identify these individuals.

Results are promising, yet lend further insight into reason (1) for non-zero acceptability

probabilities given above. For all but one flavor for one person (out of five flavors times

three people), the probabilities that non-vegetarian flavors are acceptable are very low. For

the exception, this probability is 54%. Despite being the 8th lowest value for chicken across

participants, this is still higher than one would like. Inspection of the search paths for this

particular participant explains why: In six of the choice sets, s/he never even saw an option
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with chicken flavor at all! Thus, there is not enough information in the data to draw the

estimate further away from the very high population value in the hierarchy (γ̂Chicken = .88).

In order to overcome the population value for individuals such as these, one either needs more

data to allow preferences to be more fully observed or one could explicitly model potential

preference structures, e.g., by adding an extra layer to estimate whether a certain person is

vegetarian or not and including a parameter for whether a flavor is a vegetarian option or

not.

The situation is exacerbated in the independent model since we also miss the additional

information from the search. While the non-vegetarian flavor acceptability probabilities

for the vegetarians are consistently below the respective hierarchy levels, they are far from

identifying vegetarians as such. On average, non-vegetarian flavors are estimated to be

acceptable for vegetarians with a probability of 47%, with one estimate even being over

90%. Once again, this highlights the importance of modeling search and choice jointly.

Finally, to gain further insight into whether consumers may or may not be using the

proposed satisficing choice rule, we analyze the number of satisfactory options a person

has found before stopping his search. On average, people have 1.75 satisfactory options to

choose from at the end of their search. On an individual level, more than 70% of participants

average less than two satisfactory options across choice sets before terminating their search.

Once again this suggests that having found one satisfactory alternative is sufficient for many

people to stop their search very soon after, lending further support to the hypothesis that

they follow a satisficing choice rule. On the other hand, though, 8% of the participants have

on average more than three satisfactory options before making their final choice, suggesting

that a satisficing choice model may not be appropriate for them.

6.3 Holdout Prediction

In order to perform a holdout prediction task, we re-estimate the model using only twelve

of the 15 choice sets and use the remaining three choice sets for prediction. Since the

model estimates consumer preferences at the attribute level and choice probabilities are not

compensatory across attributes, it is instructive to analyze predictive performance on the
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attribute level.10 Therefore, we first discuss the results on the attribute level as well as

aggregated to the product level, and then move to choice predictions and comparisons to

two multinomial logit models.

6.3.1 Attribute- and Product-Level Predictions

Since the model provides probabilities of acceptability for each level of each attribute, we

can check how well the model fits the holdout choices on an attribute level. The holdout

choices conform extremely well with the model results. Recall that we estimate the posterior

probability that an attribute is acceptable. We define the individual-level acceptable sets

for a given attribute as those that are acceptable with probability of at least 95%. We find

that 88% of the flavors, 97% of the brands, and 98% of the prices chosen in the holdout

choices are within the respective acceptable sets.11 Of course, the model strongly benefits

from its deterministic nature, i.e., if a flavor chosen in the holdout choices was chosen by

the same individual in one of the estimation choices, the probability of it being acceptable is

necessarily 1. The somewhat lower hit rate for flavors is then mainly caused by the greater

number of flavors to choose from and the resulting higher probability that a flavor chosen in

the holdout choices may not have been chosen in the estimation choices.

Using the attribute-level results as well as the data on which pieces of information par-

ticipants looked at for the holdout choices, we can calculate the product-level probabilities

of each product for being satisfactory, unsatisfactory, or undetermined for each participant.

Examining the products chosen in the holdout choices, we find that more than 75% of the

choices have a probability above 95% of being satisfactory for the respective participant.

The chosen product has the highest probability of being satisfactory in 82.2% of all cases;

however, in more than half (53.3%) of those cases it is tied for first place with at least one

more product. Once again, this is due to the fairly deterministic nature of the model.

10For a compensatory model, it is less obvious how to evaluate the predictive ability of the part-worth
utilities since choices are a compensatory function of all attributes.

11We exclude the no-choice instances that occur in the holdout choices for this subsection as well as the
following one since the analyses are not applicable to them.
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6.3.2 Choice Predictions

Using the choice rule proposed in the model, we also generate simulated choice probabilities

for the holdout choices. Choice probabilities depend on the number of satisfactory and

undetermined options at the time of decision as well as the trembling hand parameter.

Using the product-level probabilities calculated in the previous section, we simulate the

outcome of each holdout choice for each participant 100,000 times, calculate the resulting

choice probability, and average across simulations.

The resulting choice predictions are distinctly multi-modal, which is not surprising given

the choice rule. If a chosen product was likely to be the only satisfactory one in a choice set,

its choice prediction will be close to 100%. If there are two products with a high likelihood

of being satisfactory, the choice predictions will be close to 50%, and so on. On average, the

predicted choice probability for the chosen option is 48.0%.12

In order to evaluate the predictive performance of the proposed model, we compare it to

two different specifications of the multinomial logit model. In the model called MNLall, we

employ the traditional assumption that a decision maker was aware of all information when

making his choice, whereas in the model called MNLind we construct individual information

sets for each participant based on what s/he actually looked at.13 The MNLind model should

certainly do better than the MNLall model, but the comparison between these two models

gives additional insight into how much prediction is improved in the traditional framework

due to knowing the actual information sets of the decision maker.

12Notice that these simulations do not include any information on the search sequence (only on what
information was acquired). Thus, if several products have a high probability of being satisfactory, in all
likelihood the choice set will include all of these products in the simulations; however, as discussed above,
choice sets are usually very small at the end of the search. Incorporating search information into the
simulations may improve the choice predictions by adding more information on which alternatives actually
were likely to have been satisfactory. This problem is particularly strong for the no-choice decisions in the
holdout set. In the majority of no-choice decisions, the choice set actually included no satisfactory option
(61% with average choice set of less than .1 satisfactory options when choosing no-choice). However, in our
simulations this is not necessarily the case. Since that reduces the no-choice probability to the trembling
hand probability, the holdout prediction for all but one of the cases in which no-choice was chosen is smaller
than 10%.

13Products that were never fixated on are not included in those sets. If only one or two pieces of information
were missing for a certain product, equal probability was given to all possible levels, i.e., we assume the
decision maker is risk-neutral and uses the expected value to compute the product’s utility.
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The predicted choice probability for the chosen option is on average 44.7% for the MNLall

model and 57.7% for the MNLind model, indicating a significant increase thanks to the

additional information. Moreover, the MNLall model does better in terms of the average

choice probability than the proposed model. However, the absolute choice probabilities may

not be the best way to compare these models, given the multi-modal nature of the predictions

from the proposed model.

One alternative is to look at hit rates, i.e., the probability that the chosen option has

the highest predicted choice share. The resulting hit rates are 50.0% for the MNLall model,

58.9% for the MNLind model, and a staggering 78.6% for the proposed model. However, the

extremely high hit rate for the proposed model does not take into account that in many of

these correct predictions, the chosen product is tied with one or more other products for the

highest choice probability (as would be expected given the ties in the probabilities of being

satisfactory reported in the previous section). So while it is a very encouraging result that

the model picks the chosen option to be among the top choices in almost 80% of the cases,

looking only at these hit rates is not a fair comparison for the multinomial logit models.

The probably fairest comparison is the one also most relevant to retailers. A retailer

likely not only cares about which product is most likely to be chosen, but would like to know

all products that have a non-negligble choice probability. We therefore define the success

rate of the prediction as the percentage of holdout choices that have a choice probability

over a certain threshold probability. Notice that this definition inherently “punishes” the

proposed model for having multiple-way ties, since having several options tied for the highest

choice probability lowers the maximum absolute choice probability. Table 5 summarizes the

results for different values of the threshold probability.

For (unrealistically) large threshold probabilities, the MNLall model does best, as the

proposed model is severely punished for having ties. Yet even at the still sizable threshold of

25% the proposed model has a higher success rate than either of the multinomial logit mod-

els. 25% is certainly a large enough choice probability for a retailer to care about. The lower

the threshold, the larger the advantage of the proposed model. While the satisficing model

benefits from having larger mean set sizes (i.e., the number of options with choice proba-
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Table 5: Success Rate (and Mean Set Size) for Different Thresholds

Threshold MNLall MNLind Satisficing

.3 55.2% (1.125) 66.1% (1.161) 65.6% (1.260)
.25 59.4% (1.281) 66.7% (1.219) 68.2% (1.354)
.2 62.5% (1.438) 67.7% (1.307) 76.0% (1.693)
.15 67.2% (1.641) 70.8% (1.417) 81.25% (2.042)
.1 72.4% (1.948) 74.5% (1.536) 84.4% (2.422)

bilities above the threshold), the sets are still fairly small and practical from a managerial

perspective.

The lower average set sizes for the multinomial logit models suggest that those models

generate more extreme predictions. This is confirmed by looking at the choice probability of

the option a person is most likely to choose according to the MNLind model. On average,

these probabilities are 83%, and the median is even 90%. In turn, this of course leaves only

fairly small choice probabilities for the remaining options, i.e., the model clearly singles out

the number one choice. As evidenced by the hit rates reported earlier, these predictions are

oftentimes correct. However, when the model prediction is incorrect, the choice probability

of the chosen option is necessarily small, leading to the smaller average set sizes and the

lower success rates.

In comparison, the mean of the highest choice probability per choice set for the satisficing

model is only 55% (median = 48%). By only estimating which alternatives are satisfactory

(i.e., good enough) and not further discriminating between those, the satisficing model results

in lower predicted choice probabilities for the “best” option but allows itself to assign non-

trivial choice probabilities to all potentially satisfactory options. Recall that the chosen

alternative nonetheless has the highest choice probability (possibly tied) in 78.6% of the

cases, i.e., the proposed model is very capable of identifying the correct choice options. Yet,

the higher success rates for the satisficing model also suggest that not over-committing to

just one choice prediction may be the more viable approach for predicting consumer choice.
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7 Discussion

The proposed model continues the line of research by Gilbride and Allenby (2004); Jedidi and

Kohli (2005). This line of research truly brings a paradigm shift to the empirical choice model

literature in marketing, a shift away from compensatory utility maximizing and towards a

quest for more realistic models of consumer choice. Most models in this new line of research

employ a two-stage approach in which the simple heuristic is used to form a consideration

set in the first stage, followed by a compensatory utility maximizing choice in the second

stage. In contrast, the proposed model does not rely on compensatory tradeoffs at all. This is

possible thanks to a search stopping rule based on Simon’s idea of a satisficing decision maker

(Simon 1955). In a satisficing choice rule, the sequence in which products are evaluated is

essential. We therefore collect choice and eye-tracking data in a visual conjoint experiment

and jointly model search and choice.

The results lend significant support to the proposed model. Most importantly, the stop-

ping rule implied by the satisficing rule is strongly supported by the parameter estimates. In

addition, the distinction between satisfactory and unsatisfactory products is meaningful in

explaining the search pattern, too. We also show that the joint model of search and choice

informs the parameters of the choice model much better than the independent model.

The model performs extremely well in a holdout prediction task. The chosen option has

the highest choice probability in almost 80% of the cases. Moreover, the proposed model is

significantly more successful than a multinomial logit model in assigning non-trivial choice

probabilities to the chosen option for threshold values that are relevant for retailers (say,

10-20%).

It has long been accepted that consumers do not really calculate the compensatory util-

ities implied by the standard models. Our results show that it is possible to estimate choice

models that conform more closely to the actual decision making process - and that it may

be worthwhile to do so! We therefore fully agree with Netzer et al. (2008) that is is time to

improve what they call the “ecological fit” of the choice models to the respective task.

Of course we do not intend to imply that all consumers always follow a satisficing decision
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rule. Heterogeneity across people in their tendency to use simple choice heuristics (often

imprecisely called “satisficing”) vs. maximizing decision rules have been well documented

(e.g., Schwartz et al. 2002). Moreover, the same person is likely to employ different choice

rules when buying instant noodles vs. a car, for instance. And even for the same task,

choice rules have been found to vary depending on time pressure, fatigue, etc. (e.g., Swait

and Adamowicz 2001). Future research needs to address how to incorporate these issues into

empirical choice models.

Given this heterogeneity in potential choice rules, we agree that a satisficing choice model

may not always be the appropriate model when analyzing consumer choices. However, it

should not come as a surprise that for frequently purchased (at least for the subject pool)

and fairly inexpensive goods like instant noodles consumers employ simpler choice rules like

the satisficing rule estimated in this paper. And if they do, our models should reflect that.

Or so Simon says.
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Appendix

A.1 Priors

To complete the hierarchical Bayesian setup, a set of priors is needed. We choose largely

uninformative priors, as shown in Table 6. We scale the prior for τ̂2 to be 100 times the

prior for τ̂2 to reflect the idea that the trembling hand probability should be fairly small.

Nonetheless, the priors are wide enough to allow for a wide spectrum of Beta distributions

on the trembling hand probabilities.

Table 6: Priors

Choice Search
γ̂a ∼ Beta(1, 1) φ̄· ∼ Normal(0, 100)
~p ∼ Dirichlet(1, 1, 1, 1, 1) σ· ∼ Inverse Gamma(.5, .5)
τ̂1 ∼ Gamma(2, 1) λ̄· ∼ Normal(0, 100)
τ̂2 ∼ 100·Gamma(2, 1) ς· ∼ Inverse Gamma(.5, .5)

A.2 Probabilistic Satisficing Model

We also estimated a probabilistic version of the model based on Jedidi and Kohli (2005).

In the probabilistic version, each attribute level is acceptable or unacceptable only with

a certain probability, rather than with certainty. This makes sense if one assumes that a

consumer decides on the spot whether a given price, flavor, or brand is acceptable each time it

is encountered, allowing for some decision uncertainty or error. In contrast, the deterministic

model assumes that these decisions have already been made a priori and therefore stay the

same across all choices.

It is easiest to represent the changes to the choice part of the model by replacing equations

1 and 2 with updating rules for whether a product is satisfactory or not. All products are

undetermined at the start, i.e. Dx0 = 0 for all x. Once a product has been determined to be

either satisfactory or unsatisfactory, that status cannot change anymore (i.e., the updating

rules only apply if the product is still undetermined). By fixating on a given attribute of

a product (a∗x), that product has a chance of becoming unsatisfactory if the attribute is

judged to be unacceptable. Only after fixating on the third attribute can a product become
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satisfactory if all three attributes are acceptable. This is equivalent to saying that the

product has not been judged to be unsatisfactory (implying the first two attributes were

acceptable) and that the third attribute is acceptable. We thus have:

Pr(Sxf = 1|Dx,f−1 = 0) = Pr(a∗x ∈ Γ∗A) ·
∏
A

Iax∈Ijf

and

Pr(Uxf |Dx,f−1 = 0) = Pr(a∗x /∈ Γ∗A)

Notice that while the interpretation of the model is still non-compensatory (i.e., if one at-

tribute is judged to be unacceptable, the product is necessarily unsatisfactory), its mathemat-

ical form now becomes compensatory since the probability of a product being un/satisfactory

is the product of the attribute-level probabilities. Thus, changing the flavor to a flavor that

is less likely to be acceptable can be offset by changing the brand to a brand that is more

likely to acceptable.

In addition, the hierarchies given in equations 3 and 5 need to be adjusted. For brands and

flavors, the hierarchy becomes a Beta distribution. For price, we impose that the acceptance

probability of a price can at most be as much as the acceptance probability of the next lower

price. We therefore use a Beta hierarchy for the acceptance probability of the lowest price,

and four more independent Beta distributions for the ratio of the acceptance probability of

price level x relative to the acceptance probability of price level x− 1.

Not surprisingly, the main differences in the result are found in the choice part of the

model. It is noteworthy, though, that the search parameters corresponding to the status of

the alternative (φ̄g1, φ̄g1, and φ̄l3) become larger in absolute value. This is most likely the

result of the fact that participants tend to have even fewer satisfactory alternatives in their

choice set at the end of the search (since not every flavor, brand, and price they ever chose

automatically has to always be acceptable). While just over 70% of the participants had on

average less than two satisfactory options per choice set in the deterministic version, all but

one participant (98.4%) now fall in that range. In fact, more than 90% of the participants

have an average of 1.5 satisfactory alternatives or less when making their choice!
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Table 7: Posterior Means (and Standard Deviations) of the Means of the Hierarchy Distri-
butions for Acceptability

Brand Flavor Price
Fantastic .56 (.05) Beef .40 (.06) p̂4.00 .95 (.01)
Indomie .55 (.05) Cheese .50 (.06)

Koka .37 (.05) Chicken .87 (.04) p̂4.75

p̂4.00
.80 (.04)

Maggi .80 (.04) Curry .60 (.06)

Lobster .30 (.05) p̂5.50

p̂4.75
.74 (.05)

Mushroom .38 (.06)

Onion Chicken .74 (.05) p̂6.25

p̂5.50
.75 (.06)

Shrimp .37 (.05)

Tomato .36 (.05) p̂7.00

p̂6.25
.58 (.07)

Vegetable .40 (.06)

Table 7 presents the posterior means of the means of the Beta hierarchies for accept-

ability. First note that both brands and flavors have a lower average acceptance probability

than in the deterministic model. Once again, this is due to the fact that in the deterministic

model having chosen a flavor once means the flavor is acceptable with certainty, whereas

in the probabilistic model the probability may only be slightly higher than if never chosen.

For the price column, the interpretation is very different due to the differing structure of

the hierarchy. To illustrate the results for prices, we give the medians of the individual-level

parameters. The lowest price of QR 4.00 has median acceptability probability of 95.9%,

which is not surprising. The second level (QR 4.75) still has a median acceptability proba-

bility of 84.4%, but for one individual it already drops down to 5.7%. The remaining median

acceptability levels are 70.2% for QR 5.50, 46.3% for QR 6.25, and 22.1% for QR 7.00.

These results for the attribute level are very reasonable, assuming people decide about

the acceptability of a certain attribute level on the spot every time. Not surprisingly, the

probabilities of a chosen product to be satisfactory are lower relative to the deterministic

model due to the added uncertainty. Due to fewer ties thanks to the probabilistic nature,

the chosen product now has the highest probability of being satisfactory in only 69% of the

cases; however, in almost all (94.4%) of these cases it is not tied for first place.
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Table 8: Success Rate (and Mean Set Size) for Different Thresholds

Threshold .3 .25 .2 .15 .1

Success Rate 55.2% 63.0% 73.4% 79.7% 85.0%
Mean Set Size (.802) (1.021) (1.307) (1.568) (2.391)

While these results are very reasonable, the added uncertainty in the probabilistic model

hurts its performance in the holdout prediction. Not surprisingly, the probabilities of a

chosen product to be satisfactory are lower relative to the deterministic model. Due to fewer

ties thanks to the probabilistic nature, the chosen product now has the highest probability

of being satisfactory in only 69% of the cases; however, in almost all (94.4%) of these cases

it is not tied for first place.

Table 8 presents the success rate for the choice predictions for the same thresholds re-

ported in Table 5. The probabilistic version has a lower success rate than the deterministic

version except for very low threshold values. Its low mean set sizes for higher thresholds

suggests that its compensatory mathematical nature also leads to more extreme predictions,

similar to the multinomial logit model. These results suggest that using compensatory mod-

els for holdout prediction may in fact overfit the estimates to the estimation data set (at

least for small estimation data sets).
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