

 Pilot Deployment of
Internet Suspend/Resume

on the CMU Campus

A Joint Project with Intel, IBM, and CMU

Casey Helfrich, Intel Research
David O’Hallaron, Carnegie Mellon University

Michael Kozuch, Intel Research
David Westfall, Intel Research

Version 0.93 – April 15, 2004

 2

Table of Contents

Section 1: Introduction.. 3
Section 2: Overview of ISR... 3

2.1 The ISR Model ... 3
2.2 ISR Implementation ... 5

2.2.1 Architecture and Operation .. 5
2.2.2 Convergent Encryption .. 6
2.2.3 Compression ... 7
2.2.4 Performance .. 7
2.2.5 Operational Description ... 7

Section 3: Pilot Deployment on the CMU Campus ... 8
3.1 Usage Models.. 8
3.2 User Groups .. 10
3.3 Finding Users... 11
3.4 Relationship with Users.. 12
3.5 Data Collection... 12
3.6 Who Gets Access to the Data? .. 13
3.7 Success Criteria... 14
3.8 Server Hardware.. 14
3.9 Client Hardware ... 15
3.10 Parcel Setup .. 15
3.11 Logistics of machine placement ... 16
3.12 Disaster Recovery.. 16
3.13 Hardware Upgrade and Software Management ... 16

Section 4: Appendix A - Explanation of ISR Terms... 17
Section 5: Appendix B - Explanation of Coda Terms .. 18
Section 6: Appendix C – ISR Implementation Details ... 21

6.1 ISR: File Locations... 21
6.2 ISR: BIN Scripts ... 22

Section 7: Appendix D – Building a Coda Server.. 24
7.1 Step 1: Server Disk Partitioning ... 24
7.2 Step 2: Install and Patch/Upgrade your Operating System .. 24
7.3 Step 3: Download/Unpack/Compile Coda Source.. 26
7.4 Step 4: Configure your Coda Server .. 26
7.5 Step 5: Creating your Shared Volumes.. 30
7.6 Step 6: Creating your User Accounts ... 31
7.7 Step 7: Wrapping it all Up .. 32

Section 8: Appendix E – Building an ISR Client.. 33
8.1 Step 1: Update your Coda Kernel Module.. 33
8.2 Step 2: Download/Unpack/Compile Coda Client .. 34
8.3 Step 3: Configure Client and Contact your Coda Server .. 35
8.4 Step 4: Authenticate for Write Access.. 35

 3

Section 1: Introduction

IBM, Intel, and Carnegie Mellon are collaborating on a 2-year pilot deployment of the Internet
Suspend/Resume (ISR) system on the Carnegie Mellon campus. ISR is a novel computing
technology that encapsulates a user's computing environment and enables the management and
migration of that environment. The pilot deployment is a proof of concept whose purpose is to
help us better understand ISR as a new model of computing. In particular, the deployment team
plans to collect data that will improve our understanding of the following four crucial issues:

1. Usage issues. What creative ways do people use ISR in their daily lives? Do people
fully exploit the available features of ISR, or only a subset?

2. System issues. How well does the prototype system work? What components need to
be improved or replaced? What are the performance bottlenecks? Are users willing to
use the functionality provided by an already present distributed file system?

3. Resource issues. What are the resource requirements of an ISR deployment? What is
the TCO of an ISR system?

4. Management issues. How does ISR improve/affect our ability to manage and administer
systems?

Better understanding of these issues can only be obtained by placing the system in the hands of
real users and empirically observing metrics such as system performance, resource consumption,
and user satisfaction. Consequently, we have designed a pilot deployment of ISR that will involve
a pool of users interacting with the system as part of their day-to-day routine. In return for access
to the system, the users will agree to two stipulations: that they will provide periodic feedback
regarding their satisfaction with the system, and that the system administrators can collect data
regarding the operation of the system.

We have adopted a phased approach. Initially, the user pool will initially consist of a small group
of sophisticated users. Over time, the user pool will grow and include less sophisticated computer
users. The user pool will include students, faculty, and staff from CMU. After the first year we
expect to involve 40 CS graduate students and 5 members of the CMU IT staff. In the second
year, we will add approximately 10 members of the CMU financial services staff and another 45
or so more participants drawn from the campus community. Many of these users will be using
ISR only on campus, suspending and resuming their environments on different machines on the
CMU campus network. Other users will be using ISR between machines on campus and their
home machines, which will be connected to the Internet through high-speed broadband links.

This document provides details regarding the ISR deployment including resource requirements,
schedule, and milestones. This document also includes descriptions of the service agreement
that will be provided to the users as well as the data collection consent form. The ISR architecture
and current implementation are included as background material.

Section 2: Overview of ISR

2.1 The ISR Model

Internet Suspend/Resume (ISR) is a new approach to mobile computing in which a user’s
computing environment follows the user through the Internet as he or she travels. Today, when a
laptop computer is closed, the user’s execution state is suspended to disk. When the user moves
the laptop to a new physical location, the user may re-open the laptop, and resume working in the
same environment that was active at the time of suspend. The goal of the ISR project is to
achieve the same effect without requiring the user to transport physical hardware.

For example, imagine the scenario in Figure 1 where telecommuter who works from home in the
morning and at the office in the afternoon. After completing a morning’s work, the user clicks
“suspend” on the home machine and begins to travel to the office. While the user is en route, the
state of the user’s computing environment is also en route, through the network, to the machine in
the user’s office. When the telecommuter arrives at the office, the office machine is presenting the
same environment that the user left at home: the same applications and files are open, the
windows are all in the expected places, and the cursor is in the appropriate location.

 4

Office desktop Home machine

Suspend site Resume site

machine
state

Home laptop Office machine

machine
state

server

Content
addressable

storage

Content
addressable

storage

Virtual Virtual Content Content
server

Figure 1: An Internet Suspend/Resume cycle.

The capabilities of ISR are realized through a combination of two well-studied technologies:
virtual machine technology and distributed files systems. Virtual machine technology is used to
capture the user’s computing environment at the time of suspend. This environment consists of
the user’s operating system, applications, data files, customizations and the current execution
state. By leveraging virtual machines, this state is re-instantiated directly on the machine at the
resume site. This is not a thin-client approach, all process execution and computation takes place
on hardware near the user. Therefore, ISR is able to provide the low-latency interactivity that
users have come to expect.

One of the great challenges of ISR is that the state associated with a user’s computing
environment may be large: tens of gigabytes in size. ISR research at Intel Research Pittsburgh
has focused primarily on reducing the time required to move this state through the network. We
employ distributed file system technology to manage the transport of this state and have
investigated a number of novel techniques for improving the operation of the distributed file
system.

For example, the ISR team is currently exploring the augmentation of distributed file systems with
Content Addressable Storage (CAS) technology. With CAS technology, users may leverage the
storage associated with small devices and nearby computers to improve the performance of the
ISR system without sacrificing security or robustness.

In addition to serving mobile computer users, ISR technology may also be of particular interest to
Information Technology (IT) departments for medium to large organizations. Leveraging the ISR
encapsulation of user state, IT departments may provide enhanced services by centrally
managing the computing environments for all the users in the organization. As Internet
Suspend/Resume becomes more pervasive, users will find themselves able to access their
computing environment from any connected computer.

2.2 ISR Implementation

2.2.1 Architecture and Operation

ISR uses a combination of hardware virtualization and distributed file systems to present a new
model for user mobility. The idea is to add a virtual machine layer between the physical hardware
and the user's operating system. This allows ISR to completely encapsulate the user's computing
environment and isolate it from the hardware. The computing environment can then be moved to
a different hardware platform. As long as the virtualization layer presents the same virtual
machine interface, the guest OS does not know or care that the physical hardware underneath it
has changed. The hardware must also have access to some form of distributed file system, so
that the files that represent the user's computing environment can be exported and shared
privately.

Figure 2 shows the layered architecture of the current ISR implementation. A commodity virtual
machine monitor (VMware) supports a collection of guest machines, each of which runs their own
guest operating system and guest applications. Guest machines are also referred to as virtual
machines (VMs). The complete state of each guest machine is encapsulated as a collection of
files called a parcel. The ISR layer sits between the virtual machine monitor and the host machine
and its host operating system, interposing on certain interactions between the virtual machine
monitor and the host operating system, reading and writing files in a distributed file system. For
the proof of concept in the pilot deployment, we are using the Coda distributed file system.

Guest (virtual machine)Guest (virtual machine)

 machine monitor (VMware)rtual machine monitor (VMware)

Intercept (Fauxide) and
ISR smarts (Vulpes)

ntercept (Fauxide) and
ISR smarts (Vulpes)

Host OS (Linux)Host OS (Linux)

Host hardware (x86)Host hardware (x86)

tributed file system (Coda)ributed file system (Coda)

Virtualized hardware
(closed)

ISR research
(Open, BSD)

Bare hardware and OS
(Open, GPL)

Content delivery
(Open, GPL)

User environment
(closed)

DisDist

Client

I

VirtualVi

Guest apps (MS Office)Guest apps (MS Office)

Guest OS (Windows XP)Guest OS (Windows XP)

Figure 2: ISR layered architecture.

Figure 3 shows the interactions between these different components in more detail. A loadable
kernel module called Fauxide serves as the device driver for a Linux pseudo-device called
/dev/hdk. VMware is configured to use this pseudo-device as its sole virtual disk in “raw” mode.
All VMware disk I/O requests to /dev/hdk are redirected by Fauxide to a user-level process
called Vulpes. It is Vulpes that implements state transfer policy, as well as the mapping of VM
state to files in Coda. Vulpes also controls the caching of those files and their encryption and
compression (more on this in the next section). Vulpes represents each parcel as a tree of Coda
files rather than a single large Coda file. Virtual disk state is divided into 128KB or 256KB
(uncompressed) chunks, and each chunk is mapped to a separate Coda file. There files are
organized as a two-level directory tree to allow efficient lookup and access of each chunk.
Chunking gives Vulpes control over what parts of the virtual machine state are cached, and when
modified virtual machine state is sent to servers.

 5

Coda client processCoda client process
t OSest OS

e process Vulpes process

Coda loadable
kernel module

Coda loadable
kernel module

Fauxide loadable
kernel module

Fauxide loadable
kernel module

/hdk

Coda
servers
Coda

servers

Guest appsGuest apps

Gues
VMwar

Linux

/dev

Linux

Gu

Figure 3: Interactions between the different ISR components

2.2.2 Convergent Encryption

An important feature of ISR is that all files stored on permanent media or transferred over the
network are encrypted. This includes files in the local cache of the host machine, and on the
remote Coda servers, and on any (optional) Look-aside (LKA) dongles or Content Addressable
Storage (CAS) jukeboxes. (More details on LKA and CAS can be found in the Appendix). It is
particularly important that these files are encrypted because they can easily contain (in the clear),
keyboard buffers, RAM memory images with random segments of memory, guest-OS swap files,
/etc/password shadow files, etc. When you consider the sensitivity of these files, it becomes
obvious that they need to be encrypted.

The solution that ISR uses is a relatively new idea called convergent encryption. The idea is to
use the actual content of a file to encrypt the file itself. In particular, we compute a SHA-1 hash
(20-byte signature) of the original file, and then use that hash as a key for Blowfish encryption of
the file. The original SHA-1 hash now becomes a secret key to decrypt the file. We then calculate
a new SHA-1 hash of the encrypted file and this, in essence, becomes a public-key that can still
uniquely identify the original unencrypted file, but cannot be used to decrypt it. In this way, two
identical original files will convergently encrypt to identical encrypted files. This may allow for
future enhancements to ISR where a user can query his local network for data that he would
otherwise have to fetch over the wide area.

A user keeps a keyring, which is a list of SHA-1 tuples (H1, H2), where H1 is the SHA-1 of the
original file, and H2 is the SHA-1 for the encrypted, compressed file. In effect, H1 is the private
key to decrypt the file, while H2 is the public key to identify it. This keyring is kept in memory, and
is written to a file that is itself encrypted via the same mechanism during a suspend cycle. The
SHA-1 hash for the keyring, which we call the keyroot, is the only piece of information that the
user needs to keep secret. The keyroot is stored on a special machine in the ISR infrastructure
called a lock server. At the beginning of a resume operation, the user contacts the lock server
and obtains his keyring via an ssh channel.

The primary motivation for using convergent encryption is that it preserves the unique
indentifiability of files without exposing their contents. This allows users to take full advantage of
performance enhancements such as LKA and CAS.

 6

 7

2.2.3 Compression

Before encryption, ISR compresses the chunk files using standard gzip techniques. In general
there is a nominal (but noticeable) reduction in file size, but during the compression of the
virtualized memory files during a suspend cycle, we see vast improvements. In our experience, a
256MB RAM image typically compresses to around 40MB in the ISR system. It is particularly
good that we see such favorable compression on this file, as it is the most crucial file needed to
resume the machine at the resume site. This, of course, results in much less data that is required
to move through the Internet, which improves resume latency. There are other future
technologies, such as ballooning, that may enhance this step even further, but they are currently
not included.

2.2.4 Performance

The above technology combined with compression, convergent encryption, and aggressive
caching and hording techniques in the distributed file system, provide a nearly transparent
experience to the end user. Current benchmarking shows a best-case slowdown of about 5%,
and a worst case slowdown of about 30-40% on broadband and LAN networks. There exist
certain network conditions where enhancements such as hoarding and look-aside caching will be
a necessity for usability of the system.

2.2.5 Operational Description

There are three logical entities in an ISR system: the client, lock server, and Coda server.

Client. The client runs the virtualization software and a local file-system client that does cache
management, and services cache misses in the Coda file system. The client also runs ISR
software that maps IDE requests from VMware into a two level tree of files in Coda. The client
also does aggressive compression and encryption of all data that goes out over a network or hits
a real disk, even in the local client cache.

Lock server. The lock server is the logical central point of management for the entire
deployment; physically it may be spread out for redundancy and disaster recovery. The lock
server is responsible for managing semaphore type locks on all of the parcels it services. The
lock server decides which user has access to certain parcels, and instructs the client where to
find the appropriate data representing the parcel.

Coda server. After the user authenticates to the lock Server and the memory image for the
parcel is bootstrapped into the client machine, the Coda server now acts as a content delivery
mechanism over the life of parcel, while it is running on that specific client, that is, until check in.
Whenever there is a local cache miss on the client, the Coda server sends the appropriate file,
which is now present in the client’s local cache, until eviction.

The ISR cycle involves three basic operations: suspend, resume, and run, which are outlined in
Figure 4.

Suspend. The suspend operations involves packaging, compressing and encrypting the parcel’s
memory image, syncing all traffic to make sure the host operating system’s kernel IO buffers are
emptied, pushing back any pending writes to the Coda server, sending the memory image to the
Coda server, and finally contacting the lock server to complete the check-in so the parcel will be
available for check-out at other client locations. Anything remaining in the cache is encrypted,
and the user also has the option of flushing the cache if they do not plan to return to this location,
or it is a public workstation.

Resume. To resume, the client contacts the lock server to get mutually exclusive access to the
parcel (the encapsulated virtual machine state) stored on the Coda server, and it also get the

keyroot that it will need to decrypt the key ring associated with the parcel. The client than
authenticates with the Coda server, requests the keyring, starts the Vulpes process, and does
any necessary cache initialization. Next, it requests the memory image of the virtual machine,
decrypts and decompresses this image, starts up VMware, and boots the guest VM. At this point
the resume is completed, and the guest VM is in the same state it was just prior to the previous
suspend operation.

Run. During this step, the guest OS runs its guest applications. Any chunks of the parcel that are
not cached on the client are retrieved from the Coda client.

 8

 ISR client Lock server

Lock server

end disk and memory state

ompute new key root

nd encrypted key ring

end new key root

lease lock

(8) Confirm release

Coda server

root and content URL

(4) Send key root
and content URL

for file system writes

and LKA cache

re, decrypt and uncompress

ory state

(10) Send memory state

using partial (memory) state

ng

(7) Send key ring

(3) If h
conten
else req

(1) Int

(2) Re

(4) If h
conten
else re

(6) De
guest

(7) Wa

ISR client Coda server

it, decrypt, uncomp
t to guest OS,
uest content from

erpose on guest OS read request

quest content from Vulpes cache

it, decrypt, uncomp
t to guest OS,
quest content fro

ress, and return

 LKA cache

ress, and return

m Coda server

(5) Send content

, and return content to
lpes cache

S read request

crypt, uncompress
OS, and update Vu

it for next guest O

(5) Authenticate

(8) Start Vulpes

(11) Start VMwa
memory state

(9) Request mem

(12) Start guest

(6) Request key ri

(3) Request key

(1) Request lock

(2) Grant lock
ISR Client Coda server

(3) S

(4) C

(5) Se

(6) S

(7) Re

(1) Terminate VMware

(2) Terminate vulpes and LKA cache

(a) : Suspend (b): Resume (c): Run

Figure 4: Operations involved in the ISR process.

Section 3: Pilot Deployment on the CMU Campus

The pilot deployment will consist of 10 to 100 ISR users on the Carnegie Mellon campus over a
two year time period. Over its lifetime, the deployment will require a back end server array
(description below), approximately 200 laptops and PCs, and the requisite networking to connect
the Laptops to the server.

3.1 Usage Models

We can characterize the different ways that a person might use ISR as a 2D space where one
dimension describes parcels and the other dimension describes hosts. Table 1 shows one
representation of this space.

Parcels/Hosts WL WLD WLD-HL WLD-HLD WA WA-HA A
1S-1P Non-technical

users w/o DSL
Non-technical
users w/DSL

1S-2P Non-technical
users w/o DSL

Non-technical
users w/DSL

2S-1P Technical
users w/DSL

Technical
users w/DSL

mS-nP Technical
users w/DSL

Technical
users w/DSL

Comment [DFB1]: I’d like to see a
section on risk analysis. This section
could include subsections on hacking
and viruses, legal issues, issues with
VMware (e.g., what if the resume site
hardware is missing some key
peripheral device?) and the like. I’d
also like to see some tools and
procedures put in place so that the
team can collaborate better. Right
now we’re doing it with email.

Comment [CJH2]: These are topics
that Satya, Mark Alexander, Kevin
Rusche, et. al. should be tackling.
We have a VMware license for each
workstation, and have purchased a
site license for MS Windows and
Office Suite for each system. These
particular licensing issues should not
be a problem, but we have a legal
team verifying this.

David Bantz
I’d like to see a section on risk analysis. This section could include subsections on hacking and viruses, legal issues, issues with VMware \(e.g., what if the resume site hardware is missing some key peripheral device?\) and the like. I’d also like to see some tools and procedures put in place so that the team can collaborate better. Right now we’re doing it with email.

Casey Helfrich
These are topics that Satya, Mark Alexander, Kevin Rusche, et. al. should be tackling. We have a VMware license for each workstation, and have purchased a site license for MS Windows and Office Suite for each system. These particular licensing issues should not be a problem, but we have a legal team verifying this.

 9

Table 1: ISR usage models from the point of view of a single user. Likely CMU users for the
most interesting feasible usage models are listed in the table. Guest legend: 1S-1P (one guest
OS with one personality), 1S-2P (one guest OS with two personalities), 2S-1P (two guest OSs
with one personality for each OS), mS-nP (arbitrary number of guest OSs with arbitrary
personalities). Hosts legend: W (workplace), H (home), L (laptop), D (desktop), A (all hosts).

In this table, the vertical axis shows a range of possibilities for defining and using parcels, with the
complexity roughly increasing as we move down the page. Similarly, the horizontal axis shows a
range of possibilities for the number, types, and connectivity of the hosts that run the parcels, with
the ubiquity of ISR increasing as we move from left to right on the page.

Our model assumes that people will use parcels to run different guest OSs, different personalities
of the same OS, or both. Here are the possibilities we think are most likely:

1. 1S-1P (one guest OS with one personality). Non-technical users (such as CMU financial

analysts) typically use a single guest such as Windows.
2. 1S-2P (one guest OS with two personalities). Here, the user maintains a couple of

different personalities of the same guest OS, for example, home and work versions of
their Windows machine. Again, a likely candidate is a non-technical person who uses
Windows exclusively

3. 2S-1P (two guest OSs with one personality for each OS). Technical users such as CS
faculty and grad students often work with two computers: (1) a Windows laptop for
making presentations and reading email during meetings instead of paying attention to
the meeting, and (2) a Linux desktop for everything else. Users with two machines have
to figure out some kind of scheme for partitioning work and files across these machines.
ISR could provide users with access to either of their machines, regardless of which
actual machine they happened to be working on at the time. For example, if I had my
laptop on a trip, I could use it to access my desktop.

4. mS-nP (arbitrary number of guest OSs with arbitrary). In the most general case, users
are running multiple personalities of multiple operating systems. We expect the study to
help us understand these scenarios better.

The other axis in our space of usage models is the number, type and connectivity of the hosts
that a user has available to run parcels. In the ideal case, every host that a user might ever
encounter is an ISR machine. Of course we don’t have the resources to implement this in the pilot
study. Here is a range of other possibilities for our pilot study:

1. WL (workplace laptop). In this scenario, each user gets a single ISR laptop to use on the
CMU campus. This is the easiest solution for the deployment team. Advantages: Users
get the benefits of virtual machines (multiple OSs and personalities), as well as the
backup, rollback, and discard capabilities of ISR. Disadvantages: users might suspend
every once in a while in order to store backups, but they would have little incentive to
ever resume. Summary: This scenario might help the development team work out some
bugs, but it wouldn’t offer much benefit to our users.

2. WLD (workplace laptop and desktop). In this scenario, we give each user an ISR laptop
and install ISR on their workplace desktop machine. As we have already mentioned,
most technical users find that they need a Windows laptop and a Linux desktop. When
they are in the office, people try to work as much as possible on the desktop, because of
the bigger screen, keyboard, and overall horsepower. The laptop is typically used for
Windows-specific applications such as PowerPoint. Since both work and files are
partitioned across the two machines, people need to physically move around the office as
they switch from one machine to the other. The ability to run both (virtual machines) on
the desktop at the same time would offer some real convenience, since users could take
advantage of the nicer environment on the desktop to do all of their work. Similarly, when
they take the laptop to a faculty meeting, they will still have access to their desktop

 10

environment. Summary: while this scenario is clearly more useful than WL and would
create more opportunities for suspending and resuming, it is arguable whether it offers
potential pilot users enough new capabilities.

3. WLD-HL (workplace laptop and desktop, and home laptop). In this scenario, we give
each pilot user an ISR laptop to use at work and on the road, another ISR laptop to use
at home, and we install ISR on their workplace desktop machine. (We don’t install ISR on
their home desktop because it is probably not a CMU asset.). Advantages: This scenario
is compelling to users because it allows them to work on the same machines at work or
at home. It will be extremely useful to almost everyone in the CMU community, and it will
be the most useful data on suspend/resume workloads, network requirements, and LKA
caching and content addressable storage. Further, it generalizes to telecommuter
applications in the workplace. Disadvantages: Could place too much strain on the CMU
network. Requires LKA caching to work without a hitch. An ISR desktop at home would
be more compelling than an ISR laptop. Summary: Without a doubt, this is the killer app
for ISR. Summary: WLD-HL is the only truly compelling scenario for the prospective
users in the Carnegie Mellon pilot study. In order to have a successful pilot deployment,
we must offer a robust implementation of this scenario to our users with DSL.

4. WLD-HLD (workplace laptop and desktop, and home laptop and desktop). This is a
generalization of WLD-HL, clearly useful, but outside the scope of the deployment
because of our reluctance to install ISR on non-CMU assets.

5. WA (all workplace hosts). Outside the scope of the pilot deployment.
6. WA-HA (all workplace and home hosts). Outside the scope of the deployment.
7. A (all hosts everywhere). Outside the scope of the deployment.

Putting it all together, for the purposes of the pilot study, the WLD-HL model is by far the most
compelling, both to the pilot users and to the deployment team. We should offer a robust version
of this model, with robust LKA caching, as soon as possible, to as many users as possible. We
can also offer the WLD model to some our users, but in the opinion of at least one of us
(O’Hallaron), a robust WLD-HL model is a necessary condition for a successful deployment.

3.2 User Groups

The deployment will consist of a range of users, starting with 10 and scaling to 100. This will take
place between summer of 2004 and summer of 2006. One key note: the description of these
users contains attributes that are useful for our data collection and experiments, it should not be
considered indicative of requirements of a general ISR user population. Later in the deployment,
our goals shift and we become more interested in generating more realistic workloads for
corporate users. We wish to measure ways to further reduce the costs of ISR so that it can be
applied as a cost effective solution to corporate IT management.

Users will have the following necessary characteristics: They should already be a moderate to
heavy computer user (2-4 hours/day). They need to be willing to provide a 10 minute feedback
once a week. They need to have a network connection where they normally work (not wireless,
at this time, unless Linux wireless support can be shown to be acceptable). The desired
characteristics of our users are the following. They should always be trying to extend their
computing model and try new modes of operation. They should be interested in inventing new
work methods when new tools are made available. Ideally, they should have knowledge of
distributed file systems.

The following are the proposed user groups and dates that they will be added to the deployment.

7 ISR and Coda developers (summer ’04) [7]. We believe that system developers must use
their own systems. Thus the following people (at a minimum) will be using ISR on a daily basis
starting in summer 2004: Satya (Intel and CMU), Dave O’Hallaron (CMU), Casey Helfrich (Intel),
Mike Kozuch (Intel), Jan Harkes (CMU Coda developer), Babu Pillai (Intel), and Haifeng Yu (Intel).
Satya and Dave will have ISR installed on their CMU desktop systems so that they can suspend

 11

and resume between CMU and Intel. Casey will have ISR installed on his home DSL system, and
Dave Bantz will have ISR on his home cable system and his office in Yorktown Heights.

10 CMU graduate students (summer ’04) [17]. During this phase, we will identify any major
bugs in the ISR implementation. These users should be considered part of the development
team. They are sophisticated computer users who are tolerant of system failures. Desired
outcome is to have a stable ISR implementation/infrastructure in place on the Carnegie Mellon
campus. We also will refine out instrumentation and subjective data collection methodology. We
will also evaluate how feasible it is to allow our users to include their personal desktops as ISR
workstations. We will assume strong connectivity at most ISR hosts (WLD), although a subset of
the group will begin pushing the (WLD-HL) model using their home DSL connections.

20 more CMU graduate students (fall ’04) [37]. At this point our data collection techniques are
generating real usable data. These students should be of the same caliber of the initial ten, but
the selection criteria may be relaxed. During this phase we will begin to analyze the work-home
model with a few select users. We will study multiple parcels per user, and how people use the
system to enhance their computing experience, both in the WLD and WLD-HL model. This is also
our first opportunity to study how the ISR server infrastructure will scale as we add significant
numbers of users. Desired outcomes are to collect the first data on usage patterns, resource
consumption for the work-work and work-home models.

5 elite CMU IT staff (spring ‘05) [42]. These users will generate different workloads than the
grad students to model a general corporate customer. As these IT staffers become more
knowledgeable, they may start playing a management role in the ISR deployment. Desired data
are to collect more data on the WLD and WLD-HL from this different, but still highly technical user
group. They will also likely use the multiple-parcels-per-user function of ISR.

10 Internet Services course graduate students (spring ’05) [52]. These users are part of a
project course taught by Dave O’Hallaron and will generate internet service models and plans
using core ISR functionality. They will allow us to study flash-traffic caused by ISR users having
similar suspend-resume schedules. Desired outcomes are getting some improvements or
extensions to the system and more ideas about creative uses for the system.

10 CMU financial analysts (fall ’05) [62]. This is our first group of true non-technical users.
Desired outcome here is to learn how non-technical people use the system, and what kinds of
additional requirements such users have. These users should have a greater demand for privacy
and security than our previous phases.

40 additional users (fall ’05) [100]. This gives us approximately 62 active users by February
2005. Based on measured attributes of the deployment, we will then scale to 100 active users
over summer ’05 and the rest of the year. Desired outcomes here are to better understand the
resource and management requirements of a larger scale deployment.

3.3 Finding Users

Dave O’Hallaron and Satya will recruit graduate student users through a series of seminars held
on the CMU campus at the beginning of each term (including summer). Mark Poepping (and
possibly Bob Cosgrove in SCS) will recruit the elite IT staff members in spring 2005. Dave
O’Hallaron will recruit students for his grad class using posters and personal contacts. Mark
Poepping will coordinate the recruitment of the 10 CMU Financial Analysts in fall ’05.

Comment [DFB3]: As testers as
well as scenario developers. This is a
shakedown period during which the
ISR service should be quite stable.
Otherwise we will get a bad
reputation and be unable to find
additional users. There must be a
compelling scenario of use at this
stage, and I’ll be surprised if it is
work-work.

Comment [CJH4]: I agree, but we
should perhaps move this
requirement to the Fall ’04 section
below. I don’t want to set goals that
we cannot reach. It should be very
stable by the END of this phase.

David Bantz
As testers as well as scenario developers. This is a shakedown period during which the ISR service should be quite stable. Otherwise we will get a bad reputation and be unable to find additional users. There must be a compelling scenario of use at this stage, and I’ll be surprised if it is work-work.

Casey Helfrich
I agree, but we should perhaps move this requirement to the Fall ’04 section below. I don’t want to set goals that we cannot reach. It should be very stable by the END of this phase.

 12

3.4 Relationship with Users

The relationship with each ISR study user is based on the premise that the study is a two-way
street, where both the user and the deployment team get something of value. Given that premise,
here is the agreement we will make with each user:

Each user in the ISR study will receive an IBM laptop computer. This is not a gift, but rather a
loan with generous terms. In return for the use of the laptop, we ask the users to do the following:

1. Abide by Carnegie Mellon computing guidelines.
2. Use the ISR system on a daily basis, agreeing not to uninstall or bypass the ISR system.
3. Provide personal feedback periodically.
4. Report any problems as they crop up.

Users can keep their laptops as long as they satisfy these four conditions. If they stop satisfying
any of these four conditions, then they will be asked to return the laptops. Before participating in
the study, each user will sign a consent form that outlines this agreement.

In return, here is what we will provide for our users.

1. Given a system failure, we will provide recovery of a user’s parcel from the last
successful suspend point. The ISR backup/rollback system will be limited to use by
system administrators for now, but as this becomes more robust, it may migrate to being
a user feature.

2. If a user’s parcel is damaged either by user behavior, or system instability, they should be
able to place a call to an ISR administrator (during normal working hours), who will
rollback their machine to the last suspend point, and manually release the lock on the
parcel, so the user can then re-resume and continue working. As this feature becomes
more robust and user friendly, it will be built into the user interface as a standard option
during resume.

3. Initially, the primary points of contact will be Casey Helfrich and David O’Hallaron. We
will have secondary support on Coda issues from Jan Harkes of CMU, and support on
Vulpes and Fauxide issues from Michael Kozuch, of Intel Corporation. This organization
should work through phases one and two, until December 2004, at this point the
deployment will have grown to a point where Casey and David’s bandwidth may be
saturated, and other solutions, such as a CMU helpdesk, will need to be explored.

4. If for any reason, a user leaves the study, we promise to return any personal files stored
in their parcels in a form that they can use. For example, we might save all of their
personal files in a protected AFS directory.

3.5 Data Collection

A major goal of the study is to get data that will help us improve the ISR design and to provide
evidence of improved TCO. We will also use this data to target areas of ISR that can be tuned to
better match the usage patterns of real users. The following data will help us in these goals.
Following each item is a description of how we will gather the data, and if it is instrumentation, a
note if code still needs to be written to collect this data.

 System acceptance
 How many users have agreed to use the system? (instrumentation)
 How many are actually using it? (instrumentation)
 Change from last month? (instrumentation)
 Can we characterize the users? (manual)
 Are users interacting with the host? (manual)

 Subjective survey results

Comment [DFB5]: Is this a 24x7
operation? Do users get a portal?
What are our quality-of-service
guarantees? What are the procedures
for break/fix? Do we need a trouble-
ticket management system (even a
manual one)? When do we take the
system down for maintenance and
upgrades?

Comment [CJH6]: I would love
suggestions on these topics. This
should be a discussion point for our
meeting on Monday.

Comment [DFB7]: We should
address the question of how a user
migrates from their current personal
computing environment to ISR, and
how they migrate back. Giving them
their files back leaves them with an
ugly job, one that many will not be
able to do.

Comment [CJH8]: A cleaner
migration path does not currently
exist, we will need to discuss this on
Monday.

Comment [DFB9]: The category of
management of the ISR infrastructure
does not seem to be represented. We
will need to know what tasks
administrators perform, how they are
performed, how long they take and
what tools they need (especially tools
they don’t have).

Comment [CJH10]: Once the
infrastructure is up and running, the
CMU operators should not have to do
anything, unless there is a hardware
failure. Dave O’Hallaron and I will be
able to manage these machines
remotely.

David Bantz
Is this a 24x7 operation? Do users get a portal? What are our quality-of-service guarantees? What are the procedures for break/fix? Do we need a trouble-ticket management system (even a manual one)? When do we take the system down for maintenance and upgrades?

Casey Helfrich
I would love suggestions on these topics. This should be a discussion point for our meeting on Monday.

David Bantz
We should address the question of how a user migrates from their current personal computing environment to ISR, and how they migrate back. Giving them their files back leaves them with an ugly job, one that many will not be able to do.

Casey Helfrich
A cleaner migration path does not currently exist, we will need to discuss this on Monday.

David Bantz
The category of management of the ISR infrastructure does not seem to be represented. We will need to know what tasks administrators perform, how they are performed, how long they take and what tools they need \(especially tools they don’t have\).

Casey Helfrich
Once the infrastructure is up and running, the CMU operators should not have to do anything, unless there is a hardware failure. Dave O’Hallaron and I will be able to manage these machines remotely.

 13

 How useful is the system? Needs met? (manual)
 User satisfaction: functional and performance (manual)
 Could user do what they wanted/expected? (manual)
 If a user leaves the deployment, why did they choose to do so?

 Use characterization
 How often are parcels resumed? (instrumentation)
 How long are resumed parcels active? (instrumentation)
 How often are conflicts detected? (instrumentation, to be written [tbw])
 How many parcels per user? (instrumentation)
 Was guest suspended or shut-down? Rebooted? (instrumentation, tbw)
 Seriousness of use: disk activity, CPU cycles, network packets (instrumentation)
 How often are parcels checkpointed? Rolled back? (instrumentation)

 Robustness
 How many support calls were fielded? Type? (manual)
 Is the VMM crashing? The VMs? (manual)
 Is the ISR software crashing? Coda? (manual)
 Root cause: network, graphics, user error, etc. (manual)

 Environments
 What bandwidth is available at resume site? (instrumentation, tbw)
 Resume machine characteristics? (instrumentation, tbw)
 Resume locations (IP): fixed and mobile? (instrumentation)

 Disk data patterns
 How many disk blocks are read / written? (instrumentation)
 How many chunks are read / written? Dirty? (instrumentation)
 How many write-before-reads? (instrumentation)

 Memory Image
 What is the size of the memory image? (instrumentation, tbw)
 Change over time? (instrumentation, tbw)
 Delta characteristics? (instrumentation, tbw)

 Features
 Use of LKA? Hit rate? (instrumentation)
 Use of hoarding? Effectiveness? (instrumentation, tbw)
 Venus cache hit rate? (instrumentation, tbw)
 What are typical demand-miss penalties? (???)
 Did the client become (write) disconnected? (instrumentation, tbw)
 Server issues: load, uptime, growth, etc. (instrumentation, tbw)

 Futures
 LKA/CASPER over the network? Hit rate? (instrumentation, tbw)
 Number of providers? (instrumentation, tbw)

We will also be collecting the following data using existing instrumentation: CPU utilization of
servers, network utilization from server perspective, total number of parcels, total number of
suspend/resume/rollback events, total dirty state generated between each resume/suspend
boundary, total number of users, time that parcels spend checked out vs. checked in.

The empirical data resides on the lock server and should be harvested once a day. For
convenience, a program should be written to do this in an automated fashion, resulting in a
directory with all of this data for the week. Ideally this raw data will be formatted or (collected
directly into) a back-end database such as SQL or DB2.

3.6 Who Gets Access to the Data?

This raw data should be available to all members of the ISR team, from Intel, IBM, and CMU.
This, of course, hinges on Human subject testing agreements with CMU, and the ability to make

Comment [DFB11]: I’d really like
to see some comparison of
suspend/resume and
shutdown/restart as usage models.

Comment [CJH12]: We should
discuss this on Monday, I do not
believe the shutdown/restart model is
very compelling (meaning, I don’t
think it gives much of a benefit given
our current implementation), but we
will see.

David Bantz
I’d really like to see some comparison of suspend/resume and shutdown/restart as usage models.

Casey Helfrich
We should discuss this on Monday, I do not believe the shutdown/restart model is very compelling \(meaning, I don’t think it gives much of a benefit given our current implementation\), but we will see.

 14

certain data traces anonymous. This should not be a problem, because we only see disk access
data traces, not the data itself, but we need to be sure.

Dave O’Hallaron has applied for clearance from the Carnegie Mellon Institutional Review Board
(IRB) and expects approval by the end of April.

3.7 Success Criteria

The deployment can be deemed a success if at least four of the below criteria are met:

1. Broad demand for ISR from the CMU constituents, students and staff/professionals) by
the end of the first two years.

2. Continued usage of ISR after two years,

3. One core idea from ISR driven from lab test to “real product” – technology transfer.

4. Services (enterprise) model definition by year 1.5 (IBM interest to trigger an internal

development plan).

5. Quantifying the TCO.

6. Whitepaper/publishing – at least one joint publication (significant).

7. Having a qualified ISR test bed (Best Known Method).

8. ISR usage spreads beyond the Carnegie Mellon Deployment in a meaningful way,
perhaps to the Intel Campus, IBM Watson, or others.

3.8 Server Hardware

One of the goals of the deployment is to determine the number of users a given ISR server can
service at a certain QOS. The current design calls for one server blade per 6 users (this will, of
course, scale up dramatically). The server-side parts list for this project is the following:

1 – 42U Rack – IBM Netbay Standard Rack
1 – APC 5000RMB Power Source
1 – 7U Blade Center Rack
4 – Redundant 1800W power supplies
1 – FAStT600 RAID 5 Array and controller 14 x 146GB Hard Drives 1.5TB storage
1 – Fiber-Channel Interface
9 – 2.8GHz Xeon Processor based blades with 2.5GB ECC RAM and 40GB on-board HDD

So what we have here is one IBM Blade chassis that is currently half-populated with blades, but
is set up for easy future expandability. All that is necessary to expand the capabilities of the rack
is to purchase and insert more blades. The power sources and interfaces are already set up so it
should be plug and play, though there may be a learning curve, since this is cutting edge
hardware. If additional storage is needed, another FAStT600 RAID controller will have to be
purchased, as the current one is completely populated with hard drives.

 15

3.9 Client Hardware

An ISR client machine can currently be a laptop or PC that has at least DSL speed network
connectivity, a Linux OS, Fauxide Kernel Module, Vulpes and VMware installed. Ideally we want
100 Mbps connectivity, but it is not strictly necessary. All parcels will be run in 1400x1050
graphic resolution, to assure consistency across suspend/resume boundaries, due to a VMware
limitation. This should not be an issue in the future, but it is something to be aware of today.

We have currently secured 30 IBM T41p laptops for Phase one deployment. The clients are
configured as follows:

1.7GHz Pentium M Processor based laptops
1GB RAM
60GB 5400RPM HDD
1400x1050 Resolution Screen
1Gbps integrated Ethernet connection
Integrated 802.11a/b/g IBM Wireless connection
RedHat 9.0 + patches (2.4.20-6 kernel)
Fauxide 1.0+
Vulpes 1.0+
VMware Workstation 4.5+

3.10 Parcel Setup

Client parcels will initially be setup with 256MB of Virtual RAM (we may scale this to 512MB,
depending on performance data). They will also be setup with a 10GB Virtual HDD. Each
parcel’s “Gold Image”, at the time of this writing, takes approximately 4GB of real server-side
storage space. As the user fills there hard drive, in the absolute worst case, parcels configured in
the above manner will require 11GB of real server-side storage. In general we expect around 6-
8GB of server-side storage per parcel per user for average usage.

Additional server-side storage is necessary if we decided to provide rollback functionality for the
parcel. The growth of necessary storage space in this case is also bounded. In the absolute
worst case (very, very rare) it will grow to n*Total Size of worst case parcel, where n is the
number of rollback points you wish to save.

In reality, it will take much less storage space to provide this service, as the worst case assumes
that the user is using every byte of their virtual hard drive, and the user completely changes the
contents of there ENTIRE hard drive between each rollback point. During phase one of the
deployment we will gather much more realistic information for how much storage is actually
needed for a given ISR user.

Assuming a QOS of 2 parcels per user, each with 4 rollback points, in the worst case we can
provide service for 15 users with our current hardware. Of course, this is again the absolute
worst case and will NOT happen.

In the probable, average case, we have the following:

2 parcels with 4 rollback points = 16GB/user 95 users supported

So with no optimizations to server-side storage mechanisms we are already approaching our goal
of 100 users supported by the server-side architecture in the average case.

Comment [DFB13]: We have to
have some assurances that we will
not be sued by software vendors for
violating their license agreements. In
particular, although we believe that
Windows activation will not be a
problem in fact, we don’t want
Microsoft sending us a “cease-and-
desist” order because their OS is
migrating between platforms. Whose
legal team should be involved?

Comment [CJH14]: Earl Nied of
Intel’s Legal team will be involved
with this process.

David Bantz
We have to have some assurances that we will not be sued by software vendors for violating their license agreements. In particular, although we believe that Windows activation will not be a problem in fact, we don’t want Microsoft sending us a “cease-and-desist” order because their OS is migrating between platforms. Whose legal team should be involved?

Casey Helfrich
Earl Nied of Intel’s Legal team will be involved with this process.

 16

3.11 Logistics of machine placement

A meeting is scheduled with Carnegie Mellon representatives for Tuesday, April 27th to discuss
placement of public ISR workstations.

3.12 Disaster Recovery

The current plan is to depend of the Replicated RAID 5 array to provide consistent access to data
during the first two phases (until September 1st, 2004) after this point a tape backup, or offsite
backup of parcel data and lock server state needs to be set up. Currently there are no funds for
this aspect of the project.

The hardware itself is in a complex with 24x7 operators. It has a full scale diesel generator power
backup, and climate control. If the room infrastructure goes down, then most likely the entire
campus is having an outage, so ISR would be unavailable anyway.

A good first approach to protect against data corruption, which is economically feasible, is to add
in one more 1U or 2U server with somewhat large disks to the rack, and have a cron job that
grabs parcel locks for each user and copies them onto its disks once a week.

3.13 Hardware Upgrade and Software Management

To be Determined

Comment [DFB15]: A vital section.
Nothing will kill the acceptance of the
pilot like a lost parcel. We must have
a plan for backing up parcels to an
alternate store (CMU?) What
happens on an extended outage of
the lock server or the Coda server?

Comment [CJH16]: This is a
difficult section, especially given lack
of funds to implement anything, and I
need suggestions from other
members of the team.

Comment [DFB17]: A vital section,
which must also include software
management. What tools will be
used? What are the anticipated key
management tasks? Who’s going to
do the management? How do we
patch Linux and VMware on those
laptops in user hands? Will it be a
depot service model? Lots of
important questions here…

Comment [CJH18]: This needs to
be discussed on Monday.

David Bantz
A vital section. Nothing will kill the acceptance of the pilot like a lost parcel. We must have a plan for backing up parcels to an alternate store (CMU?) What happens on an extended outage of the lock server or the Coda server?

Casey Helfrich
This is a difficult section, especially given lack of funds to implement anything, and I need suggestions from other members of the team.

David Bantz
A vital section, which must also include software management. What tools will be used? What are the anticipated key management tasks? Who’s going to do the management? How do we patch Linux and VMware on those laptops in user hands? Will it be a depot service model? Lots of important questions here…

Casey Helfrich
This needs to be discussed on Monday.

 17

Section 4: Appendix A - Explanation of ISR Terms

Parcel

A parcel is a set of files that ISR creates that completely encapsulates and defines your computing
environment.

Fauxide

Fauxide (false-IDE) is the kernel level device-driver that presents the system with a fake IDE drive:
/dev/hdk. It accepts IDE commands and appears to be a real IDE drive, but it is able to pass these
commands up into user space, where Vulpes is waiting.

Vulpes

Vulpes is the user level process that redirects all files requests that Fauxide captures to Coda or
some other distribution mechanism. Vulpes also contains the compression/encryption layer in ISR.

Suspend

A user presses a button to "suspend" their machine. This flushes all dirty state back to the
infrastructure servers, where it can be optionally backed up, and is made available at any other
resume sites. The copy of that state could also optionally be kept on the physical machine in
encrypted files, if the user is planning on returning to that machine. This would vastly improve
resume latency.

Resume

The act of a user identifying themselves on an ISR enabled computer. The machine then
"resumes" and becomes their computer until they suspend.

Suspend Site

A Suspend site is the computer where a user suspends their machine and leaves.

Resume Site

The resume site is one of many, many computers that a user could walk up to and start using.
When a user resumes, that computer becomes their computer until they suspend.

Resume Latency

Resume latency is the amount of time from when a user is identified, to when they can start using
their machine at a resume site.

Convergent Encryption

Encryption where the key used to encrypt the file is based on the contents of that file. The key is
usually some short signature that uniquely identifies that file, and that file alone.

 18

Section 5: Appendix B - Explanation of Coda Terms

RVM: Recoverable Virtual Memory

To help ensure that data is not lost or left in inconsistent state between server restarts, Coda uses
Recoverable Virtual Memory (RVM) which is a transaction system that maintains the system state
of the Coda server Meta data. RVM is a data logging transaction system which writes modifications
into the RVM log and upon truncation or restart incorporates such modifications into the RVM data
file. Both log and data file for RVM are ideally held on raw partitions.

Note: This should not be confused with Virtual Memory.

Upon startup, the Coda servers use RVM to restore the Coda system state. For optimal
performance you should have dedicated disk partitions for metadata and log partitions, ideally log
partition should reside on its own disk. However, a disk sharing the log partition with other disk
partitions or the use of a log file may be used at corresponding loss of optimal performance.

RVM metadata storage

This is a file or raw partition for RVM metadata. You can use a file but it will be quite slow on a
larger server. This partition must be around 4% of the total size of the files you wish to store under
/vicepa (e.g. on a 2GB server we use around 80MB of RVM data). For first installations we
recommend the default 22MB options, and using files for RVM log and data. The metadata, held in
the RVM data file, is memory mapped. You need that amount of space as virtual memory on your
system, in addition to virtual memory to run the server (~6MB) and other software.

RVM transaction log

This is a LOG file, preferably a raw partition on a disk by itself. This needs not be large; a few MB's
are fine. RVM is a transaction based library to make part of a virtual address space of a process
persistent on disk and commit changes to this memory atomically to persistent storage. Coda uses
RVM to manage its metadata. This data is stored in an RVM data file which is mapped into memory
upon startup. Modifications are made in VM and also written to the RVM LOG file upon committing
a transaction. The LOG file contains committed data that has not yet been incorporated into the
data file on disk.

SCM: System Control Machine

****NOTE: a common misconception about the SCM is that it must always be available for Coda to
work. This is not true. The SCM is used for normal administrative tasks such as user and volume
creation (and sometimes shares Coda volumes of its own), but it is not necessary for general Coda
file-system traffic.

A Coda cell is a set of servers which all believe one member of the set to be the master, or SCM
server. All modifications to important Coda databases should be made on the SCM; otherwise the
SCM plays the role of an ordinary Coda server. The updateclnt and updatesrv daemons will then
propagate changes from the SCM to the other servers.

The first server setup must be the SCM. This chapter is divided into three sections: installing the
binaries, configuring the system using the configuration script vice-setup (for both SCM and non-
SCM servers) and finally, a detailed look at what needs to be done to setup a server manually.
Before beginning, we have provided some overview information to assist in setting up the server.

Vice: The File Sharing Program

Vice is the server-side process for Coda. It handles replication, distribution, backup, and
consistency issues for the files that it shares.

 19

Venus: The Client-Side File Access Program

Venus is the client side process for Coda. It handles cache management, connection monitoring,
and reintegration after disconnection, as well as general file access requests to the server.

Coda Cell or Realm

A Coda cell (or realm) is a group of servers sharing one set of configuration databases. A cell can
consist of a single server or up to hundreds of servers. One server is designated as the SCM, the
system Control machine. It is distinguished by being the only server modifying the configuration
databases shared by all servers, and propagating such changes to other servers. At present a
Coda client can belong to a single cell. We hope to get a cell mechanism into Coda whereby a
client can see files in multiple cells.

Coda volumes

File servers group the files in volumes. A volume is typically much smaller than a partition and
much larger than a directory. Volumes have a root and contain a directory tree with files. Each
volume is "Coda mounted" somewhere under /coda and forms a subtree of the /coda. Volumes can
contain mountpoints of other volumes. A volume mountpoint is not a UNIX mountpoint or Windows
drive - there is only one drive or UNIX mountpoint for Coda. A Coda mountpoint contains enough
information for the client to find the server(s) which store the files in the volume. The group of
servers serving a volume is called the Volume Storage Group of the volume.

Volume Mountpoints

One volume is special; it is the root volume, the volume which Coda mounts on /coda. Other
volumes are grafted into the /coda tree using cfs mkmount. This command installs a volume
mountpoint in the Coda directory tree, and in effect its result is similar to mkdir mountpoint; mount
device mountpoint under UNIX. When invoking the cfs makemount the two arguments given are
the name of the mountpoint and the name of the volume to be mounted. Coda mountpoints are
persistent objects, unlike UNIX mountpoints which needs reinstating after a reboot.

Data storage

The servers do not store and export volumes as directories in the local disk file system, like NFS
and Samba. Coda needs much more Meta data to support server replication and disconnected
operation and it has complex recovery which is hard to do within a local disk file system Coda
servers store files identified by a number typically all under a directory /vicepa. The Meta data
(owners, access control lists, version vectors) and directory contents is stored in an RVM data file
which would often be a raw disk partition.

Client Data

Client data is stored somewhat similarly: Meta data in RVM (typically in /usr/coda/DATA) and
cached files are stored by number under /usr/coda/venus.cache. The cache on a client is persistent.
This cache contains copies of files on the server. The cache allows for quicker access to data for
the client and allows for access to files when the client is not connected to the server.

Validation

When Coda detects that a server is reachable again it will validate cached data before using it to
make sure the cached data is the latest version of the file. Coda compares cached version stamps
associated with each object, with version stamps held by the server.

Authentication

Coda manages authentication and authorization through a token. Similar (the details are very
different) to using a Windows share, Coda requires users to log in. During the log in process, the

 20

client acquires a session key, or token in exchange for a correct password. The token is associated
with a user identity, at present this Coda identity is the uid of the user performing the log in.

Protection

To grant permissions the cache manager and servers use the token with its associated identity and
match this against privileges granted to this identity in access control lists (ACL). If a token is not
present, anonymous access is assumed, for which permissions are again granted through the
access control lists using the System:AnyUser identity.

Data Location

The information stored on Coda servers is organized into several directories. These directories are
described below.

/vice/auth2: This directory contains information related to the authentication process, including its
log file.

/vice/bin: contains the Coda file system binaries for servers and the SCM.

/vice/db: contains the log file for the update processes as well as a number of databases important
to servers.

/vice/srv: contains information related to the server process, including its log file.

/vice/vol: contains information related to the volumes contained in the Coda file system.

/vice/vol/remote: exists only on the SCM and contains volume information for all remote servers.

/vice/misc: is where the updateclnt and updatesrv processes live and store their logfiles.

 21

Section 6: Appendix C – ISR Implementation Details

6.1 ISR: File Locations

In ISR, there are three individual computers that we need to be concerned with. These three
computers each play a role in ISR and have certain files located on them. These three machines
are: LOCKSRV, CODASRV and CLIENT.

LOCKSRV

${HOME}/.isr/[parcel]/nonce
${HOME}/.isr/[parcel]/lockholder
${HOME}/.isr/[parcel]/parcel.cfg
${HOME}/.isr/[parcel]/keys/keyroot

LOCKSRV is the first machine contacted by the client through a secure ssh channel. When a
client machine tries to checkout a parcel, it first creates a semaphore (if it doesn't already exist). If
the semaphore exists, then the parcel is already checked out and is unavailable to this client
machine.

The semaphore is formed from a timestamp, version number, and a random number read from
/dev/urandom. This is copied onto the client machine as well. The client then copies the
/keys/keyroot file, which is the master key to unlock their keyring, which they will read from
their parcel directory on CODASRV.

Finally the client will copy the parcel.cfg file, which contains the path to their parcel in Coda, and a
version number. The path is of the form:

SRC:=CODA://[path]

if the parcel is kept in Coda, but it could, for example, be in the form of:

SRC:=HTTP://[path] or
SRC:=NFS://[path] or
SRC:=CAS://[path] or
SRC:=HFS://[path]

If the parcel is kept on a web server, nfs server, etc...

CODASRV

/coda/[realm]/${USER}/isr/[parcel]/hdk/
/coda/[realm]/${USER}/isr/[parcel]/keys/keyring.enc
/coda/[realm]/${USER}/isr/[parcel]/cfg.tgz.enc

Now the client machine has enough info to start accessing the parcel itself, which is kept on
CODASRV, but mounted on the client, at the above path. The client uses the path provided by
the parcel.cfg file to access the /keys/keyring.enc file in Coda. This file is downloaded to the
client directory and decrypted using the keyroot file.

Now the cfg.tgz.enc file is downloaded, decrypted and decompressed to become the client's
cfg/ directory. This directory contains various configuration files used by VMware, as well as the
[parcel].vmss file, which contains the memory image of the virtual machine.

 22

The Virtual machine is launched, and the /dev/hdk/ directory presented by fauxide is accessed
through Coda, and optionally cached in the isr/[parcel]/hdk/ directory on the client's user
directory.

CLIENT

${HOME}/.isr/[parcel]/cfg/
${HOME}/.isr/[parcel]/hdk/
${HOME}/.isr/[parcel]/keys/keyring
${HOME}/.isr/[parcel]/keys/keyroot
${HOME}/.isr/[parcel]/nonce
${HOME}/.isr/[parcel]/lockholder
${HOME}/.isr/[parcel]/parcel.cfg

Above are the files and directories that will be present on a client machine, when a parcel is
checked out and in use.

6.2 ISR: BIN Scripts

In ISR, there are two computers that contain executable scripts that are run by the GUI. These
three machines are: CLIENT and LOCKSRV.

LOCKSRV

All scripts are located in: /usr/local/isr/bin/.

isr_list_parcels [user]

This script simply lists the parcels that exist for a certain user on this LOCKSRV.

isr_cat_parcel_cfg [user] [parcel]

This script displays the contents of the parcel.cfg files, which can then be captured by the client.

isr_cat_keyroot [user] [parcel]

This script displays the contents of the keyroot file as ASCII, which is then captured by the client.

isr_acquire_lock [user] [parcel]

This script creates the semaphore that locks the parcel so it can only be updated from one client
at a time.

isr_release_lock [user] [parcel]

This script removes the semaphore from the system, making the parcel available to a new
resume site.

CLIENT

All scripts are located in: /usr/local/isr/bin/.

 23

They all take optional arguments:
[--parcel {arg} --locksrv {arg} --user {arg} --version --help].

isr_get_parcel_names

Passes your username to LOCKSRV and triggers its isr_list_parcels script.

isr_parcel_co

Takes your username and parcelname and send them to LOCKSRV, and triggers its
isr_acquire_lock script, which populates the client's semaphore; then it gets the parcel.cfg,
and keys/keyroot files. Now that the client has the parcel.cfg and keys/keyroot info, it can
decrypt and decompress the keyring.enc and cfg.tgz.enc files from your parcel source, which
it parses from parcel.cfg.

isr_parcel_hoard

Triggers the client to copy the entire /hdk directory from the parcel source to
${HOME}/.isr/[parcel]/hdk

isr_parcel_verify

Compares the cached versions of the files in the ${HOME}/.isr/[parcel]/hdk directory to the
signatures in the /keys/keyring file obtained from LOCKSRV and evicts any old versions.

isr_parcel_run

This script makes sure the client has issued an isr_parcel_checkout and
isr_parcel_check_version and then confirms that the fauxide kernel module is loaded and that
vulpes is running. It then launches the machine from the parcel referred to in the clients
/${HOME}/.isr/[parcel]/cfg/[parcel].vmx file.

isr_parcel_checkpoint

This script causes the client to sync its entire ${HOME}/.isr/[parcel]/hdk directory to
CODASRV, as well as syncing its current keyring file, keyroot file, and parcel.cfg file. It also
makes a compressed and encrypted version of the /cfg directory and pushes that update to
CODASRV. It may also optionally trigger a backup image to be formed.

isr_parcel_ci

Issues an isr_parcel_checkpoint and then relinquishes its semaphore file, so that another
client machine my grab it. This is a complete suspend cycle.

Optional CLIENT commands

isr_connect_lka [path]

Assumes an LKA database is mounted at [path] and issues an lka +/[path] on the client, to
add it as a possible LKA source for Coda.

If Coda is not being used as the distribution mechanism, a vulpes level command may be issues
to tell vulpes to look-aside at [path] as a possible source of data.

 24

Section 7: Appendix D – Building a Coda Server

7.1 Step 1: Server Disk Partitioning

We start with an example of a real partitioning of a server currently in use at Intel Research
Pittsburgh, explanations to follow:

Table 1: Example of Partitions for a Coda Server

Partition Storage Purpose Mounted Typical Size Fscked
sda2 Root and User File System / 6GB Yes

sda5 Var File system /var 100MB Yes

sda3 Vice File System /vice 20GB Yes

sda6 RVM Data and Log /rvm 2GB no

sdb1 Coda FS /vicepa 50GB Yes

The Coda servers we have set up in the lab have two physical IDE disks, 72GB each. The first
72GB disk is designated at hda and contains the server Operating system (RedHat 9.0 Linux)
and control software for coda (vice). The second 72GB disk contains the raw Coda file share, as
well as the metadata/control systems for Coda.

Coda servers require a minimum of 2 disk partitions for optimal performance (one raw partition for
the RVM Log, one raw partition for RVM Data and one regular UNIX file system to hold file data
store in Coda), data security and protection from accidental deletion. For additional performance
gains the RVM Log partition should be on its own disk to avoid head movement latencies which
reduces disk seek times on log operations. Optionally, /vice can be a separate partition for the
same reasons it is advantages to have /var as a separate partition.

However, other configuration may be used such as having the RVM Data and Log information
stored as regular UNIX files at a loss in performance and data security. Also, if more than one
Storage Area Data is needed on a Coda Server (the default directory is called /vicepa), the
additional storage areas must be separate partitions (different partition from /vicepa the default,
initial storage area for data under Coda) and mounted as /vicepb, for example.

During the installation, you will have the opportunity to create additional user accounts; Coda will
require a user account that is not root (for security reasons) to have administrative control over
Coda.

7.2 Step 2: Install and Patch/Upgrade your Operating System

We assume you will be installing RedHat 9.0 (the latest release when this document was written).
If a newer version is available then by all means use this version.

After installing your OS and gaining Internet access, be sure to register with RedHat, by typing
rhn_register at a command prompt. After registering, type up2date at the command prompt to
download all of the latest packages available for your system.

 25

One very important thing to note is that there are known problems with the EXT3 journaling in
kernel versions below 2.4.9 when combined with Coda on the client side, so you must be sure to
upgrade your kernel to a version later than 2.4.20 to be sure this won't be an issue. Unfortunately
RedHat is conservative when choosing which kernels to include with their packages, so you will
need to get an updated kernel from an outside source, such as www.kernel.org otherwise you will
see problems where even simple client commands such as cp will crash and you will need to
reboot the client computer.

IMPORTANT!

Coda recently underwent a massive revision, when Coda version 6.0 was released. This
necessitated a new kernel module, which is currently not included with standard kernel releases.
This may change in the near future, but for now we must compile our own new module. The latest
version can always be found at:

http://www.coda.cs.cmu.edu/mirrors.html

The necessary file can be found in the /pub/coda/linux/src/ directory of the appropriate mirror
ftp site. In particular, you are looking for the linux-coda-6.0.0.tgz file. This is a tar'd gzip'd
source tree for the new Coda kernel module.

Now unpack and compile the kernel module using the following commands: (assumes "#" is your
command prompt)

tar xzvf linux-coda-6.0.0.tgz
cd linux-coda
./Configure
make

Make will ask you questions about the current running kernel on your system. Answer
appropriately and make will succeed. When this is finished, you will have a shiny new coda.o file
in the linux-coda/linux2.4/ directory (assuming you are running a 2.4.x kernel). You now
want to use that file to replace the existing coda.o file on your system.

If you look in your /lib/modules/[kernel-release]/fs/ directory you will see your old coda.o
module. Note: Unfortunately depending on how you built your system, the module can be located
in several (similar) places. You can find the old version of coda.o by issuing the following
command:

locate coda.o

This will display the full path of the location of the old coda kernel module. For the remainder of
this document, I will assume it was located in the /lib/modules/[kernel]/fs/ directory, but
you should use the directory appropriate for your system. In order to remove (or rename for
backup) this file, you must make sure it is not loaded. To unload, backup the old module, move
the new module into place and start that module, run the following commands from the linux-
coda/linux2.4 directory:

rmmod coda.o
mv /lib/modules/[kernel]/fs/coda.o /lib/modules/[kernel]/fs/coda_OLD.o
cp coda.o /lib/modules/[kernel]/fs/
insmod /lib/modules/[kernel]/fs/coda.o

Now your kernel is capable of running the latest version of coda.

http://www.coda.cs.cmu.edu/mirrors.html

 26

7.3 Step 3: Download/Unpack/Compile Coda Source

The latest version of the Coda source coda can always be found at:

http://www.coda.cs.cmu.edu/mirrors.html

In order to run the Coda server, you should follow the links from the above page to an appropriate
FTP mirror. The required files at the time I wrote this document are as follows, but of course
always get the latest versions:

lwp-1.10.tar.gz
rpc2-1.19.tar.gz
rvm-1.8.tar.gz
coda-6.0.5.tar.gz

All of these files can be found in the /pub/coda/linux/src/ directory of the appropriate mirror
ftp site. One important thing to be aware of is that FTP sites usually show files in lexographic
(alphabetical) order, so the latest versions of the RPMs are not always listed at the bottom, since
lexographically 5.3.2 comes after 5.3.19, etc... So be sure that you are truly getting the latest
versions of the RPMs or there will be incompatibility issues. Once you find the files, save them to
the directory of your choice on your computer

Now unpack the tarballs using the following commands: (assumes "#" is your command prompt)

tar zxvf lwp-1.10.tar.gz
tar zxvf rpc2-1.19.tar.gz
tar zxvf rvm-1.8.tar.gz
tar zxvf coda-6.0.5.tar.gz

Now it is time to compile and install the various packages. LWP should be installed first, followed
by RVM and RPC2 and finally Coda. All of the commands below can be run by a user account,
except for make install and make server-install which must be run by root:

cd lwp-1.10
./Configure
make
make install
cd ../rpc2-1.19
./Configure
make
make install
cd ../rvm-1.8
./Configure
make
make install
cd ../coda-6.0.2
./Configure
make
make server-install

At this point a Coda Server is installed on your system, but is not configured or active.

7.4 Step 4: Configure your Coda Server

Now that you have installed Coda, it is time to actually configure it and get it running. Of course
this is the hardest part :-) but if you have followed all of the steps above, you should not hit any

http://www.coda.cs.cmu.edu/mirrors.html

 27

brick walls. Most importantly I will now assume that you do have an up to date OS, and have
mounted the /vice, /vicepa and /rvm directories. The empty files LOG and DATA should exist in
the /rvm directory. One last thing to do before we start is to prepare three secret tokens up to 8
characters long (e.g. elephant) that will be used to allow server-server authentication, simply keep
these in your head for the time being.

Configuring Coda is either done manually (not recommended) or using the script vice-setup. All of
the setup scripts can be found in the /usr/sbin/ directory of your server, and reading through
them can be very informative as long as you have a decent level of Linux experience.

At the command prompt type vice-setup and we are off and running.

Vice-setup does many things behind the scenes including setting up the /vice directory if it
does not exist and populating it with various required subdirectories and files. The script will ask
you a series of questions, most of the answers are obvious, and for the most part the default
answers that it provides are the only intelligent possible responses. When it asks you if this is the
SCM, the answer is yes, since this is the first server, it must be the SCM. As you add servers to
your setup, this will not be the case, obviously. When it asks you to supply a server number, I
recommend "1" since this is the first server, not rocket science. When it asks you for the uid and
name of a user account to be the Coda administrator, a good generic response is "6000" and
"codaroot". Here are some of the non-obvious parts of the script:

Are you ready to set up RVM? [yes/no]

RVM is the Recoverable Virtual Memory used to keep a copy of Coda Virtual memory on local
disk. Answer yes to this question or the setup will abort.

What is your log partition?

This will be the file that we touched earlier to create, so the answer is /rvm/LOG

What is your log size? (enter as e.g. '12M')

The log partition keeps transaction records for Coda volume updates that may not have been
written to the Coda data partition yet. We have not extensively tested values above 30MB and do
not recommend more than this. 12MB is a good value for a small to medium sized server. The
value may be entered as, 12M or 12288 for 12 Megabytes. For the Coda servers in the Intel
Research Pittsburgh lab, we are sharing a larger volume, so have a 25M log file.

What is your data partition (or file)?

Again, the obvious (and correct) answer is /rvm/DATA

What is the size of you data partition (or file) [22M,44M, 90M, 130M]:

This specifies the size of the RVM data partition. It must be typed exactly as 22M, 44M , 90M , or
130M . These are associated with default parameters that must be fed to codasrv when it is
started. Note: in newer versions of Coda larger data partitions are supported but this change was
not reflected in the vice-setup script. In the Intel Research Pittsburgh setup, we have a 500M
DATA file. The following table provides an approximate RVM data size to total data storage
conversion.

 28

22M is good for up to 500MB;
44M is good for up to 1.0GB;
90M is good for up to 2.2GB;
130M is good for up to 3.3GB;
500M is good for up to 9GB;

Proceed, and wipe out old data? [y/N]

WARNING if you have entered erroneous entries for RVM log and RVM data partitions, you could
damage your system. Be sure you entered correct information!

Once you successfully complete vice-setup you can start your Coda file-server. The end of the
vice-setup script will give you the instructions on what commands to enter to get your system up
and running. We encourage you to finish reading the rest of this document before you issue those
commands.

Below is a full transcript of a vice-setup for a Coda server in the Intel Research Pittsburgh lab:

[root@isr03 /]# vice-setup Welcome to the Coda Server Setup script!
You already have a file /usr/local/etc/coda/server.conf!
Continuing will remove that file.
Do you want to continue? [yes/no] yes
Setting up config files for a coda server.
Do you want the file /usr/local/etc/coda/server.conf created? [yes]
What is the root directory for your coda server(s)? [/vice]
Setting up /vice.
Directories under /vice are set up.

Is this the master server, aka the SCM machine? (y/n) y

Setting up tokens for authentication.
The following token must be identical on all servers.
Enter a random token for update authentication : elephant
The following token must be identical on all servers.
Enter a random token for auth2 authentication : elephant
The following token must be identical on all servers.
Enter a random token for volutil authentication : elephant
tokens done!

Setting up the file list for update client
Filelist for update ready.
/etc/services already has new services registered! Good.
/etc/services ready for Coda
Now installing files specific to the SCM...

Setting up servers file.
Enter an id for the SCM server. (hostname isr03)
The serverid is a unique number between 0 and 255.
You should avoid 0, 127, and 255.
serverid: 100
done!
Initializing the VSGDB to contain the SCM as E0000100
/vice/db/VSGDB set up

Setting up ROOTVOLUME file
Enter the name of the rootvolume (< 32 chars) : coda.root

Setting up users and groups for Coda
You need to give me a uid (not 0) and username (not root)
for a Coda System:Administrator member on this server,
(sort of a Coda super user)

Enter the uid of this user: 6000
Enter the username of this user: codaroot

 29

An initial administrative user codaroot (id 6000)
with Coda password "changeme" now exists.

A server needs a small log file or disk partition, preferably on a
disk by itself. It also needs a metadata file or partition of approx
4% of your filespace.

Raw partitions have advantages because we can write to the disk
faster, but we have to load a copy of the complete RVM data
partition into memory. With files we can use a private mmap, which
reduces memory pressure and speeds up server startup by several
orders of magnitude.

Servers with a smaller dataset but heavy write activity will
probably benefit from partitions. Mostly read-only servers with a
large dataset will definitely benefit from an RVM data file. Nobody
has really measured where the breakeven point is, so I cannot
really give any hard numbers.

WARNING: you are going to play with your partitions now.
verify all answers you give.

WARNING: these choices are not easy to change once you are up and
running.

Are you ready to set up RVM? [yes/no] yes

What is your log partition? /rvm/LOG

The log size must be smaller than you log partition. We
recommend not more than 30M log size, and 2M is a good choice.
What is your log size? (enter as e.g. '2M') 30M

What is your data partition (or file)? /rvm/DATA

The data size must be approx 4% of you server file space. We
have templates for servers of approx: 500M, 1G, 2.2G, 3.3G, 8G
(you can store less, but not more on such servers).
The corresponding data sizes are 22M, 44M, 90M, 130M, 315M.
Pick one of the defaults, otherwise I will bail out

Remember that RVM data will have to be mmapped or loaded
into memory, so if anything fails with an error like
RVM_EINTERNAL you might have to add more swap space.

What is the size of you data partition (or file)
[22M, 44M, 90M, 130M, 200M, 315M]: 500M

!!!!!!!!!!!!!!
Your size is an experimental size. Be warned!
You may want to run with private mapping for RVM.

--
WARNING: DATA and LOG partitions are about to be wiped.
--

--- log area: /rvm/LOG, size 30M.
--- data area: /rvm/DATA, size 500M.

Proceed, and wipe out old data? [y/n] y

LOG file has been initialized!

Rdsinit will initialize data and log.
This takes a while.
rvm_initialize succeeded.

 30

Going to initialize data file to zero, could take awhile.
done.
rds_zap_heap completed successfully.
rvm_terminate succeeded.

RVM setup is done!

Directories on the server will be used to store container files
that hold the actual data of files stored in Coda. Directory
contents as well as metadata will be stored in the RVM segment
that we already configured earlier.

You should only have one container file hierarchy for each disk
partition, otherwise the server will generate incorrect
estimates about the actual amount of exportable disk space.

Where shall we store your file data [/vicepa]?
Shall I set up a vicetab entry for /vicepa (y/n) y
Select the maximum number of files for the server.
[256K, 1M, 2M, 16M]: 16M

Server directory /vicepa is set up!

Congratulations: your configuration is ready...and now
to get going do the following:
 - start the auth2 server as: auth2
 - start rpc2portmap as: rpc2portmap
 - start updatesrv as: updatesrv
 - start updateclnt as: updateclnt -h isr03.research.intel-research.net
 - start the fileserver: startserver &
 - wait until the server is up: tail -f /vice/srv/SrvLog
 - create your root volume: createvol_rep coda.root E0000100 /vicepa
 - setup a client: venus-setup isr03.research.intel-research.net 20000
 - start venus: venus
 - enjoy Coda.
 - for more information see http://www.coda.cs.cmu.edu.

Note: During the vice-setup script, you might get an error message saying “Cannot find
librpc2.so.3”, or something similar. To fix this simply run a locate [filename] on the missing files.
Then add the directory where they are located to your /etc/ld.so.conf file and then run the
command ldconfig to refresh the list with your new data. Probable locations for these "missing"
files are /usr/local/coda/lib or /usr/local/lib.

7.5 Step 5: Creating your Shared Volumes

Now the server is configured, but now we have to actually create the volumes to share over the
network. We must first create the root volume at a starting point. This is one of the commands
that are displayed at the end of the vice-setup script. So run those commands in order:

auth2
rpc2portmap
updatesrv
updateclnt -h [SCM name]
startserver &

Wait until the server is up. Check server status by running:

tail -f /vice/srv/SrvLog

Now create your root volume by running:

 31

createvol_rep coda.root E0000100 /vicepa

These commands are all that are necessary at this time. Now you want to create your user level
accounts so you can start providing service to your clients.

7.6 Step 6: Creating your User Accounts

It's time to get familiar with pdbtool. It is a very powerful coda user administration tool. For more
information on available commands type pdbtool help at the command line. Here I will go over the
required commands to get started.

The following commands should be run as root on your SCM server machine:

pdbtool
pdbtool> ng users [group number]
pdbtool> nui [username] [uid]
pdbtool> q
createvol_rep users:[username] E0000100 /vicepa

This is the most minimal setup necessary. You have started pdbtool, and created a new
username and an associated used id the uid can be any unused uid on your system. I
recommend making your coda users have a uid between 6000 and 7000, since this will
guarantee they will be unique and easy to identify. The group number for the "users" group can
be something like 5000. The last command actually creates the volume that will hold the new
user's filesystem data.

Now we need to set the initial password with the authentication server. You should now go to a
client machine and log in to Coda as codaroot by using the following command:

clog codaroot@[name of realm]
password: [codaroot password]

Now you have to create authentication records for the new user you created in pdbtool above:

au -h [name of SCM] nu
Your Vice Name: codaroot
Your Vice Password: [codaroot password]
New User Name: [newuser]
New User Password: [a generic password]

Now you must create a home volume for the new user and add a directory mount point for that
volume:

mkdir /coda/[realmname]/users/ (for creation of the first user account)
cfs mkm /coda/[realmname]/users/[newuser] users:[newuser]

Now you need to associate ownership rights of the directory with the new user:

cfs sa /coda/[realmname]/users/[newuser] [newuser] all

All of this happens before the client even gets involved (that why you are the administrator). Now
we are ready for the real client to connect and change his password to something private. That is
done on the new client machine with the following command (after the client is installed and setup
and connected):

 32

cpasswd -h [name of SCM] [newuser]

The system will then ask for the old password, and then let the user define the new one.

7.7 Step 7: Wrapping it all Up

The server is configured, the user accounts are created, and the server is up and running.
Depending on the number of users and the type of work that will be stored on the server(s), you
might want to consider a backup system. The great thing is any client computer can act as a
backup for the entire system. This is discussed much more thoroughly in our Coda document
about the Amanda tape-backup system for Coda available in our Coda document library.

 33

Section 8: Appendix E – Building an ISR Client

8.1 Step 1: Update your Coda Kernel Module

Coda recently underwent a massive revision, when Coda version 6.0 was released. This
necessitated a new kernel module, which is currently not included with standard kernel releases.
This may change in the near future, but for now we must compile our own new module. The latest
version can always be found at:

http://www.coda.cs.cmu.edu/mirrors.html

The necessary file can be found in the /pub/coda/linux/src/ directory of the appropriate mirror
ftp site. In particular, you are looking for the linux-coda-6.0.0.tgz file. This is a tar'd gzip'd
source tree for the new Coda kernel module.

Now unpack and compile the kernel module using the following commands: (assumes "#" is your
command prompt)

tar xzvf linux-coda-6.0.0.tgz
cd linux-coda
./Configure
make coda.o
su
make install

Note: during the compilation of coda.o you may come across a bug in the file modversions.h
where the ./Configure command adds four inappropriate lines to this file, that should be
manually removed before moving to the next step. To remedy this problem, open modversions.h
in a text editor and remove the four identical lines of the form:

[To be determined]

Make will ask you questions about the current running kernel on your system. Answer
appropriately and make will succeed. When this is finished, you will have a shiny new coda.o file
in the linux-coda/linux2.4/ directory (assuming you are running a 2.4.x kernel). You now
want to use that file to replace the existing coda.o file on your system.

If you look in your /lib/modules/[kernel-release]/fs/ directory you will see your old coda.o
module. Note: Unfortunately depending on how you built your system, the module can be located
in several (similar) places. You can find the old version of coda.o by issuing the following
command:

locate coda.o

This will display the full path of the location of the old coda kernel module. For the remainder of
this document, I will assume it was located in the /lib/modules/[kernel]/fs/ directory, but
you should use the directory appropriate for your system. In order to remove (or rename for
backup) this file, you must make sure it is not loaded. To unload, backup the old module, move
the new module into place and start that module, run the following commands from the linux-
coda/linux2.4 directory:

rmmod coda.o
mv /lib/modules/[kernel]/fs/coda.o

http://www.coda.cs.cmu.edu/mirrors.html

 34

/lib/modules/[kernel]/fs/coda_OLD.o
cp coda.o /lib/modules/[kernel]/fs/
insmod /lib/modules/[kernel]/fs/coda.o

Now your kernel is capable of running the latest version of coda.

Note: some Linux installations place the rmmod and insmod binaries on your system in a directory
not generically included in your bash $PATH. You can find these files by issuing a locate rmmod
command.

8.2 Step 2: Download/Unpack/Compile Coda Client

Assuming that you have a Coda Server setup, it is time to setup your Coda client. The latest
version can always be found at:

http://www.coda.cs.cmu.edu/mirrors.html

In order to run the Coda client, you should follow the links from the above page to an appropriate
FTP mirror. The required files at the time I wrote this document are as follows, but of course
always get the latest versions:

lwp-1.10.tar.gz
rpc2-1.19.tar.gz
rvm-1.8.tar.gz
coda-6.0.2.tar.gz

All of these files can be found in the /pub/coda/linux/src/ directory of the appropriate mirror
ftp site. One important thing to be aware of is that FTP sites usually show files in lexographic
(alphabetical) order, so the latest versions of the RPMs are not always listed at the bottom, since
lexographically 5.3.2 comes after 5.3.19, etc... So be sure that you are truly getting the latest
versions of the RPMs or there will be incompatibility issues. Once you find the files, save them to
the directory of your choice on your computer

Now unpack the tarballs using the following commands: (assumes "#" is your command prompt)

tar zxvf lwp-1.10.tar.gz
tar zxvf rpc2-1.19.tar.gz
tar zxvf rvm-1.8.tar.gz
tar zxvf coda-6.0.2.tar.gz

Now it is time to compile and install the various packages. LWP should be installed first, followed
by RVM and RPC2 and finally Coda. All of the commands below can be run by a user account,
except for make install which must be run by root:

cd lwp-1.10
./configure
make
make install
cd ../rpc2-1.19
./configure
make
make install
cd ../rvm-1.8
./configure
make
make install

http://www.coda.cs.cmu.edu/mirrors.html

 35

cd ../coda-6.0.2
./configure
make
make client-install

At this point a Coda Client is installed on your system, but is not configured or active.

8.3 Step 3: Configure Client and Contact your Coda Server

Now that you have installed Coda, it is time to actually configure it and get it running. Configuring
your Coda client is either done manually (not recommended) or using the script venus-setup. All
of the setup scripts can be found in the /usr/sbin/ directory of your server, and reading through
them can be very informative as long as you have a decent level of Linux experience.

At this point you must know the name of your SCM Server. The following command will configure
Coda for your machine:

venus-setup [full_name_of_scm] [cache_size_in_kB]
EXAMPLE: # venus-setup testserver.coda.cs.cmu.edu 80000

At this point Coda should pause for a few seconds and then give a confirmation that your system
is now configured for Coda. Now you must confirm that your local realm has been configured.
Contact your system administrator and find out the name of the realm, and the server names that
make up that realm. Then add that info to the /etc/coda/realms file on your client computer.
You add the info by appending a line of the following form:

[realmname] [space-separated-list-of-servers]

After the realms file is properly populated, one last step will get you up and running:

venus &

This actually starts your client process. Some info will be displayed on the screen, ending with
"/coda is now mounted". At this point the filesystem that is shared by your Coda Servers will
now show up in the /coda/[realmname] directory of your computer. If you wish to view the
network activity of your coda client, open up an xterm window and type the command codacon.
Codacon will show you all transactions taking place between your Coda Client and Server.

If, when you start venus, you get an error message saying Cannot find [filename].so.4, or
Cannot find [filename].h, simply run a locate [filename] on the missing files. Then add the
directory where they are located to your /etc/ld.so.conf file and then run the command
ldconfig to refresh the list with your new data. Probable locations for these "missing" files are
/usr/local/coda/lib or /usr/local/lib.

8.4 Step 4: Authenticate for Write Access

Now you have Coda up and running, but your still can't write files. For this your need to log into
your Coda account on the SCM. If you don't have an account, contact your system administrator.
You can gain write access to your assigned directories with the following command (note: the ISR
scripts automatically complete this step, when you are resuming a parcel):

clog [username]@[realmname]
EXAMPLE: clog isruser@isr

	Introduction
	Overview of ISR
	The ISR Model
	ISR Implementation
	Architecture and Operation
	Convergent Encryption
	Compression
	Performance
	Operational Description

	Pilot Deployment on the CMU Campus
	Usage Models
	User Groups
	Finding Users
	Relationship with Users
	Data Collection
	Who Gets Access to the Data?
	Success Criteria
	Server Hardware
	Client Hardware
	Parcel Setup
	Logistics of machine placement
	Disaster Recovery
	Hardware Upgrade and Software Management

	Appendix A - Explanation of ISR Terms
	Appendix B - Explanation of Coda Terms
	Appendix C – ISR Implementation Details
	ISR: File Locations
	ISR: BIN Scripts

	Appendix D – Building a Coda Server
	Step 1: Server Disk Partitioning
	Step 2: Install and Patch/Upgrade your Operating System
	Step 3: Download/Unpack/Compile Coda Source
	Step 4: Configure your Coda Server
	Step 5: Creating your Shared Volumes
	Step 6: Creating your User Accounts
	Step 7: Wrapping it all Up

	Appendix E – Building an ISR Client
	Step 1: Update your Coda Kernel Module
	Step 2: Download/Unpack/Compile Coda Client
	Step 3: Configure Client and Contact your Coda Server
	Step 4: Authenticate for Write Access

