
All Your Droid Are Belong To Us: A Survey of Current Android Attacks
Timothy Vidas

ECE/CyLab
Carnegie Mellon University

Daniel Votipka
INI/CyLab

Carnegie Mellon University

Nicolas Christin
INI/CyLab

Carnegie Mellon University

Abstract
In the past few years, mobile devices (smartphones,

PDAs) have seen both their computational power and
their data connectivity rise to a level nearly equivalent
to that available on small desktop computers, while be-
coming ubiquitous. On the downside, these mobile de-
vices are now an extremely attractive target for large-
scale security attacks. Mobile device middleware is thus
experiencing an increased focus on attempts to mitigate
potential security compromises. In particular, Android
incorporates by design many well-known security fea-
tures such as privilege separation. The Android security
model also creates several new security sensitive con-
cepts such as Android’s application permission system
and the unmoderated Android market. In this paper we
look to Android as a specific instance of mobile com-
puting. We first discuss the Android security model and
some potential weaknesses of the model. We then pro-
vide a taxonomy of attacks to the platform demonstrated
by real attacks that in the end guarantee privileged access
to the device. Where possible, we also propose mitiga-
tions for the identified vulnerabilities.

1 Introduction
Today’s smartphone has as much processing power and
memory as a high end laptop computer only a few years
old. The additional capabilities of a smartphone also in-
troduce a range of issues that are not present in either
the security models for portable computers or traditional
mobile phones. Modern smartphones are always-on de-
vices which combine phone network connectivity with
high-speed data networking capabilities and geolocation
services (e.g., GPS). Further, the vast array of mobile ap-
plications that extend the feature set of a smartphone en-
ables the user to keep considerable amounts of (private)
information on the device. All of these factors pose a
host of security and management problems.

The current management models employed by the
major smartphone systems make them to a large extent
more similar to corporate-managed devices, rather than
personal machines. For instance, phones are by default
not “rooted” (i.e., the user does not have administrative
privileges). This management model introduces secu-
rity side-effects that users are unlikely to consider. Se-
curity issues that plague typical computing (e.g., priv-

ilege abuse resulting in unauthorized network access)
now also apply to mobile devices. However, common
security measures deployed on personal computers (e.g.,
rapid patch cycles and anti-virus software) are made
more difficult by the managed security model, leaving
the user fundamentally unprotected.

Until recently, mobile devices used to present high
operating system heterogeneity, as each device had a
rather unique operating system variant. Such hetero-
geneity created a difficult management situation for car-
riers, but also made the devices more difficult to attack,
as a given vulnerability and subsequent exploit would
apply to a relatively small set of devices. With Android,
the iPhone and Windows Mobile now making up a sig-
nificant portion of the 31% of all users that own a smart
phone [7, 18], the situation has markedly changed to-
ward a more homogeneous deployment, which makes
for more efficient management, while simultaneously fa-
cilitating large-scale attacks [28].

The ubiquity and increasing power of so many mobile
devices poses a number of security challenges that must
be addressed. In this survey paper, we focus on Android
security. Specifically, we provide a taxonomy of mobile
platform attack classes with specific, concrete examples
as each class applies to the Android environment. Where
possible we also provide attack mitigations that can be
added to the current security model. The rest of this pa-
per is organized as follows. In Section 2, we provide
relevant background of Android’s security model and in
Section 3, we analyze new challenges that result from
this model. In Section 4, we detail specific attacks ap-
plicable to different parts of Android. These attacks ul-
timately provide privileged access for a determined ad-
versary. In Section 5, we provide possible mitigations
for some of the attacks considered. We offer concluding
remarks in Section 6.

2 Android Security Model
Android was created with certain security design prin-
ciples, such as privilege separation, in mind [38]. At
its core, Android is a Linux-based open-source oper-
ating system, with a layered structure of services [14]
including core native libraries and application frame-
works. Android natively separates applications and pro-
vides safety through operating system primitives and en-

vironmental features such as type safety [38]. At the ap-
plication level, each software package is sandboxed by
the kernel, making Android a widely deployed system
that employs privilege separation as a matter of course.
This sandboxing is intended to prevent many types of in-
formation disclosure such as one application accessing
sensitive information stored on the system or in the pri-
vate space of another application, performing unautho-
rized network communication, or accessing other hard-
ware features such as the camera or GPS. Applications
instead request access to system resources via special ap-
plication level permissions, such as READ SMS, which
must be granted by the user.

Android’s permission model requires each applica-
tion to explicitly request the right to access protected
resources. The permission model is intended to prevent
the unwarranted intrusion by an application on the user’s
data and the data of other applications, as well as limit
access to features that directly or indirectly cause finan-
cial harm (e.g. a mobile phone plan that charges for each
SMS message). Before installing an application, the user
is presented with a list of all1 the permissions requested
by that application which they must accept before instal-
lation begins. Not only is the permission set so confus-
ing that it is difficult for users to read and understand, but
it is also a binary decision where the user must accept all
requested permissions or not install the application [38].

The semantics of these application level permissions
may be difficult for most users to understand [21, 40],
but this understanding is further complicated with im-
plementation details and design choices. For exam-
ple, a method of inter-process communication employed
by Android known as Intents can be broadcast to sev-
eral software handlers existing in multiple applications.
Each application has the option of registering a handler
for an Intent, and for some Intents, an associated prior-
ity. When pondering permissions at install time, a user
has no way of knowing what priorities are assigned to
a given handler or what effects installation will have in
conjunction with already installed applications when a
particular event occurs.

Applications are made available to users through an
unmoderated venue, the Android Market. Any entity
can create an Android Market account for a modest fee,
and immediately make software available to the pub-
lic. While mobile applications on Android must be
signed, they are typically self-signed without employ-
ing any kind of central authority or any means for a user
to validate the authenticity of a certificate. This open
policy can actually make the market a means for propa-
gating malware [34]. Attackers can easily publish mali-
cious applications to a venue with over 4 billion down-

1We show later that this list is not necessarily comprehensive

loads [4], needing only an appealing facade to convince
users to install the malicious code.

The open nature of the Android market requires
a management model that facilitates reactive malware
management after applications have been installed.
The malware issue is currently addressed with remote
[un]install capabilities maintained by Google via the
Google Talk and Google Services software present on
every Android device. Following the identification of
malicious applications, possibly through Android users
rating an application negatively, Google may remove ap-
plications from the market and remotely kill and unin-
stall the applications from devices known to have down-
loaded the application [34]. Interestingly, while Android
is largely considered to be open-source, the sources for
software such as Google Talk, Google Services, the An-
droid market app (Vendor.apk), and carrier-specific up-
date software are not readily available. In this model the
user only maintains control of applications found in the
restricted user space, and even this can be over-ridden
via remote uninstall.

3 Android Security Model Analysis

Even with the inclusion of security as part of the original
design, the new security features create new opportuni-
ties for attack, and the growth of the platform provides
incentive. In this section we discuss several features of
the Android model that may make it vulnerable to attack.

Application model. Unprivileged application attacks
can take advantage of the complexity of the Android per-
mission model and the Android market to persuade users
to install malicious software and grant applications the
permissions required to deliver a harmful payload. Ap-
plications advertised in the Market must be signed by the
author, but the user has no means of verifying that a sig-
nature is associated with any particular entity [27]. Even
users that carefully monitor permission requests may not
fully understand the semantics of a particular permis-
sion or the framework behavior surrounding a permis-
sion. Many common users may simply not understand
the security trade-offs that surround permissions like
ACCESS SURFACE FLINGER or BIND APPWIDGET.
Other permissions, such as SEND SMS are more likely
to be recognized by users, and yet the framework imple-
mentations may cause undesired behavior. For example,
the receipt of an SMS on a device causes an Android
ordered-broadcast to be sent system wide. Applications
can register the ability to take action when the broad-
cast is observed by the application and can assign them-
selves a priority over the broadcast. Thus, an applica-
tion that registers a higher priority will receive and have
the ability to act upon this broadcast before any other

Vulnerability
Discovered

Vulnerability
Disclosed

Component Patch
Available

Google Releases
Patch

Manufacturer Makes
Patch

Carrier Releases
Patch

User Applies
Patch

D E F GA B C

Not Android Specific Android specific

Figure 1: Android patch cycle: Lifecycle of an Android patch from vulnerability identification until a patch reaches
the user device

Xpreia X10

1/10 2/10 9/108/107/106/105/104/103/10 Time4/113/112/111/1112/1011/1010/10

X
Google

2.1 (Eclair) X X
Motorola Droid

Samsung Moment
HTC Hero

X

Google

HTC Evo
Motorola Droid

X X

Droid X

X

HTC Legend

X X

Samsung Captivate

X
Samsung Fascinate

2.2 (Froyo)

OS Version

Motorola Cliq

myTouch 3G

X

myTouch 3G

X

Figure 2: Android version timeline: Google [3] and Manufacturer releases of Android 2.1 [25,29,30,43] and 2.2 [36]

application at a lower priority.2 In regard to SMS, this
means that any application with a priority higher than the
standard SMS application will have the ability to process
the incoming SMS message first, including the ability to
prevent the broadcast from being observed by any other
application. Malware employing covert communication
channels in this manner has already been seen [31, 39].
When a user grants permissions based on prompts that
show a RECEIVE SMS permission, such behavior is
likely unexpected.

Similarly, the only means a user has of understand-
ing the capabilities of an application is through the list
of permissions presented at install time. In addition to
the framework implementation issue mentioned above,
additional ambiguity is introduced via new permissions
that existing in later versions of the SDK. For example
the STORAGE permission group relates to accessing an
external SD Card. The STORAGE permission was not
available until API version 4, so the behavior of an older
application on a newer device is ambiguous. Current
devices simply do not display a comprehensive list of
permissions to the user. An older application that does
not request the STORAGE permission, it should not as

2Applications at the same priority receive the broadcast in an order
undefined by the Android API [2]

the permission is not defined for the older API, will still
implicitly have access to the SD Card [10].

In a stronger form of abuse of application permis-
sions, the attacker may craft malicious applications to
gain privileged (“root”) access to the user’s device. Typ-
ically a privilege escalation attack takes advantage of
Android’s slow patch cycle, explored below. When de-
ployed as a malicious application, the attack uses the un-
moderated market’s weaknesses as a vector to propagate
the malware to the user’s device.

Patch cycles. In an effort to increase adoption of the
Android OS, Google created the Open Handset Al-
liance to build cooperation between hardware manufac-
turers to facilitate implementation on their devices [9].
Through this cooperation, Google provides the base
open source operating system then device manufactur-
ers and telecommunications carriers modify this base to
differentiate their offerings from other Android devices
and provide added value to their customers. Figure 1
shows the patch cycle from a vulnerability’s initial dis-
covery until the patch eventually reaches the user’s An-
droid device. Patch cycle events A through C are typical
of any software product. The software fix represented
by C is typically the end of the vulnerability window
introduced at A. When considering one of the re-used
components in Android, such as WebKit, D-G are ap-

pended to the patch cycle. The additional states added
to the cycle come from Google’s cooperation with mul-
tiple manufacturers and carriers. Whenever a patch to
Android becomes necessary, Google provides an update
through their open source forum and manufacturers then
proceed to port the update to their customized version of
the operating system.

Google’s standard major release cycle is approxi-
mately four months, with minor patches released inter-
mittently [3]. However, this is not the date on which
these updates are actually available to users. Once
Google releases its patch, the manufacturer must then
update it to work with their custom hardware [23]. These
updates may actually never be made available to the user
if the carrier deems deployment too costly [44]. Af-
ter the manufacturer modifies the patch to work with
their custom device, there can be a delay before the
patch is released by the carriers. An example of a de-
lay between the manufacturers release of a patch and the
patch’s eventual release to the public can be seen in [33]
where AT&T postponed the release of Android 2.2 to the
Dell Streak creating a three month gap between states E
and F in Figure 1.

Examples of the disparity between Google’s release
of Android updates and their eventual release to specific
devices can be seen in Figure 2. It is not uncommon
to observe at least two months (and sometimes much
more) of delay between an Android update and an ac-
tual deployment of the update by the major manufactur-
ers. As a case in point, 2.1 only became available on
certain devices (e.g., Xperia X10) after Google had al-
ready superseded it with Android 2.2. With such a large
vulnerability window and the separate release dates for
Google and each manufacturer, attackers can use reverse
engineering techniques to identify and exploit a vulnera-
bility on a device using information available in the orig-
inal released patch or any other manufacturer that adopts
the patch earlier [22]. Platforms that exhibit slow patch
cycles regularly are at even greater risk since the patches
made available to comparable systems can be analyzed
in order to determine the vulnerable conditions making
the still un-patched devices easy targets.

Because of Android’s slow patch cycles, the standard
re-use of common software components that underline
the Android framework can cause increased vulnera-
bility. Within the Android framework, common open-
source components such as WebKit and the Linux kernel
are re-used to reduce the cost of system design. Com-
ponent re-use is a common practice among large sys-
tems such as Android. Apple’s iPhone similarly employs
WebKit [5] and a BSD kernel derivative (Darwin) [13].
The re-use of common software components itself is not
detrimental, but the additional delay introduced by An-
droid’s patching model is. Once a vulnerability in We-

bkit or Linux is discovered, it is generally patched and
released quickly by the open-source community, how-
ever the corresponding Android patch may not be avail-
able to users for months. The imbalance between the
Android patch cycle and the software components it is
built upon leaves a longer attack window for Android
devices. Similarly, due to Android’s Linux foundation,
lower level attacks are simpler when compared to less
ubiquitous OSes, as attackers do not need to learn a new
kernel [20]. For Android to provide a secure platform
it must not only strive for a secure framework, but also
provide timely updates to minimize the attack window.

Trusted USB connections. With local USB access a
developer can interact with an ADB (Android Developer
Bridge)-enabled device. The ADB is a development tool
provided by Android intended to gather debugging in-
formation from an emulator instance or USB-connected
phone [1]. The ADB provides further benefit to the user
by facilitating direct installation and removal of appli-
cations, bypassing the Android Market, and providing
access to an unprivileged interactive remote shell. Us-
ing the ADB interface, attackers can add and execute
malicious tools that exploit vulnerabilities in the device.
Such malware does not need to be present in the An-
droid market and will not be tracked for possible remote
uninstall by Google. With ADB access an attacker can
again take advantage of Android’s slow patch cycle to
gain privileged access to the device. However, this at-
tack could be carried out via ADB without installing any
application.

Recovery mode and boot process. Android devices
employ a special recovery boot mode that enables device
maintenance. The recovery mode allows the user to boot
to a separate partition on the device circumventing the
standard boot partition [41]. Android’s default recov-
ery mode image facilitates maintenance features such as
applying a system update to standard system and data
areas, cleansing a device of user data ostensibly for re-
sale, or software repair to restore life to corrupted (or
“bricked”) devices. Because there is no trusted compo-
nent to the boot system, attackers can utilize the separate
recovery partition by loading in their own malicious im-
age to gain privileged access to the user’s information
without affecting user data.

Uniform privilege separation. Users can download
applications marketed for security, however the effec-
tiveness of such applications is extremely limited. On a
typical computer, security software, such as anti-virus,
may require privileged access in order to secure per-
mission to scan all files. Security applications on An-
droid are limited to the same restricted environment as
every other Android application. Even applications that
claim to “block malware, spyware and phishing apps”

(e.g., [8]) require a rooted device in order to obtain the
necessary permissions to perform these functions.

Likewise, most Android applications that claim fire-
wall capabilities only provide call and SMS filtering. In-
deed, adequate network firewall features require a rooted
device [38]. Without security tools available, users can-
not identify malicious content and the burden falls on the
device manager.

4 Attack Classes
Perhaps unsurprisingly, full privileged device access is
guaranteed given physical access. Perhaps less surpris-
ing is the relative ease with which privileged access can
be obtained and the amount of nefarious activity that is
possible without privileged access. In this section we
describe unprivileged malicious applications and the cir-
cumstances and methods necessary to gain privileged ac-
cess to an Android device with respect to the following
attacker capabilities.
No physical access: Attack circumstances where it is
impossible to gain physical access to a user’s device.
Then the attacker must get the user to perform actions
on the attackers behalf. Such remote attacks commonly
rely heavily on social engineering [16]. To achieve the
appropriate initial access to the user’s device an attacker
must get some malicious software running on the device.
To run code remotely on a user’s device, the attacker typ-
ically must convince the user to either download a ma-
licious application or access malicious content via one
of the applications already installed on the device. If the
attacker can exploit a vulnerability on the user’s device,
then this access may be used further to gain privileged
access.
Physical access with ADB enabled: If the attacker finds
a device left unattended, yet obstructed via a password
or screen lock, the attacker may be able to exploit the
device through the Android Developer Bridge.
Physical access without ADB enabled: If the attacker
finds an obstructed Android device left unattended, but
is unable to use the ADB service, the attacker may still
gain privileged access via recovery boot.
Physical access on unobstructed device. In some cases
the attacker may actually have access to a device with-
out a password protected screen lock. Such a situation
allows the attacker to actually leverage any other attack
method since the attacker can choose to install applica-
tions, visit malicious websites, enable ADB on the de-
vice, etc.

We next detail specific attacks that demonstrate the
real threats present in the cases enumerated above. Note
that we do not include physically destructive attacks
such as opening the casing in order to access debugging
ports (e.g. JTAG). The last case is included for complete-
ness, but not specifically detailed since all of the men-

tioned attacks would also be applicable in the case of
physical access to an unobstructed device.

4.1 Unprivileged Attacks
Much like a user that will install an application inse-
curely downloaded from the Internet despite any oper-
ating system warnings, a user may easily install applica-
tions that request dozens of Android permissions with-
out a second thought. Applications that are restricted via
Android’s typical application sandbox, but that have co-
pious access to resources through permissions, can per-
form many of the same functions of malware common
on the personal computer platform [26]. For example
the Zeus botnet architecture has been ported to most
mobile platforms [15], worms such as Yxe have been
seen on SymbianOS [17], and Trojan malware has been
found in applications present in the legitimate Android
Market [12, 27]. Users that completely disregard, or are
tricked into accepting prompts from the device regard-
ing install time permissions effectively permit negative
actions completely at the application level.

In some cases, misleading the user may not even be
required. Some software handlers (Android Receivers)
may be registered by an application at install time. In-
tents expected to occur regularly or those that can be
remotely invoked can be used to achieve remote code
execution without requiring user action. Users may in-
stall applications from the Android Market web inter-
face, which initiates a remote install. Thus, an attacker
that has somehow obtained a user’s authentication to-
ken to the web interface can remotely install applica-
tions to a user’s device. To achieve remote code ex-
ecution the attacker simply has to perform an action
that results in the device generating an Intent that the
app for which the application has a receiver. Even se-
curity related features, such as the screen lock may be
remotely bypassed, by registering a receiver (for exam-
ple PACKAGE ADDED) and using the legitimate API for
KeyguardManager to disable the screen lock upon appli-
cation installation [24].

Application re-packing has proven to be an effective
means to entice users enough to download malicious ap-
plications. Entire families of Trojan software have been
classified in third party black markets as well as the offi-
cial Android market. Families such as Geinimi [35] and
DroidDream [32] have been found in dozens of applica-
tions in the Android market. Many of these applications
offer no additional value to the consumer, they are sim-
ply existing, popular applications that have been reverse
engineered enough that the attacker can augment the ex-
isting application with the malware and re-package the
application. The attacker then signs the new application
with a new key and makes the application available in
the market for victims to download.

The fact that malware can successfully operate within
Android’s restricted application environment signifi-
cantly lightens the attacker’s burden to achieve privi-
leged access through escalation. Applications executing
in an isolated environment simply obtain the appropri-
ate permissions from the user at install time and perform
nefarious activity from within the confines of the appli-
cation sandbox. Even so, attackers may wish to obtain
elevated privileges in order to perform actions for which
no application level permission exists, or in order to have
guaranteed persistence.

4.2 Remote Exploitation
When turning to privileged access, an attacker may rely
on convincing the user to install a malicious applica-
tion. Such an application may present an enticing fea-
ture to the consumer but contain software that executes
a privilege escalation attack. Oberheide [34] demon-
strated such an attack. Oberheide’s seemingly benign
application received more than 200 downloads within
24 hours [34]. In the background this application would
routinely make remote requests for new payloads to ex-
ecute. Whenever a new privilege escalation exploit was
discovered for the current running version of Linux, the
application could obtain the exploit to gain root access.
These exploits must be delivered to the application be-
fore the vulnerability is patched, which is generally easy
to do considering the long patch cycles discussed above.

Similar privilege escalation methodologies can be
found in legitimate device “rooting” applications such
as Root Tools [11], Easy Root [6], and Unrevoked [45],
which take advantage of vulnerabilities in the phone to
gain privileged access. Users can then use this access
to circumvent carrier controls over the use of a specific
software or upgrade to a newer version of Android that
their carrier has yet to release [41].

Deploying malicious applications with a benign fa-
cade through the Android Market takes advantage of
Google’s reactive philosophy toward malicious applica-
tions. Once on the Android Market, the attacker’s ap-
plication can now reach a global audience. Because
there is no screening of applications, attackers are given
a pedestal from which to entice the user.

A remote attack may not even require the installation
of a new application. Android’s use of commodity soft-
ware components, such as the web browser and Linux
base can be leveraged for an attack that requires no phys-
ical access [38]. A concrete example of such an attack
was deployed by Immunity Inc. for the penetration test-
ing tool CANVAS 6.65 [20]. In this attack the user visits
a malicious website using the device’s built-in browser.
The attacker then uses this request to take advantage of a
vulnerability in the WebKit browser [46] (CSS rule dele-
tion vulnerability) to obtain a remote shell access to the

device with the level of privilege given to the browser.
The attacker can then copy a Linux privilege escalation
exploit to an executable mount point on the device, run
the secondary exploit, and gain privileged access to the
whole device.

4.3 Physical Access with ADB Enabled
Similar to the previous case, it is possible for an attacker
to obtain privileged access through physical access to
a device that has ADB enabled [19]. Given physical
access, an attacker can easily determine if ADB is en-
abled, by connecting the device via USB and executing
adb get-serialno on the attached computer. If the
device’s serial number is returned, then ADB is enabled.

Once the attacker knows that ADB is enabled on the
device, a privilege escalation only requires the attacker
to use ADB’s push feature to place an exploit on the
device, and use ADB’s shell feature to execute the
exploit and gain privileged access.

Different from most remote attacks, an attack on an
ADB enabled device does not require any action from
the user. Privilege escalation using ADB does rely heav-
ily on the availability of an enabled debug bridge, which
is only usually the case on devices used by developers
and not the typical user. However, if the device is not
password-protected, the attacker could simply interact
with the common device interface and enable ADB.3

An example usage of this method for gaining priv-
ileged access is the Super One-Click desktop applica-
tion [42]. Super One-Click requires users to first enable
ADB debugging in the device. Once enabled, the appli-
cation exploits the device using the previously defined
method to give the user privileged access.

The main advantage of ADB-based attacks is the min-
imal observable footprint left on the device: no new ap-
plication needs to be installed on the device and a reboot
is not necessary. The lack of device modification in this
method makes it is much harder to trace than other at-
tacks, and is unlikely to be detected by security applica-
tions on unrooted devices.

4.4 Physical Access without ADB Enabled
On an obstructed device that does not have ADB en-
abled, the attacker may still take advantage of the de-
vice’s recovery mode [41]. Since the attack does not
rely on a software vulnerability specific particular to a
version of Android, the attack has more longevity than
other exploits such as the WebKit and Linux exploits
mentioned above. The deployment method is device-
specific leading to extensive fragmentation based on de-
vice model and/or manufacturer.

To use the recovery mode, the attacker must first cre-
ate a customized recovery image. The main modifica-

3e.g., via Settings - Applications - Development - USB Debugging.

tion necessary for this image is to the init.rc and
default.prop files in the initrd section of the im-
age. To give the attacker the necessary privileges, the
init.rc file must list the executables that they wish to
add with the rights necessary to be executed. Any exe-
cutables necessary for the attack must also be added to
the initrd section of the image.

Once the image is built and the attacker is able to gain
physical access to the device, the attacker must then at-
tach the device to a computer through a USB connec-
tion and run a manufacturer specific tool (e.g., fastboot
for HTC, RSDLite for Motorola, Odin for Samsung) to
flash the image to the recovery partition of the phone.
After the device has been flashed, the attacker then can
access the recovery image using a device specific key
combination (e.g., Power button while holding X for
Motorola Droid). When the device loads into the recov-
ery partition the init.rc file is executed. init.rc
can be modified to run any malicious code added to the
recovery image by the attacker, such as auto-installing
a root-kit without attacker interaction. Alternatively, the
attacker could update the default.prop file to en-
able ADB, crafting init.rc to give executable rights
to an su executable (added previously to the custom re-
covery image initrd). When the recovery image loads
the attacker opens an interactive shell on the device us-
ing ADB. The attacker can now simply execute the su
executable to gain root access.

Installing a malicious recovery image takes advantage
of the absence of any trusted boot system on Android
systems, so that it is possible to make changes to the
devices boot image and gain privileged access without
the need to provide any authentication to the device.

If an attacker is able to create a custom malicious re-
covery image, it is feasible for this attacker to gain priv-
ileged access on any device for which physical access
can be obtained. Installing a new recovery image and re-
booting the device is not a perfect vector as it can leave
an extensive footprint sans subsequent attacker cleanup.
However, the recovery image replacement has negligi-
ble effect on the user’s experience. While an attacker
would almost certainly have a malicious payload, this
technique is similar to methods described in [41].

4.5 Physical access to unobstructed device

If the device user has elected to not employ any kind
of obstruction, whether or not ADB is enabled on the
device is irrelevant, as any of the techniques described
above are possible if physical access to the device is
available. The attacker need only turn the device on,
download their malicious code, enable ADB on the de-
vice, etc. The method of attack that the attacker chooses
now depends upon other metrics, such as overtness. For

example, a malicious application remains observable by
the user and may potentially be uninstalled in the future.

5 Mitigations
We propose six possible mitigations to the attacks seen
in the previous section. Our proposals include reduc-
ing the patch cycle for Android updates, creating a
trusted class of applications with privileged access, en-
abling authentication on Android Market downloads and
the ADB, leveraging existing host security technologies,
and deploying a Trusted Platform Module (TPM) on An-
droid enabled devices.

5.1 Reduce the Patch Cycle Length
In all but one of the exploits show in Section 4, attackers
exploit some flaw in the operating system to gain root
privileges. Reducing the patch cycle length would mit-
igate these threats with greater effectiveness. Zero-day
exploits would still be possible, however the common
lingering threat will be reduced.

While Google has already demonstrated willingness
to act quickly with out of band patch releases in reaction
to certain attacks (e.g., [34]), reducing complete patch
cycles is a more difficult problem. Indeed, manufac-
turers make changes to the Android source to create a
competitive advantage. To reduce patch cycles, manu-
facturer modifications should not fundamentally change
the core components of Android, and thus should not re-
quire a lengthy time to port the patch. A fundamental
separation between the core of Android and manufac-
turer modifications should be established.

5.2 Privileged Applications
To mitigate application attacks that take advantage of
Android’s permission model many solutions have been
proposed.

Barrera et al. suggest a restructuring of Android per-
missions into a hierarchy to allow for finer grained
permissions that can be simpler for users to under-
stand [21]. Under a hierarchy, an application dis-
playing advertisements that would traditionally re-
quire INTERNET permission would need to have
INTERNET.ADVERTISING.adsite.com permis-
sion, which would limit its connection to a specific site
and let the user know exactly what the permission is used
for.

In [27] Enck et al. propose lightweight application
certification comparing the requested permissions of an
application to a set of security rules. If the application
does not pass any of the security rules, then possible ma-
licious activity is brought to the attention of the user.
Adding a certification mechanism to the Android frame-
work would require modification of the Android security
framework.

Android’s application model could also be adjusted
to allow certain applications to obtain additional, priv-
ileged device access. For example, Google could vali-
date that certain software vendors create security soft-
ware and grant applications created by these vendors
additional API functionality. Applications signed by
such a vendor could, for example, have read access to
the filesystem in order to facilitate anti-virus scanning
beyond limited scope typically granted to applications.
Such a configuration would allow users to install secu-
rity related applications without having to first root their
device. Because privileged applications will have unre-
stricted access to the device, these applications should
be certified by some governing entity before they can be
downloaded. This certification process could also help
mitigate some weaknesses of an unmoderated market.
With access to trusted security tools, users would be able
to monitor untrusted applications and provide appropri-
ate feedback. With a market model split into trusted and
untrusted applications, Google could provide enhanced
security with minimal administrative overhead and min-
imal reduction in the openness of the platform.

5.3 Leveraging Existing Security Tech-
nologies

There are several existing operating system security en-
hancements that could be ported to Android. In [37],
Shabtai et al. experiment with adding SELinux to An-
droid. An information-flow tracking system, Taint-
Droid, has been created by Enck et al. instrumenting An-
droid [26] to monitor applications and understand how
they interact with the user’s sensitive information. A re-
alized implementation of TaintDroid could gives users
real-time information about how an application uses the
permissions it is granted. Generally, operating system
level software modifications such as adding a firewall or
SELinux to Android involve porting existing technology
to the Android kernel and creating an application to fa-
cilitation administration.

5.4 Authenticated Downloads
Once an attacker has physical access to a device, adding
malicious applications becomes simple and quick by
posing as the legitimate user and downloading them
from the Android Market. To ensure downloads are
made only by the user, the market should require authen-
tication before every transaction, similar to the model
currently used by the iPhone.

5.5 Authenticated ADB
Because of the power given through the ADB, it should
not be accessible to unauthorized users. Android should
require the device to be unlocked before ADB can be
used. Any legitimate user should be able to unlock the

ADB Not

Enabled

Physical−ADBApplication−Only

Access Needed
No Privileged

Application−Escalation
Physical−Recovery

Access Needed
No Privileged

No Physical Access Physical Access

Not Obstructed

Obstructed

ADB Enabled

Privileged Access Needed

Privileged Access Needed

Figure 3: Attack chart: Android attack goals and re-
quirements.

device and once the connection is made, the session
could be maintained by preventing the screen from lock-
ing while it is connected via USB. With ADB authenti-
cation, the attacker no longer has a backdoor to bypass
the lock mechanism’s authentication process, mitigating
the ADB attack against obstructed devices.

5.6 Trusted Platform Module
To secure a device in a managed model scenario a root
of trust must be established. Using a Trusted Platform
Module (TPM) provides a ground truth on which device
security could be built, providing authentication of de-
vice state. Using a TPM would mitigate the recovery
image attack, which relies on the ability to change the
boot image. Assuming signed bytecode and authenti-
cation of the boot image, updates running unauthorized
code would become extremely difficult.

6 Conclusion
Android was designed with a focus on security, however,
as new security features are added, new vulnerabilities
become available for exploitation. This paper builds a
taxonomy of attacks on the Android OS. Figure 3 shows
how an attacker could rely on this taxonomy to decide
which attack path to pursue, given their own capabilities
(e.g., physical access available or not, ADB available or
not, etc).

We hope the present paper can further the discussion
on the security properties modern mobile operating sys-
tems such as Android should possess. Mobile security is
becoming a pressing challenge indeed.

Acknowledgments
This work is supported in part by CyLab at Carnegie
Mellon under grant DAAD19-02-1-0389 from the Army
Research Office, and by the National Science Founda-
tion under ITR award CCF-0424422 and IGERT award
DGE-0903659, as well as a hardware donation by
Google Inc.

References
[1] Android debug bridge. http://developer.

android.com/guide/developing/tools/

adb.html.

[2] Android developers. http://developer.

android.com/.

[3] Android developers sdk. http://developer.

android.com/sdk/android-1.1.html.

[4] Android market statistics. http://www.

androlib.com/appstats.aspx.

[5] Applications using webkit - webkit. http:

//trac.webkit.org/wiki/Applications\

%20using\%20WebKit.

[6] Easy root. http://www.unstableapps.com/

buyme.html.

[7] Factsheet: The U.S. media universe | nielsen wire.
http://blog.nielsen.com/nielsenwire/

online_mobile/factsheet-the-u-s-

media-universe/.

[8] Lookout mobile security - android market.
https://market.android.com/details?

id=com.lookout.

[9] Open handset alliance. http://www.

openhandsetalliance.com/.

[10] Permission list is incorrect for apks built with an-
droid 1.6 sdk. https://code.google.com/p/

android/issues/detail?id=4101.

[11] Root tools. https://market.android.com/

details?id=com.jrummy.roottools.

[12] Trojanized apps root android devices. http:

//blog.trendmicro.com/trojanized-

apps-root-android-devices/.

[13] Unix system family tree: Research and bsd.
http://www.freebsd.org/cgi/cvsweb.

cgi/˜checkout˜/src/share/misc/bsd-

family-tree?rev=HEAD.

[14] What is android. http://developer.

android.com/guide/basics/what-is-

android.html.

[15] Zeus targets mobile users. http://blog.

trendmicro.com/zeus-targets-mobile-

users/.

[16] Just because it’s signed doesn’t mean it isn’t spying
on you. http://www.f-secure.com/weblog/
archives/00001190.html, May 2007.

[17] Worm:symbos/yxe. http://www.f-secure.

com/v-descs/worm_symbos_yxe.shtml, May
2007.

[18] Android most popular operating system in
U.S. among recent smartphone buyers |
nielsen wire. http://blog.nielsen.com/

nielsenwire/online_mobile/android-

most-popular-operating-system-in-u-

s-among-recent-smartphone-buyers/, Oct.
2010.

[19] Rooting the droid without rsdlite. http:

//androidforums.com/droid-all-things-

root/171056-rooting-droid-without-

rsd-lite-up-including-frg83d.html,
Dec. 2010.

[20] Canvas: Owning android. http://partners.

immunityinc.com/movies/Lightning\

_Demo_Android.zip, Jan. 2011.

[21] D. Barrera, H. Kayacik, P. van Oorschot, and
A. Somayaji. A methodology for empirical analy-
sis of permission-based security models and its ap-
plication to android. In Proceedings of the 17th
ACM conference on Computer and communica-
tions security, pages 73–84. ACM, 2010.

[22] D. Brumley, P. Poosankam, D. Song, and J. Zheng.
Automatic patch-based exploit generation is possi-
ble: Techniques and implications. In IEEE Symp.
S.& P. 2008, pages 143–157, May 2008.

[23] J. V. Camp. Only 36.2 percent of android devices
run froyo. http://www.digitaltrends.com/

mobile/only-36-2-percent-of-android-

devices-run-froyo/, Nov. 2010.

[24] T. Cannon. Android lock screen bypass.
http://thomascannon.net/blog/2011/

02/android-lock-screen-bypass.

[25] C. Davies. Sprint htc hero android 2.1 update
released. http://www.slashgear.com/

sprint-htc-hero-android-2-1-update-

released-1986138/, May 2010.

[26] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: an
information-flow tracking system for realtime pri-
vacy monitoring on smartphones. In Proceedings
of OSDI, 2010.

[27] W. Enck, M. Ongtang, and P. Mcdaniel. On
lightweight mobile phone application certification.
In ACM Conference on Computer and Communi-
cations Security, pages 235–245. ACM, 2009.

[28] D. Geer, R. Bace, P. Gutmann, P. Metzger,
C. Pfleeger, J. Quarterman, and B. Schneier. Cy-
berinsecurity: The cost of monopoly. Computer
and Communications Industry Association, 2003.

[29] E. Hardy. Andoird OS 2.1 upgrade for T-Mobile
myTouch 3G, Motorola Cliq, Cliq XT coming

in August. http://www.brighthand.com/

default.asp?newsID=16767, July 2010.

[30] J. Herrman. Android 2.1 update finally live for
Motorola Droid. http://gizmodo.com/\#

!5505520/android-21-update-finally-

live-for-motorola-droid, Mar. 2010.

[31] K. J. Higgins. Researcher to release
smartphone botnet proof-of-concept code.
http://mobile.darkreading.com/9287/

show/54cc009853e3f863244c0b267a73ae86,
Jan. 2011.

[32] K. Mahaffey. http://blog.mylookout.

com/2011/03/security-alert-malware-

found-in-official-android-market-

droiddream/, Mar. 2011.

[33] L. Menchaca. AT&T sim-locked units and
the Froyo update - direct2dell. http:

//en.community.dell.com/dell-blogs/

Direct2Dell/b/direct2dell/archive/

2010/12/09/at-amp-t-sim-locked-

units-and-the-froyo-update.aspx, Dec.
2010.

[34] J. Oberheide. Remote kill and install on google
android. http://jon.oberheide.org/blog/

2010/06/25/remote-kill-and-install-

on-google-android/.

[35] B. Prince. Google android trojan, fbi raid linked
to operation payback lead security news. http:

//www.eweek.com/c/a/Security/Google-

Android-Trojan-FBI-Raid-Linked-to-

Operation-Payback-Lead-News-406931/,
Jan. 2011.

[36] J. Raphael. Android 2.2 upgrade list: Is
your phone getting Froyo? - Computerworld
Blogs. http://blogs.computerworld.com/

16310/android_22_upgrade_list, June
2010.

[37] A. Shabtai, Y. Fledel, and Y. Elovici. Securing
Android-powered mobile devices using SELinux.
Security & Privacy, IEEE, 8(3):36–44, 2010.

[38] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici,
S. Dolev, and C. Glezer. Google android: A com-
prehensive security assessment. Security Privacy,
IEEE, 8(2):35 –44, march-april 2010.

[39] T. Vennon. Android malware. A study of known
and potential malware threats. Technical report,
Technical Report White paper, SMobile Global
Threat Center, Feb. 2010.

[40] T. Vidas, N. Christin, and L. Cranor. Curbing an-
droid permission creep. W2SP 2011, May 2011.

[41] T. Vidas, C. Zhang, and N. Christin. Towards
a general collection methodology for android de-
vices. DFRWS 2011, Aug. 2011.

[42] A. Waqas. Root any android device and
samsung captivate with super one-click app.
http://www.addictivetips.com/mobile/

root-any-android-device-and-samsung-

captivate-with-super-one-click-app/,
Oct. 2010.

[43] T. Wimberly. Sprint releases android 2.1 for sam-
sung moment. http://androidandme.com/

2010/05/news/sprint-releases-android-

2-1-for-samsung-moment/, May 2010.

[44] T. Wimberly. Top 10 android phones, best
selling get software updates first. http:

//androidandme.com/2010/11/news/top-

10-android-phones-best-selling-get-

software-updates-first/, Nov. 2010.

[45] J. Wise. Unrevoked3 recovery reflash tool.
http://unrevoked.com/rootwiki/doku.

php/public/unrevoked3, Jan. 2011.

[46] B. Woods. Researchers expose android webkit
browser exploit. http://www.zdnet.co.

uk/news/security-threats/2010/11/08/

researchers-expose-android-webkit-

browser-exploit-40090787/, Nov. 2010.

