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Online Appendix to 

Crowdsourcing New Product Ideas under Consumer Learning 

 

Appendix 1:  Hierarchical Bayesian Estimation 

As mentioned in the estimation strategy section, we use MCMC methods to estimate parameters in our 

model. To be more specific, the Gibbs sampler is applied to recursively make draws from the following 

conditional distribution of the model parameters: 

        
   ̅   

 ̅      

      ̅ 

        
     

   
         

       
       

The additional notation    denotes the vector of actions individual i takes in all periods,   denotes the 

decisions all individuals make in all periods,   denotes the decision the firm makes on all ideas posted within 

the observation period,   denotes    for all individuals, and   
  denotes the vector of the mean 

implementation cost beliefs in all periods. Further, the posterior distributions of        and   
  do not belong 

to any conjugate family, and therefore, we use the Metropolis-Hasting method to generate new draws. Each 

iteration involves five steps. 

Step 1: Generate      

The conditional distribution of   is 

 (  |     
   ̅  )                  (    ̅)

 
   (    ̅)        

        

Clearly, this posterior distribution does not have a closed form; therefore, we use the Metropolis-Hasting 

method to generate new draws with a random walk proposal density. The increment random variable is 

multivariate normally distributed with its variances adapted to obtain an acceptance rate of approximately 

20% (Atchade, 2006). The probability that proposed    will be accepted is calculated using the following 

formula (the superscript      represents the proposed new    in this current iteration, i.e., iteration r. When 

accept=1,   
      

    
; otherwise,    

      
 .) 
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Step 2: Generate  ̅ 
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where  
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The priors are specified as: 
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Step 3: Generate   
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where the prior hyper-parameter   is set to 11, and   
   is set to   . 

Step 4: Generate   

The conditional distribution of   is  

          
          

 
                

   
               

                
   

where   

 (  
 )   ∏     

       
    

 

   

 



3 
 

Similar to what we have done for   , we use the Metropolis-Hasting methods to make draws for  . The 

probability of acceptance is 

           
              

    

           
    

 
     

 
                    

    
                   

                        
  

     
 
                 

    
                

                  
  

 

where   = (0,0,…0) and    
         are diffused priors. 

Step 5: Generate   
  

Finally, we sequentially draw    
  for t=1 to T. The conditional distribution of    

  is  
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where     denotes the decisions all individuals make on Category j idea in period t.   ̅ 
  and    

  in the equation 

above are calculated using Equation (21) and (22). Again, because the posterior distribution does not have a 

close form, we have to use the Metropolis-Hasting methods to draw new    
 . 

The probability of acceptance is 
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Appendix 2:  Model Identification 

We now briefly discuss some intuition as to how the parameters in our model are identified. In our model the 

consumers make posting decisions based on their (perceived) utility. With this assumption, we can infer 

individual’s utility derived from posting different categories of ideas from their posting decisions. The basic 

logic behind the identification strategy that the “true” parameters in the utility function, as well as the “true” 

learning parameters, will lead to a utility function that can best predict the data we observe in the reality.  
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In the estimation, we fix the mean cost of one category (product ideas) and the variance of individuals’ initial 

belief about the cost distribution and potential distribution. We have to fix the mean cost of one category 

because if we add a constant to all     and then add the same constant to all    , we will obtain exactly the 

same utility value. When we fix   , we will be able to identify     and   . As a result, the estimated values of 

   and    should be interpreted as relative to   . We set the initial variance of individuals’ initial belief about 

the cost distribution and potential distribution to a large value to reflect the fact that individuals’ prior believe 

is non-informative. 

The variance parameters   
  and    

 
 
 are both identified from the dynamics of the posting behaviors 

of individuals over time. We are able to identify   
  and    

 
 
 simultaneously because the signals of the 

implementation costs and the potentials are generated from different events.   
  is identified through the 

dynamics of the choice probabilities at the population level. For example, if one idea is implemented in period 

t, the perceived cost of implementation for all individuals will be updated. For those who do not post in this 

period, their perception about the potential of their ideas has not changed before or after the period, and the 

changes in the probability of posting ideas after they receive the cost signal help us to identify   
 . If   

  is very 

small, which means that the cost signals individuals receive are precise, then individuals can learn faster, their 

perceptions converge to the true value quickly, and vice versa. Similarly, the average learning speed (how 

much adjustment individuals make to their perceptions) of the potential of the ideas is affected by both    
 
 
 

and the slope parameter φ. In addition, from Equation (10), we know the relationship between   
 

 
, the 

variance of the voting scores individual  ’s ideas receive, which can be directly estimated from the voting 

score data, and the variance of potential of the individuals  ’s ideas,   
 
 
, is   

 

 
     

 
 
. Therefore, 

individuals’ learning speed (how much their behavior change after receiving a potential signal) observed in the 

data can help us identify φ. Once φ is identified,   
 
 
 is also identified. Note that φ is a population level 

parameter. It is possible that there still remain variations in individuals’ learning speed of the potential of the 

ideas, after controlling for   
 
 
. Thses remaining variations will be captured by    , which we will explain in 

detail later. 

The overall frequency that an individual   posts Category   ideas is jointly determined by     and    . 

However, we are able to separately identify     and     because they enter the utility function in different 

ways. If we observe an individual who posts frequently, it could be because 1) he/she incurs low cost to post 

an idea; or 2) he/she receives higher payoffs when his/her Category   ideas are implemented.     is the 

constant term in the utility function, which does not change as individuals receive signals over time; while     

is multiplied by the perceived probability of individuals’ ideas being implemented. For example, when the 

firm implements a Category   idea and so all individuals’ perceive costs of implementing Category   idea are 

updated. Individuals whose     is larger will be affected more significantly. In addition, the magnitude of     

is also reflected in the changes in individuals posting behavior after they receive a potential signal. For 

example, consider two hypothetical individuals, namely A and B. From the voting score data, we find the 

mean and variance of their ideas’ voting score are very similar. This implies that A and B updates their 

perception of the potential of their ideas in a similar way. However, individual A’s probability of posting a 

Category   idea changes dramatically after she receives a new potential signal, while individual B’s probability 

of posting Category   idea does not change a lot. The only cause of this difference is different    . Therefore, 

such variation help identify    . Similar logic can be applied for the identification of     for the same 
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individual. Assume that after receiving a potential signal, individual A’s probability of posting a Category 1 

idea changes significantly, while her probability of posting a Category 2 idea only changes slightly, we can 

conclude that        . Once     is controlled,     can be identified from the overall frequency that 

individual   posts ideas (after controlling for    ).    can be easily identified because     is observed for every 

i in every period. The difference in individual  ’s posting behavior between cases where       and     

  identifies   . The binary construction of     can help disentangle the effects of learning and dissatisfaction. 

The identification of    and   
  relies on two sets of observations. The behavior of “well-informed” 

individuals, whose perception about the firm’s cost structure and potential of their ideas is very close to the 

true value, is an important source of the identification of    and   
 ,. Note that we observe the voting score 

an idea receives is a linear function of the idea’s potential, or            .    can be easily estimated by 

averaging all individual  ’s ideas’ voting scores; and the identification of   has been discussed previously. 

Given    and  , identifying    is equivalent to identifying     . Consider a hypothetical “well-informed” 

individual’s probability of posting a Category 1 idea is 0.1, i.e.    ( ̃   )       ( ̃   ) ⁄     . Solving for 

 ̃   , we get   ̃   =-2.303. Given    ,    ,    and   , as well as the variance parameter   
 
 
, Equation (19) is an 

equation of two unknown parameters is    and   
 , or equivalently      and   

 . Another source of 

identifying    and   
  is the likelihood of observed implementation decisions on all Category 1 ideas. From 

our dataset, we observe the decisions the firm makes on each idea, given its voting score. In Equation 18, 

     can be calculated by                   . Assume that a Category 1 idea with log-voting score 

equally 2 has 0.01 chance to be implemented, then                      
  = -2.326. Given      and 

 , it is also an equation with two unknowns parameters      and   
 . Combining these two constraints,    

(or equivalently     ) and   
 can be identified. Once    is identified,    can be identified through the 

probabilities that individuals post Category 2 ideas and the firm’s decisions on Category 2 ideas, given the 

votes each idea receives.    can be identified through the probability of posting in the first seven weeks as no 

idea was implemented before the seventh week. In these seven weeks, individuals have not received any cost 

signals, and their beliefs about the cost structure stay at   , but they receive signals about the potential of 

their ideas when they post. Given   ,    can be easily identified. Given    and   ,    can be identified 

through the probability of posting for the latecomers throughout the whole observation period. Before an 

individual posts any ideas on the website for the first time, his/her beliefs about his/her idea’s potential is 

always   , while his/her beliefs about the implementation cost is updated. Given the different    
  for 

different t’s,    can then be identified.  

Appendix 3:  Derivation of the Updating Rules 

We begin with the Bayes rule. The Bayes rule is  

        
          

    
           . Now let us explain how we use the Bayes rule in coming up with our 

updating functions. In the Bayesian updating process, A represents people’s belief about a certain parameter, 

B represents signal. Let us begin with the learning process of the implementation cost. Assume that 

individuals’ prior belief about the mean of implementation cost in period t follows a normal distribution   

(     
        

 ) and the cost signal individuals receive in period t is               
  . The updated (posterior) 

distribution of the cost distribution is   (   
      

 ).  
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The prior of the mean implementation cost in period t follows a normal distribution   (     
        

 ), and 

this is similar to the term      in the equation above. As we are dealing with a continuous distribution, 

instead of probability mass P, we use the probability density function of the normal distribution   

(     
        

 ) below: 
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As we assume that the cost signal       follows a normal distribution               
   , the probability 

density of observing a cost signal of a value      is: 
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Let                    be the cost signals individuals receive in period t, with      indicating the number 

of such signals. The likelihood of observing D, given    and   
  is simply the product of the  (    |  ) over 

 =1 to     .  
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Here, ( |  ) is similar to        in the first equation. Finally,  (  | ) corresponds to         Following 

the Bayes rule                   , the posterior of mean cost of implementation is  
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So far, we have derived the posterior distribution of    in terms of the prior and the signals. The posterior is 

also normally distributed and parameterized by two parameters—mean and variance. Therefore, if we can 

recover the mean and the variance of the posterior distribution, we can fully describe the posterior 

distribution. We do this in the following steps. Given    
 and     
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This is just the definition of the posterior distribution. That is, Equation (*) Equation (**). To connect prior 

distribution and signals with posterior variance     

  , we match coefficients of   
  in Equation (*) and 

Equation (**).  We then have 
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which is Equation (7) in the paper. Similarly, we match coefficients of    in equation (*) and equation (**), 

and then get 
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which is Equation (6) in the paper.  

The proof of the updating rules of    
  and       

 is almost identical to the proof we derive above. The 

derivation of the updating rules of    
  and       

 is only slightly different. Assume for a moment that people 

directly observe the potential signals     , then the updating rules for    will be  

    

  
 

 
      

  
    

  
 
 

 

   
       

             
  

      

 

      

  
  

 
 

    

 

However, in reality, the potential signal      is not directly observed. Instead, individuals observe the voting 

score      and then use the linear relation between      and      to recover the potential signal     . As in 

the paper, we assume the relationship between      and      as 

                 

             

  
 
 
     

 
 
 

Therefore,                    ,      
        

           and    
 
 
   

 
 
   . Now the two 

updating rules discussed above can be rewritten as: 
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These are equation (17) and (15) in the paper. 

In this learning model, we impose two assumptions. First, the implementation cost is normally distributed 

which is a continuous distribution. Second, we assume individuals’ prior belief about the mean 

implementation cost is also normally distributed, which is also a continuous distribution. The normal prior 

assumption provides tractability benefits, as the posterior will also have a closed form representation. For this 

reason, in learning literature, most models use this formulation. This type of learning model has some nice 

features. For example, from Equation (7),     

  
 

 

      
  

    

  
 

, we can see that     

  is monotonically decreasing. 

This means that as individuals receive more signals, the variance of the posterior distribution keeps 

decreasing, and so their uncertainty is reduced. From Equation (6),    
       

  (          
 )

      
 

      
  

  
 

    

, 

we can see that individuals’ new belief about the mean of the cost distribution is affected by their prior belief 

and the new signal they receive. Individuals adjust their belief by comparing the new signals they receive and 

their prior belief. 
      
 

      
  

  
 

    

 tells us the weight individuals assume to the new signals. 
      
 

      
  

  
 

    

 is always 

between 0 and 1.   
  represents the variance of the signals. When   

  is small, which means that the signal is 

precise, individuals assign a larger weight to the new signals and so their beliefs get updated faster. In 

addition, when   
  is fixed, the weight assigned to the difference is bigger when the variance of the prior 

(      

 ) is large. This indicates that individuals learn very quickly in the beginning. As     

  becomes smaller 

individuals’ learning progress slows down, their belief will tend to stabilize. These features match individuals’ 

real-world behavior well.  

Appendix 4 Convergence of the Markov Chain 

In our model, we have two sets of parameters and we will show the convergence of the chains for the two 

sets of parameters separately. Parameter vector        ,   ,    
     

 ,   
 ,   ,     ,    is common across 

individuals, while parameter vector  
 
           (  

 
 
)                 is heterogeneous across 

individuals. We further assume that  
 
 follows the following distribution  
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where  ̅ denotes the mean of   and   denotes the variance and covariance matrix of  . 
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We plot the series of draws of   and  ̅ separately. The Markov chain was run a total of 45,000 iterations, and 

plotted is every 30th draw of the chain. The figures indicate that chain converged after about 9,000 iterations. 

And the convergence of  ̅ is slightly faster. 
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