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Appendix A Proofs of Results

Proof of Theorem 1: To prove Theorem 1, we first prove the following statement: Let f(z) and
g(x) be two unimodal continuous and differentiable functions on a closed interval [a,b], and z} and
x; be the z values that maximize f(z) and g(w), respectively. If f'(z) > g'(x) for all z in the domain,
then Ty > X,

Because f'(z) > g¢'(x), we have f'(z}) > g'(x}). It means that the value of f(z) can increase by
choosing the value of x above z;. Thus, there exists a better feasible solution for optimizing f(z),

and that feasible solution is higher than z}. Since f(x) is a unimodal function, we have x} > 7.

We now proceed to proving the main result in Theorem 1. The derivative of the two profit functions

are:
Yy Yy By Bpr 1
Trr(8) = b + P i —7'(s), s€l[0,—1;
BT (I—=7s)? (1—79)?% (1—2s)% (1—s)? 27,
A Yr e By Bpyr 1
o (s) = P pp P —1'(s), selo,—].
R (e i (Ep T A ey A e EA
It is easy to verify that for 7(s) = 5 fjrs, mer(s) and mgo(s) are both unimodal functions. Using
above equations, Vs € [0, ﬁ] we have
R, Y By e By
merl) = ko) = (5~ ) (e T )
1 1
="Yr /B —Q - > 0.
B =) (T ~ T
Using the statement proven in the beginning of this proof, we have s¥T > s¥O. [ |

Proof of Proposition 2: For any given s € |0, i], we have

Oprs Bpyrs )_ ( ApYrS By )
1= 1—rys 1—vs 1—7.s

S S
:%(ﬁp—ap)(l_ws - 1_7,,3) > 0.

Trr(s) — Tro(s) = (

Therefore,

mer(s70) > mpo (s7°).
Since s is the optimal amount of learning effort under ET,

WET(SET) Z WET(SEO).

By transitivity,

mer(s™T) > RO (SEO)a

ie., Thr > Tho- |
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Proof of Proposition 3:

T 1— CET _ ¥rs™ T

r 1—,8BT 1 —~,sBET’
EO EO

EO 1- Cr _ VrS

r

1—7,880 1 —~,sE0"

Theorem 1 shows

§ET > 4F0
therefore,
ET EO
YrS YrS
1 _'YTSET -1 _,YTSEO’
: ET EO
ie, ¢ > @ |

Proof of Theorem 2: First Order Condition gives us:

/ ET O[p,)/’!“ ar’)/r Bp’)/p 6p'7r k
— — - =0; 47
Ter(s) (1 —,sET)2 + (1 —,sFT)2 + (1 —7,8ET)2 (1 —7,sET)2 (1 —~,sET)2 ;o (47)
Yy Yy v k
T (sP0) = 00 e B O —0. (48)

(1=7s9)? - (1 =7s"0)? (1 =7ps"9)% (1 —7859)% (1 —7,559)2

Multiply (47) by (1 —~,s"T)? and arrange the equation:

1— ’YTSET )
(17“) (e + BpYp — Bpvr) =k — e (49)
—_ ’Yps
Note that
1— 'YTSET SET
——=1—(% =) —, 50
1 _ VpSET (fy 717) 1 _ ’VpSET ( )
Substituting (50) into (49), with some algebra we have
ET
Vr$ Vr k— o, 1
¢, = 5T = [1—( )?] (51)
1- VpS Yr—p OpYr + Bp’Yp - Bpfyr
Similarly, from (48) we derive the expression for the coverage rate under equal opportunity:
EO
YrS Yr ﬂ Y, 1
¢ = = It 2 b 1] (52)

1 VTSEO B Vr—Yp k— oy + /Bp’)/r — QpYr

Therefore, we have:

(b;};:T _ (bgo _ Tr [2 k—a,y, _ ( Bp’)/p

— 53
Vr — ’7;0 ap'%“ + /8pr - ﬂp’)/r k— QY + Bp’)/r - O‘p’)/r) ] ( )

_ 1 o B Yo 1
= G T T o) B — ) (54)

Nl
[V
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Whenﬂ—zgl—é_f%%-%, we have

1—(2—0)?)0?
(IBP_OéP)’yT 2 (1_0_2)(2_0_)2 '/BP’)/Z” (55)
[1 - (2 - 0)202]517’711 < (1 - 02)(2 - U)Z(ﬂpryr - Olp’}/r), (56)
Bpvp < (2— 0)20251/71) +(2- 0)2(1 - 02)(61/77’ — ), (57)
Bpp 2

02617717 + (1 - 02)(510%“ - O‘p'yr) = (2 U) ’ (58)

therefore,

Bpryp 1 .

(0'25p7p + (1 =0?)(Bpyr — ap'}/r)) =2 (59)
which implies that ¢5T > ¢F©, since 7, —, > 0. [

Proof of Theorem 3: Let NS’ and NF)"" be the number of successful acceptance and the number

of failed acceptance in the protected group under equal treatment, respectively. Then,

1 — (BT ~psET
NSET = — — __(1-d)=—""—-(1-4d,);
P 1*’YPSET< P) 1*’}/pSET( P)’
N FET 1 — ,sET — (BT _ (7, — ) sET
p 1— o gET P 1— o gET
P P
Therefore, we have
SET _ NSET _ (1 —dp)v

P NSET4H NFPT — y, —v,d,’

Similarly, under equal opportunity, we have

1—cBo EO
EO _ P _ S
NSP =1 .o 7550 (1-d,) = {450 -~ 5EO (1—d,)
1 _ SEO _ CEO EO EO
NFRo =t G g (g,
p 1 — ~,sF0 1—,s80  1—~,s%0
Thus,
5EO — NSZ};]O _ (1 B dp)%' < (1 — dp)’)/r _ 511753'1‘.

PoUNSETLNFET o lowsto o g0 g — Ypd,

T 1—’ypsEO “Yp

Appendix B Proofs of the Results in the Two Other Cases

B.1 Medium Expected Loss

In this section, we show that our results hold for the case of medium expected loss, i.e.,

1—ps

ap+ar<6p§ozp+l_%8

e
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From the analysis in section 3.3, we know that in this case

ET ET O[pf)/rs QS /Bp’}/ps 5p7r8
pu— pu— 1 —_ r , pu— _ —_—
c, =c VrS 7 (S) 1_%84- 1_%84— = s 1—ps 7(s)
1—7,s QpYpS QG YpS
EO EO T P Ip rp
c, VpS, G . —'yps%s’ Tro(S) T nys T1ons 7(s);
Learning

The derivative of the two profit functions are:

Ve Yy B, Bor
7_‘_/ s) = P + + pIp _ P _ 7_/ s
A Fpey I ) A g ER (i
Yy .y
mho(s) = b (o)
£o (1 =s)? (1 —ps)?
Therefore,
o ro (1_71)3)2 (1_%"3)2 (1_'71)5)2 (1_71)5)2 (1_7193)2 (1_7p3)2
— (BP — Qp — O[T)’Y;D [ e78 . Bp ]f}/
(1= ps)? (1—ys)? (I—7s)* "
As
1—,s

By <y, + 1_7’:504,
we have

1—,s 1—7p5.9

< r < 2
ﬁp ]._P)/T-Sa (1_'.)/7-3)&
thus,
5y 5 < ar 5
(L=ps)*>  (L—s)
Also
Bp > o + .

Therefore,

Ter(s) — Tpo(s) > 0.
By the statement shown in the proof of Theorem 1, we have s®T > s¥O, [

Impact on the firm

For any given s € [0, 3-—], we have

(Bp — ap — o) s + & By
1—ps 1—7vs5 1—",s

meT(8) — TRO(S) =
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Therefore,

WET(SEO) Z 7TE0<8EO).
Since s®T is the optimal amount of learning effort under ET,

mer(s™T) > mpr (s7°).

By transitivity,

TFET(SET) > TEO (SEO)a

Le., Tpp = Tho- |

Impact on the Regular Group

ET ET
¢ET — 1- C, — VrS
" 1—7,88T 1 —~,sBT’
EO EO
¢EO _ 1— Cr _ VS
r

T 17,550 1 7,sF0

Since
ET EO
ST 2SN 2 Y

therefore,
’YTSET PYTSEO FY;DSEO
1— 78T = 1 — 7,880 = 1 —~,sF0"

i.e, T > gFO.

: ET _EO ET _ §EO _
Since ¢, ¢,” > 1—7,s, we have ¢,"" =4,° =1. n

Impact on the Protected Group

BT ET
BET — l—g¢, __ s
p 1—7,sET 1 —~,sET’
_ -EO EO
ngO — 1 CP _ PYPS
T

EO EO "
1—ps 1—ps
Since
§ET > gEO

Y 2 Vps

we have ¢2'" > ¢r. [ |
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B.2 Large Expected Loss

In this section, we show that our results hold for the case of large expected loss, i.e.,

1—ps

Bp>ap+1_%8

re

From the analysis in section 3.3, we know that in this case

ET ET QpTYpS QrYpS

p G, TpSs 7TET(S) 1—1,s + L—,s T(S)v
1—",s O YpS oY, S

O =1y, =1 - T mro(s) = 2%y 0P ()

_1—7,,3 _1—7,,8 1—,s

Learning

The derivative of the two profit functions are:

/ - ApYp Q- Yp o .
A e A e
/ O QY
R e P e E R
Therefore,
/ /! OZT’YP OZT’YP
J— p— — > 0'
Tt () 7TEo(s) (1—vs)2 (1 _%5)2 =
By the statement shown in the proof of Theorem 1, we have s®T > s¥0. [
Impact on the decision maker
For any given s € [0, i], we have
WET(S) —7TEO(8) = arpS — OrlpS >0

C1—n,s 1—ps —
Therefore,

TI'ET(SEO) Z TI'Eo(SEO).
Since s is the optimal amount of learning effort under ET,

WET(SET) > TI'ET(SEO).

By transitivity,

mer(s*T) > mRo(sF9),

ie., Thr > Tho- |



“Un”Fair ML Algorithms

49

Impact on the Regular Group

$PT = 1—cET _ ~psET
T 1— ,YTSET 1— ’Y’I‘SET ’
(bEO: 1—07]::0 _ ,YPSEO .
T 1 _,YTSEO 1_,YPSEO
Since
SET 2 SEO?’}/T Z r}/p
therefore,
~psET N ~psET ~psEO
1 _fYrsET —1- ’YPSET -1 _’YPSEO’
Le, 77 > ¢7°.
As CET,C,?O >1—1,s, we have 0FT = §F0 =1. =
Impact on the Protected Group
ET
$FT — l1—-¢, _ vpsET
p ].—’}/Z,SET 1_,YPSET7
EO o
$EO — l—¢, _ Yps© .
r 1 —’}/pSEO 1 _,YPSEO
Since
§ET > gEO
we have ¢2'" > ¢r. .
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