Appendix A Proofs of Results

Proof of Theorem 1: To prove Theorem 1, we first prove the following statement: Let f(x) and g(x) be two unimodal continuous and differentiable functions on a closed interval [a,b], and x_f^* and x_g^* be the x values that maximize f(x) and g(x), respectively. If $f'(x) \ge g'(x)$ for all x in the domain, then $x_f^* \ge x_g^*$.

Because $f'(x) \ge g'(x)$, we have $f'(x_g^*) \ge g'(x_g^*)$. It means that the value of f(x) can increase by choosing the value of x above x_g^* . Thus, there exists a better feasible solution for optimizing f(x), and that feasible solution is higher than x_g^* . Since f(x) is a unimodal function, we have $x_f^* \ge x_g^*$.

We now proceed to proving the main result in Theorem 1. The derivative of the two profit functions are:

$$\pi'_{\text{ET}}(s) = \frac{\alpha_p \gamma_r}{(1 - \gamma_p s)^2} + \frac{\alpha_r \gamma_r}{(1 - \gamma_r s)^2} + \frac{\beta_p \gamma_p}{(1 - \gamma_p s)^2} - \frac{\beta_p \gamma_r}{(1 - \gamma_p s)^2} - \tau'(s), \quad s \in [0, \frac{1}{2\gamma_r}];$$

$$\pi'_{\text{EO}}(s) = \frac{\alpha_p \gamma_r}{(1 - \gamma_r s)^2} + \frac{\alpha_r \gamma_r}{(1 - \gamma_r s)^2} + \frac{\beta_p \gamma_p}{(1 - \gamma_p s)^2} - \frac{\beta_p \gamma_r}{(1 - \gamma_r s)^2} - \tau'(s), \quad s \in [0, \frac{1}{2\gamma_r}].$$

It is easy to verify that for $\tau(s) = \frac{ks}{1-\gamma_r s}$, $\pi_{\rm ET}(s)$ and $\pi_{\rm EO}(s)$ are both unimodal functions. Using above equations, $\forall s \in [0, \frac{1}{2\gamma_r}]$ we have

$$\pi'_{\text{ET}}(s) - \pi'_{\text{EO}}(s) = \left(\frac{\alpha_p \gamma_r}{(1 - \gamma_p s)^2} - \frac{\beta_p \gamma_r}{(1 - \gamma_p s)^2}\right) - \left(\frac{\alpha_p \gamma_r}{(1 - \gamma_r s)^2} - \frac{\beta_p \gamma_r}{(1 - \gamma_r s)^2}\right),$$

$$= \gamma_r (\beta_p - \alpha_p) \left(\frac{1}{(1 - \gamma_r s)^2} - \frac{1}{(1 - \gamma_p s)^2}\right) \ge 0.$$

Using the statement proven in the beginning of this proof, we have $s^{\text{ET}} \geq s^{\text{EO}}$.

Proof of Proposition 2: For any given $s \in [0, \frac{1}{2\gamma_r}]$, we have

$$\pi_{\text{ET}}(s) - \pi_{\text{EO}}(s) = \left(\frac{\alpha_p \gamma_r s}{1 - \gamma_p s} - \frac{\beta_p \gamma_r s}{1 - \gamma_p s}\right) - \left(\frac{\alpha_p \gamma_r s}{1 - \gamma_r s} - \frac{\beta_p \gamma_r}{1 - \gamma_r s}\right)$$
$$= \gamma_r (\beta_p - \alpha_p) \left(\frac{s}{1 - \gamma_r s} - \frac{s}{1 - \gamma_p s}\right) \ge 0.$$

Therefore,

$$\pi_{\rm ET}(s^{\rm EO}) > \pi_{\rm EO}(s^{\rm EO}).$$

Since s^{ET} is the optimal amount of learning effort under ET,

$$\pi_{\mathrm{ET}}(s^{\mathrm{ET}}) \ge \pi_{\mathrm{ET}}(s^{\mathrm{EO}}).$$

By transitivity,

$$\pi_{\rm ET}(s^{\rm ET}) \ge \pi_{\rm EO}(s^{\rm EO}),$$

i.e.,
$$\pi_{\text{ET}}^* \geq \pi_{\text{EO}}^*$$
.

Proof of Proposition 3:

$$\begin{split} \phi_r^{ET} &= \frac{1 - c_r^{\text{ET}}}{1 - \gamma_r s^{\text{ET}}} = \frac{\gamma_r s^{\text{ET}}}{1 - \gamma_r s^{\text{ET}}}, \\ \phi_r^{EO} &= \frac{1 - c_r^{\text{EO}}}{1 - \gamma_r s^{\text{EO}}} = \frac{\gamma_r s^{\text{EO}}}{1 - \gamma_r s^{\text{EO}}}. \end{split}$$

Theorem 1 shows

$$s^{\text{ET}} \ge s^{\text{EO}}$$
,

therefore,

$$\frac{\gamma_r s^{\rm ET}}{1 - \gamma_r s^{\rm ET}} \ge \frac{\gamma_r s^{\rm EO}}{1 - \gamma_r s^{\rm EO}}$$

i.e,
$$\phi_r^{ET} \ge \phi_r^{EO}$$
.

Proof of Theorem 2: First Order Condition gives us:

$$\pi'_{\rm ET}(s^{\rm ET}) = \frac{\alpha_p \gamma_r}{(1 - \gamma_p s^{\rm ET})^2} + \frac{\alpha_r \gamma_r}{(1 - \gamma_r s^{\rm ET})^2} + \frac{\beta_p \gamma_p}{(1 - \gamma_p s^{\rm ET})^2} - \frac{\beta_p \gamma_r}{(1 - \gamma_p s^{\rm ET})^2} - \frac{k}{(1 - \gamma_r s^{\rm ET})^2} = 0; \quad (47)$$

$$\pi'_{\rm EO}(s^{\rm EO}) = \frac{\alpha_p \gamma_r}{(1 - \gamma_r s^{\rm EO})^2} + \frac{\alpha_r \gamma_r}{(1 - \gamma_r s^{\rm EO})^2} + \frac{\beta_p \gamma_p}{(1 - \gamma_r s^{\rm EO})^2} - \frac{\beta_p \gamma_r}{(1 - \gamma_r s^{\rm EO})^2} - \frac{k}{(1 - \gamma_r s^{\rm EO})^2} = 0.$$
 (48)

Multiply (47) by $(1 - \gamma_r s^{\text{ET}})^2$ and arrange the equation:

$$\left(\frac{1 - \gamma_r s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}}\right)^2 \cdot \left(\alpha_p \gamma_r + \beta_p \gamma_p - \beta_p \gamma_r\right) = k - \alpha_r \gamma_r \tag{49}$$

Note that

$$\frac{1 - \gamma_r s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} = 1 - (\gamma_r - \gamma_p) \frac{s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}},$$

$$(50)$$

Substituting (50) into (49), with some algebra we have

$$\phi_p^{\text{ET}} \equiv \frac{\gamma_r s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} = \frac{\gamma_r}{\gamma_r - \gamma_p} \left[1 - \left(\frac{k - \alpha_r \gamma_r}{\alpha_p \gamma_r + \beta_p \gamma_p - \beta_p \gamma_r} \right)^{\frac{1}{2}} \right]$$
 (51)

Similarly, from (48) we derive the expression for the coverage rate under equal opportunity:

$$\phi_p^{\text{EO}} \equiv \frac{\gamma_r s^{\text{EO}}}{1 - \gamma_r s^{\text{EO}}} = \frac{\gamma_r}{\gamma_r - \gamma_p} \left[\left(\frac{\beta_p \gamma_p}{k - \alpha_r \gamma_r + \beta_p \gamma_r - \alpha_p \gamma_r} \right)^{\frac{1}{2}} - 1 \right]$$
 (52)

Therefore, we have:

$$\phi_p^{\text{ET}} - \phi_p^{\text{EO}} = \frac{\gamma_r}{\gamma_r - \gamma_p} \left[2 - \left(\frac{k - \alpha_r \gamma_r}{\alpha_p \gamma_r + \beta_p \gamma_p - \beta_p \gamma_r} \right)^{\frac{1}{2}} - \left(\frac{\beta_p \gamma_p}{k - \alpha_r \gamma_r + \beta_p \gamma_r - \alpha_p \gamma_r} \right)^{\frac{1}{2}} \right]$$
 (53)

$$= \frac{1}{\gamma_r - \gamma_p} \left[2 - \sigma - \left(\frac{\beta_p \gamma_p}{\sigma^2 \beta_p \gamma_p + (1 - \sigma^2)(\beta_p \gamma_r - \alpha_p \gamma_r)} \right)^{\frac{1}{2}} \right]$$
 (54)

When $\frac{\alpha_p}{\beta_p} \le 1 - \frac{1 - (2 - \sigma)^2)\sigma^2}{(1 - \sigma^2)(2 - \sigma)^2} \cdot \frac{\gamma_p}{\gamma_r}$, we have

$$(\beta_p - \alpha_p)\gamma_r \ge \frac{1 - (2 - \sigma)^2)\sigma^2}{(1 - \sigma^2)(2 - \sigma)^2} \cdot \beta_p \gamma_p, \tag{55}$$

$$[1 - (2 - \sigma)^2 \sigma^2] \beta_p \gamma_p \le (1 - \sigma^2)(2 - \sigma)^2 (\beta_p \gamma_r - \alpha_p \gamma_r), \tag{56}$$

$$\beta_p \gamma_p \le (2 - \sigma)^2 \sigma^2 \beta_p \gamma_p + (2 - \sigma)^2 (1 - \sigma^2) (\beta_p \gamma_r - \alpha_p \gamma_r), \tag{57}$$

$$\frac{\beta_p \gamma_p}{\sigma^2 \beta_p \gamma_p + (1 - \sigma^2)(\beta_p \gamma_r - \alpha_p \gamma_r)} \le (2 - \sigma)^2, \tag{58}$$

therefore,

$$\left(\frac{\beta_p \gamma_p}{\sigma^2 \beta_p \gamma_p + (1 - \sigma^2)(\beta_p \gamma_r - \alpha_p \gamma_r)}\right)^{\frac{1}{2}} \le 2 - \sigma,\tag{59}$$

which implies that $\phi_p^{\text{ET}} > \phi_p^{\text{EO}}$, since $\gamma_r - \gamma_p > 0$.

Proof of Theorem 3: Let NS_p^{ET} and NF_p^{ET} be the number of successful acceptance and the number of failed acceptance in the protected group under equal treatment, respectively. Then,

$$\begin{split} NS_p^{\text{ET}} &= \frac{1 - c^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} (1 - d_p) = \frac{\gamma_r s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} (1 - d_p); \\ NF_p^{\text{ET}} &= \frac{1 - \gamma_p s^{\text{ET}} - c^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} d_p = \frac{(\gamma_r - \gamma_p) s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} d. \end{split}$$

Therefore, we have

$$\delta_p^{\text{ET}} = \frac{NS_p^{\text{ET}}}{NS_p^{\text{ET}} + NF_p^{\text{ET}}} = \frac{(1 - d_p)\gamma_r}{\gamma_r - \gamma_p d_p}.$$

Similarly, under equal opportunity, we have

$$\begin{split} NS_{p}^{\text{EO}} &= \frac{1 - c_{p}^{\text{EO}}}{1 - \gamma_{p} s^{\text{EO}}} (1 - d_{p}) = \frac{\gamma_{r} s^{\text{EO}}}{1 - \gamma_{r} s^{\text{EO}}} (1 - d_{p}) \\ NF_{p}^{\text{EO}} &= \frac{1 - \gamma_{p} s^{\text{EO}} - c_{p}^{\text{EO}}}{1 - \gamma_{r} s^{\text{EO}}} d_{p} = (\frac{\gamma_{r} s^{\text{EO}}}{1 - \gamma_{r} s^{\text{EO}}} - \frac{\gamma_{p} s^{\text{EO}}}{1 - \gamma_{r} s^{\text{EO}}}) \cdot d_{p} \end{split}$$

Thus,

$$\delta_p^{\text{EO}} = \frac{NS_p^{\text{EO}}}{NS_p^{\text{ET}} + NF_p^{\text{ET}}} = \frac{(1 - d_p)\gamma_r}{\gamma_r - \frac{1 - \gamma_r s^{\text{EO}}}{1 - \gamma_p s^{\text{EO}}} \cdot \gamma_p d_p} < \frac{(1 - d_p)\gamma_r}{\gamma_r - \gamma_p d_p} = \delta_p^{\text{ET}}.$$

Appendix B Proofs of the Results in the Two Other Cases

B.1 Medium Expected Loss

In this section, we show that our results hold for the case of medium expected loss, i.e.,

$$\alpha_p + \alpha_r < \beta_p \le \alpha_p + \frac{1 - \gamma_p s}{1 - \gamma_r s} \alpha_r.$$

From the analysis in section 3.3, we know that in this case

$$c_p^{\text{ET}} = c_r^{\text{ET}} = 1 - \gamma_r s, \qquad \qquad \pi_{\text{ET}}(s) = \frac{\alpha_p \gamma_r s}{1 - \gamma_p s} + \frac{\alpha_r \gamma_r s}{1 - \gamma_r s} + \frac{\beta_p \gamma_p s}{1 - \gamma_p s} - \frac{\beta_p \gamma_r s}{1 - \gamma_p s} - \tau(s)$$

$$c_p^{\text{EO}} = 1 - \gamma_p s, c_r^{\text{EO}} = 1 - \frac{1 - \gamma_r s}{1 - \gamma_p s} \gamma_p s, \qquad \pi_{\text{EO}}(s) = \frac{\alpha_p \gamma_p s}{1 - \gamma_p s} + \frac{\alpha_r \gamma_p s}{1 - \gamma_p s} - \tau(s);$$

Learning

The derivative of the two profit functions are:

$$\pi'_{\text{ET}}(s) = \frac{\alpha_p \gamma_r}{(1 - \gamma_p s)^2} + \frac{\alpha_r \gamma_r}{(1 - \gamma_r s)^2} + \frac{\beta_p \gamma_p}{(1 - \gamma_p s)^2} - \frac{\beta_p \gamma_r}{(1 - \gamma_p s)^2} - \tau'(s)$$

$$\pi'_{\text{EO}}(s) = \frac{\alpha_p \gamma_p}{(1 - \gamma_p s)^2} + \frac{\alpha_r \gamma_p}{(1 - \gamma_p s)^2} - \tau'(s);$$

Therefore,

$$\pi'_{\text{ET}}(s) - \pi'_{\text{EO}}(s) = \frac{\alpha_p \gamma_r}{(1 - \gamma_p s)^2} + \frac{\alpha_r \gamma_r}{(1 - \gamma_r s)^2} + \frac{\beta_p \gamma_p}{(1 - \gamma_p s)^2} - \frac{\beta_p \gamma_r}{(1 - \gamma_p s)^2} - \frac{\alpha_p \gamma_p}{(1 - \gamma_p s)^2} - \frac{\alpha_r \gamma_p}{(1 - \gamma_p s)^2}$$

$$= \frac{(\beta_p - \alpha_p - \alpha_r) \gamma_p}{(1 - \gamma_p s)^2} + \left[\frac{\alpha_r}{(1 - \gamma_r s)^2} - \frac{\beta_p}{(1 - \gamma_p s)^2}\right] \gamma_r$$

As

$$\beta_p \le \alpha_p + \frac{1 - \gamma_p s}{1 - \gamma_r s} \alpha_r,$$

we have

$$\beta_p < \frac{1 - \gamma_p s}{1 - \gamma_r s} \alpha_r < (\frac{1 - \gamma_p s}{1 - \gamma_r s})^2 \alpha_r,$$

thus,

$$\frac{\beta_p}{(1-\gamma_p s)^2} < \frac{\alpha_r}{(1-\gamma_r s)^2}.$$

Also

$$\beta_p > \alpha_p + \alpha_r$$
.

Therefore,

$$\pi'_{\rm ET}(s) - \pi'_{\rm EO}(s) > 0.$$

By the statement shown in the proof of Theorem 1, we have $s^{\text{ET}} \geq s^{\text{EO}}$.

Impact on the firm

For any given $s \in [0, \frac{1}{2\gamma_r}]$, we have

$$\pi_{\mathrm{ET}}(s) - \pi_{\mathrm{EO}}(s) = \frac{(\beta_p - \alpha_p - \alpha_r)\gamma_p s}{1 - \gamma_p s} + \left[\frac{\alpha_r}{1 - \gamma_r s} - \frac{\beta_p}{1 - \gamma_p s}\right]\gamma_r s \ge 0$$

Therefore,

$$\pi_{\text{ET}}(s^{\text{EO}}) \ge \pi_{\text{EO}}(s^{\text{EO}}).$$

Since s^{ET} is the optimal amount of learning effort under ET,

$$\pi_{\rm ET}(s^{\rm ET}) \ge \pi_{\rm ET}(s^{\rm EO}).$$

By transitivity,

$$\pi_{\text{ET}}(s^{\text{ET}}) \ge \pi_{\text{EO}}(s^{\text{EO}}),$$

i.e., $\pi_{\text{ET}}^* \geq \pi_{\text{EO}}^*$.

Impact on the Regular Group

$$\begin{split} \phi_r^{ET} &= \frac{1 - c_r^{\text{ET}}}{1 - \gamma_r s^{\text{ET}}} = \frac{\gamma_r s^{\text{ET}}}{1 - \gamma_r s^{\text{ET}}}, \\ \phi_r^{EO} &= \frac{1 - c_r^{\text{EO}}}{1 - \gamma_r s^{\text{EO}}} = \frac{\gamma_p s^{\text{EO}}}{1 - \gamma_r s^{\text{EO}}}. \end{split}$$

Since

$$s^{\rm ET} \ge s^{\rm EO}, \gamma_r \ge \gamma_p$$

therefore,

$$\frac{\gamma_r s^{\rm ET}}{1-\gamma_r s^{\rm ET}} \geq \frac{\gamma_r s^{\rm EO}}{1-\gamma_r s^{\rm EO}} \geq \frac{\gamma_p s^{\rm EO}}{1-\gamma_r s^{\rm EO}},$$

i.e, $\phi_r^{ET} \ge \phi_r^{EO}$.

Since $c_p^{\text{ET}}, c_p^{\text{EO}} \ge 1 - \gamma_r s$, we have $\delta_r^{\text{ET}} = \delta_r^{\text{EO}} = 1$.

Impact on the Protected Group

$$\begin{split} \phi_p^{ET} &= \frac{1 - c_p^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} = \frac{\gamma_r s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}}, \\ \phi_r^{EO} &= \frac{1 - c_p^{\text{EO}}}{1 - \gamma_n s^{\text{EO}}} = \frac{\gamma_p s^{\text{EO}}}{1 - \gamma_n s^{\text{EO}}}. \end{split}$$

Since

$$s^{\text{ET}} \ge s^{\text{EO}}, \gamma_r \ge \gamma_p,$$

we have $\phi_p^{ET} \ge \phi_r^{EO}$.

B.2 Large Expected Loss

In this section, we show that our results hold for the case of large expected loss, i.e.,

$$\beta_p > \alpha_p + \frac{1 - \gamma_p s}{1 - \gamma_r s} \alpha_r.$$

From the analysis in section 3.3, we know that in this case

$$\begin{split} c_p^{\text{ET}} &= c_r^{\text{ET}} = 1 - \gamma_p s, \\ c_p^{\text{EO}} &= 1 - \gamma_p s, \\ c_p^{\text{EO}} &= 1 - \gamma_p s, \\ c_p^{\text{EO}} &= 1 - \frac{1 - \gamma_r s}{1 - \gamma_p s} \gamma_p s, \end{split} \qquad \begin{aligned} \pi_{\text{ET}}(s) &= \frac{\alpha_p \gamma_p s}{1 - \gamma_p s} + \frac{\alpha_r \gamma_p s}{1 - \gamma_p s} - \tau(s); \\ \pi_{\text{EO}}(s) &= \frac{\alpha_p \gamma_p s}{1 - \gamma_p s} + \frac{\alpha_r \gamma_p s}{1 - \gamma_p s} - \tau(s). \end{aligned}$$

Learning

The derivative of the two profit functions are:

$$\begin{split} \pi'_{\rm ET}(s) &= \frac{\alpha_p \gamma_p}{(1 - \gamma_p s)^2} + \frac{\alpha_r \gamma_p}{(1 - \gamma_r s)^2} - \tau'(s); \\ \pi'_{\rm EO}(s) &= \frac{\alpha_p \gamma_p}{(1 - \gamma_p s)^2} + \frac{\alpha_r \gamma_p}{(1 - \gamma_p s)^2} - \tau'(s). \end{split}$$

Therefore,

$$\pi_{\mathrm{ET}}'(s) - \pi_{\mathrm{EO}}'(s) = \frac{\alpha_r \gamma_p}{(1 - \gamma_r s)^2} - \frac{\alpha_r \gamma_p}{(1 - \gamma_p s)^2} \ge 0.$$

By the statement shown in the proof of Theorem 1, we have $s^{\text{ET}} \geq s^{\text{EO}}$.

Impact on the decision maker

For any given $s \in [0, \frac{1}{2\gamma_r}]$, we have

$$\pi_{\rm ET}(s) - \pi_{\rm EO}(s) = \frac{\alpha_r \gamma_p s}{1 - \gamma_r s} - \frac{\alpha_r \gamma_p s}{1 - \gamma_p s} \ge 0$$

Therefore,

$$\pi_{\mathrm{ET}}(s^{\mathrm{EO}}) \ge \pi_{\mathrm{EO}}(s^{\mathrm{EO}}).$$

Since s^{ET} is the optimal amount of learning effort under ET,

$$\pi_{\mathrm{ET}}(s^{\mathrm{ET}}) \ge \pi_{\mathrm{ET}}(s^{\mathrm{EO}}).$$

By transitivity,

$$\pi_{\mathrm{ET}}(s^{\mathrm{ET}}) \ge \pi_{\mathrm{EO}}(s^{\mathrm{EO}}),$$

i.e.,
$$\pi_{ET}^* \ge \pi_{EO}^*$$
.

Impact on the Regular Group

$$\begin{split} \phi_r^{ET} &= \frac{1 - c_r^{\text{ET}}}{1 - \gamma_r s^{\text{ET}}} = \frac{\gamma_p s^{\text{ET}}}{1 - \gamma_r s^{\text{ET}}}, \\ \phi_r^{EO} &= \frac{1 - c_r^{\text{EO}}}{1 - \gamma_r s^{\text{EO}}} = \frac{\gamma_p s^{\text{EO}}}{1 - \gamma_p s^{\text{EO}}}. \end{split}$$

Since

$$s^{\rm ET} \ge s^{\rm EO}, \gamma_r \ge \gamma_p$$

therefore,

$$\frac{\gamma_p s^{\text{ET}}}{1 - \gamma_r s^{\text{ET}}} \ge \frac{\gamma_p s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} \ge \frac{\gamma_p s^{\text{EO}}}{1 - \gamma_p s^{\text{EO}}},$$

i.e, $\phi_r^{ET} \ge \phi_r^{EO}$.

As $c_p^{\text{ET}}, c_p^{\text{EO}} \ge 1 - \gamma_r s$, we have $\delta_r^{\text{ET}} = \delta_r^{\text{EO}} = 1$.

Impact on the Protected Group

$$\begin{split} \phi_p^{ET} &= \frac{1 - c_p^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}} = \frac{\gamma_p s^{\text{ET}}}{1 - \gamma_p s^{\text{ET}}}, \\ \phi_r^{EO} &= \frac{1 - c_p^{\text{EO}}}{1 - \gamma_p s^{\text{EO}}} = \frac{\gamma_p s^{\text{EO}}}{1 - \gamma_p s^{\text{EO}}}. \end{split}$$

Since

$$s^{\mathrm{ET}} \ge s^{\mathrm{EO}}$$

we have $\phi_p^{ET} \ge \phi_r^{EO}$.