
A5: Automated Analysis of Adversarial Android
Applications

Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, Patrick Tague
ECE/CyLab

Carnegie Mellon University

ABSTRACT
Mobile malware is growing – both in overall volume and in num-
ber of existing variants – at a pace rapid enough that systematic
manual, human analysis is becoming increasingly difficult. As a
result, there is a pressing need for techniques and tools that pro-
vide automated analysis of mobile malware samples. We present
A5, an open source automated system to process Android mal-
ware. A5 is a hybrid system combining static and dynamic mal-
ware analysis techniques. Android’s architecture permits many dif-
ferent paths for malware to react to system events, any of which
may result in malicious behavior. Key innovations in A5 consist
of novel methods of interacting with mobile malware to better co-
erce malicious behavior, and in combining both virtual and physi-
cal pools of Android platforms to capture behavior that could oth-
erwise be missed. The primary output of A5 is a set of network
threat indicators and intrusion detection system signatures that can
be used to detect and prevent malicious network activity. We detail
A5’s distributed design and demonstrate applicability of our inter-
action techniques using examples from real malware. Additionally,
we compare A5 with other automated systems and provide per-
formance measurements of an implementation, using a published
dataset of 1,260 unique malware samples, showing that A5 can
quickly process large amounts of malware. We provide a public
web interface to our implementation of A5 that allows third parties
to use A5 as a web service.

1. INTRODUCTION
The number of applications available for mobile phones and

tablets has surged dramatically over the past couple of years; this
trend has been particularly pronounced for Android devices, that
now represent 73% of all mobile devices [17]. Concomitant with
this rise in the number of applications available, malware target-
ing mobile platforms, and specifically Android, has also started to
appear [16, 32, 39]. Even though industry reports of “exponential
growth” in mobile malware [13, 23] must be taken with a grain
of salt [22] there is little doubt that the overall volume of mobile
malware is increasing at a pace that makes it difficult to sustain
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systematic manual analysis. It is, therefore, important to develop
automated analysis capabilities for mobile malware.

Detecting, analyzing and combating mobile malware presents a
number of unique challenges. First, different from the situation
with personal computers, users generally do not have full admin-
istrative access to their mobile device, which makes it much more
challenging to develop effective anti-virus tools. Second, carriers
and network operators, who can fairly tightly control the network,
may have only limited capabilities to control individual devices.
Third, techniques useful to “sandbox” potentially harmful applica-
tions, such as virtualization, are much less mature on mobile de-
vices than they are on PCs.

These unique challenges suggest that traditional malware anal-
ysis and detection methods need to be rethought in the context
of mobile devices. For mobile devices, network-based identifiers
(e.g., network traffic patterns) are considerably more actionable
than host-based identifiers (e.g., writing a specific file). Indeed,
a carrier or operator could easily disconnect, and potentially reset,
a mobile device that produces suspicious network traffic. On the
other hand, detecting, on the device itself, that an application is ma-
licious is much more complex without elevated privileges. In other
words, given the current administrative models, network-based in-
trusion detection systems appear considerably more useful to mo-
bile devices than their host-based counterparts.

We use these insights to propose “A5,” short for Automated
Analysis of Adversarial Android Applications. A5 is a system that
draws conceptual design from existing dynamic analysis (or “sand-
box”) systems. At a high level, A5 executes malware in a sandbox
environment that consists of some combination of physical devices
and virtual Android systems hosted on a PC. A5 allows malware
to connect to the Internet, in order to record network threat indi-
cators and create network intrusion detection system (IDS) signa-
tures. These signatures can in turn be used by an enterprise to pro-
tect mobile devices that connect to the Internet through a corporate
network or to protect all corporate devices by forcing mobile de-
vice traffic through a network proxy. Similarly, cellular providers
could use these signatures to protect devices connected to carrier
networks.

The key novelty in A5 is to use a combination of static and
dynamic analysis to coerce the application into triggering its ma-
licious behavior. Indeed, in mobile applications, activity can be
triggered by a wide assortment of system events – for instance,
receiving a phone call, or having the screen go into lock mode.
A5 attempts to exhaustively determine all possible paths that can
trigger malicious behavior, before separately evaluating them. Do-
ing so, A5 can capture activity that would be missed by naïvely
executing the malware (i.e., simply “clicking on the icon”). Fur-
thermore, by combining physical devices with virtual Android im-
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ages, A5 can capture a wider range of malicious behavior than a
sandbox solely based on emulation would and can correctly pro-
cess malware that employs certain types of sandbox evasion tech-
niques. Likewise, A5 can accommodate a wide range of differ-
ent hardware and software (e.g., SDK) configurations. To the
best of our knowledge, A5 represents the first open source sand-
box designed for mobile malware. The source code for A5 can
be found at https://github.com/tvidas/a5. We also
provide a public, web-based interface to an instance of A5 at
http://dogo.ece.cmu.edu/a5.

In the reminder of this paper, we first introduce background on
static and dynamic analysis in section 2, where we also differenti-
ate A5 from the relatively large body of related work on Android
security. We then describe the design and architecture of A5 in
section 3. We present a performance evaluation of our current im-
plementation of A5 in section 4, notably showing that, using paral-
lelism, A5 is able to analyze 1,260 unique malware samples in just
over 10 hours. We discuss A5’s limitations in section 5, and draw
conclusions in section 6.

2. BACKGROUND AND RELATED WORK
Without access to source code for analysis, inspection and un-

derstanding, one must resort to other techniques when analyzing
compiled software. In the context of malware analysis, dynamic
analysis involves executing the malware samples to observe their
behavior [25]. Conversely, static analysis refers to techniques that
inspect or process a sample, but never execute the malware [14].
Manual, static analysis, colloquially known as as “reverse engineer-
ing,” can be very effective, but often requires highly trained indi-
viduals and is time consuming. Thus, it is difficult to scale manual
analysis at the pace that mobile malware is growing – both in terms
of volume and in number of existing variants [13, 16, 23, 32, 39].

A dynamic analysis technique often used in vulnerability dis-
covery can be automated to process input to samples automatically.
Fuzzing is the process of sending data as input to a program, possi-
bly intentionally invalid data, in order to coerce a desired condition
or behavior. The input can be created programmatically to cover a
range of inputs, and in this way can be thought of as a brute-force
attack against the software. This technique may be considered inel-
egant, but fuzzing implementations are often straight-forward, and
effective. Fuzzing is used in automated vulnerability discovery to
find software vulnerabilities that are not feasible to audit in any
other way [29].
Malware sandboxes. Malware sandboxes automate dynamic anal-
ysis techniques to inspect large volumes of malware automatically.
The general operation of a sandbox system is to execute each in-
put sample much like a user would, but in a controlled environment
instrumented to monitor host and network activity. The sheer vol-
ume of unique malware samples on traditional computers makes
the use of automated sandboxes appealing. Numerous commercial
products, such as CWSandbox [37], and academic projects, such
as ANUBIS [6], have appeared over the past several years. Au-
tomated sandboxes often scale linearly with computational power.
A sandbox addressing computer malware may boot a virtual ma-
chine, copy the samples to the virtual machine, then execute the
sample. The sandbox can monitor and report on changes to the
host (i.e., registry keys, files) and network communications. For
instance, Rossow et al. present a dynamic analysis system called
Sandnet [25], which is used to collect network traffic from PC mal-
ware samples. Sandnet is used to process 100,000 samples and the
authors find that DNS and HTTP have novel trends in malware use.
Malware analysis systems for Android. The work most related to
A5 is a dynamic analysis system called Andrubis [2]. Andrubis is

an extension to the automated PC malware analysis project ANU-
BIS, but is designed for processing Android packages. The inner-
workings of Andrubis are not publicly known, but the creators al-
low anyone to interact with a public interface via website. Blasing
et al. [7] describe another dynamic analysis system for Android.
Their system focuses on classifying input applications as malicious
(or not). The system instruments Linux features and scans applica-
tions for the use of potentially dangerous criteria. Like Andrubis,
this system interacts with the malware by starting the application’s
primary Activity.

A5 differs from these two systems primarily in the way A5 in-
teracts with the malware—using multiple techniques to coerce the
execution of the malicious code. However, there are several other
differences such as the parallel implementation of A5, support for
every Android API version, and the ability to use virtual instances,
physical devices or both.

DroidBox [21] is a generic app monitoring tool for Android apps.
It monitors an Android app for various activities at runtime, such
as incoming and outgoing network data, file read and write opera-
tions, services started, etc. It then provides a timeline view of the
monitored activity from the app. DroidBox is useful for manually
identifying malware by viewing its observed behavior. Compared
to A5, DroidBox does not automatically coerce the app into under-
taking particular behaviors, and A5 specifically captures network
traffic for finding malicious network indicators. In addition, A5
uses static-analysis in addition to dynamic monitoring of the app to
find coercion points automatically.

Similar to A5’s bytecode static-analysis, ComDroid [8] per-
forms static-analysis of decompiled bytecode of Android applica-
tions. ComDroid performs flow-sensitive, intra-procedural analysis
to find Android “Intents” sent with weak or no permissions—but
contrary to A5, ComDroid does not perform any dynamic analy-
sis.

A5 currently only captures network traffic to aid in finding ma-
licious network indicators. It may make sense to pair A5 with taint
tracking systems such as TaintDroid [10] in order to track host-
based malware indicators. For instance, Andrubis employs Taint-
Droid. However, it may take significant effort to extend TaintDroid
to support all SDK target versions and to work with a range of
physical devices, as A5 does right now.
Automated signature creation. Automating the tedious and error-
prone process of creating network IDS signatures is a well re-
searched topic but remains an open problem. As a representative
example, Kim and Karp create an automated system called Auto-
graph that generates signatures for TCP-based Internet worms [19].
Like many efforts at automatic signature creation, Autograph’s de-
tection mechanisms are particularly designed to address one type
of malware, in this case worms. As such, Autograph’s pre-filtering
step that discerns unsuccessful TCP connections, is not particularly
useful for identifying malicious Android application traffic. A dif-
ferent system called Honeycomb presents similarities to A5’s de-
sired goal of automatically creating IDS signatures. Kreibich and
Crowcroft describe the system which collects traffic from a hon-
eypot and subsequently creates network signatures [20]. Since the
network traffic is captured from a honeypot, the traffic is assumed
to be malicious (or at least suspicious). A5 similarly assumes that
all input is malware, but due to the repackaging common in An-
droid malware, malicious network traffic is likely to be mixed with
benign traffic.

3. A5 ARCHITECTURE
The immediate need for a system like A5 is driven by increasing

volumes of mobile malware. However, the design of A5 is also
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directed by several criteria borrowing from the more mature field of
PC-based dynamic analysis and the unique nature of today’s mobile
device ecosystem. Here we enumerate a list of desired features for
such a system, and describe an implementation designed to meet
these goals.

3.1 Objectives and Design
Autonomy and scalability. The system must be able to handle vol-
umes of malware without user interaction. As with PC malware,
mobile malware is now growing at a rate that makes manual, hu-
man analysis unfeasible.

Evasion resistance. The system must be able to adapt to evasion
advances in malware. As seen in the PC, mobile malware is in-
creasing in sophistication. With the advent of automated malware
processing, malware authors have already begun to include minor
attempts to evade sandbox systems.

Mobile-specific interaction. The system must interact with mal-
ware in Android-specific ways. It is indeed more difficult to so-
licit malicious behavior from current mobile malware, than tradi-
tional malware. Simply executing the malware (i.e., “clicking on
the icon”) may not exhibit any malicious behavior. Indeed, current
mobile operating systems permit applications to register a software
handler for a wide range of system events; for instance, receiving
an SMS, screen going in lock mode, and so forth. Any such event
may trigger some application code. Traditional computer programs
may receive input along with execution; mobile applications may
receive input along with a myriad of system events. In either case,
the behavior may depend upon the input to the application.

Network-level indicator collection. The system should primarily
collect network threat indicators. Host-based indicators, such as
the modification of a file found on the device, are of limited value
on Android. Indeed, since Android’s architecture does not permit
file system hooks, and, more generally does not even permit privi-
leged access to most components of the system, it is not possible to
implement controls similar to anti-virus products found on the PC.
Even if Android’s architecture were adapted to permit such prod-
ucts (e.g., by systematically “rooting” devices), network indicators
are particularly useful to cellular carriers and/or wireless network
operators to protect the device even without the ability to install
controls on the device itself.

Modularity. The system should have a modular, expandable design.
Mature analysis systems need to have interfaces allowing for the
system to interact with other software systems such as intrusion-
detection systems (IDS) or firewall management tools. This re-
quirement is generally driven by entities that have larger research
and analysis environments of which A5 may become a component.
Additionally, the system must be generally able to adapt to unfore-
seen circumstances, such as malware that exhibits some new be-
havior or technology that was not yet imagined when the system
was designed.

Based on these objectives, we made the following design choices
for the A5 architecture. To process as much malware as possible,
A5 is highly parallel and distributed. The basic steps involved are
shown in Figure 1 and detailed in the following sections. A5 con-
sists of a queue, a main controller, and a set of workers which in-
teract with a pool of device instances – these device instances are a
combination of hardware resources (e.g., a specific phone model),
and Android images running as virtual machines on a traditional
PC.

First, malware is moved into the system and two stages of static
analysis are performed to determine methods of interacting with

Figure 1: A5 architecture. Malware is first ingested (1) into a shared
job queue. Independently, an overall controller is started (2) which
starts one or more Worker processes (3). Each Worker retrieves jobs
from the queue (4) and either postpones work or reserves a device in-
stance (5) for dynamic analysis (6). Once analysis is complete, the de-
vice is returned to the ready pool (7). There may be many Workers and
Device Pools on a single host. The controller and job queue may service
many hosts (each with many Workers).

the malware. Once static analysis is complete, an entry is cre-
ated in a job queue for subsequent dynamic analysis. Later, one
of many worker processes retrieves the job from the shared queue
and executes the malware using an available device from the device
pool. The dynamic analysis is informed from the static analysis;
this combination of static and dynamic analysis allows our system
to better coerce malware to execute nefarious behavior.

The remainder of this section details the implementation of A5.
In particular, each of stage 1 static analysis, stage 2 static analy-
sis, and dynamic analysis are detailed. Then, the concept of device
pools consisting of virtual and physical devices is described, fol-
lowed by a discussion of some Android-specific interaction tech-
niques.

3.2 Malware Ingestion
A5 assumes all input samples are malware. The primary func-

tions of the ingestion process are to create a shared job queue entry,
(we use beanstalkd1), to calculate several pieces of meta-data (such
as cryptographic hash values), and to initiate the static analysis.

A5’s ingest process is designed to run on each individual sample.
This allows for on-demand submission, such as what one may ex-
pect of a web service, and as a batched process consuming samples
periodically. This allows all of A5 to run perpetually with no in-
teraction from a user. Many security companies receive thousands
of samples daily from sources such as VirusTotal [35] or MWCol-
lect [36]. These incoming samples can easily be sorted, for exam-
ple, to collect all Android samples in one location for input into
A5.

3.3 Static Analysis
A5 first resorts to static analysis to try to detect potentially mali-

cious actions. In Android, applications are usually written in Java
(less than 5% have “native” C components [40]), and are distributed
as APK (Android package) files. These APK files are in fact Zip

1beanstalkd can be found at http://kr.github.com/
beanstalkd/ and is described as “a simple, fast work queue”
originally designed to reduce latency on high-volume websites.
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archives, which contain compiled Java classes (in Dalvik DEX for-
mat), application resources, and an AndroidManifest.xml bi-
nary XML file containing application meta-data. The structure of
Android applications and the Android security mechanisms have
been well-documented [12, 27] and many tools exist for creating
and manipulating APKs [3, 5].

Typically, Android applications that have a user interface specify
at least one Android Activity and those that do not have a user in-
terface specify at least one Service. These are classes that typically
contain the core functionality of the mobile application, and are the
primary method for executing application code. Much of the inter-
action with an Activity will be through the Graphical User Interface
(GUI). However, a Service may exhibit no GUI components at all,
requiring different interaction during later dynamic analysis.

Android Inter-Process Communication (IPC) typically occurs in
the form of an Android event known as an Intent. For instance,
Intents are used to transfer information between applications and
to notify applications when a particular system event, such as the
receipt of a text message, has occurred. Since Android Services
have no GUI, it is precisely these types of events that initiate a
Service.

The chief output of static analysis is an enumeration of “interac-
tion points” (e.g. Activities) and a set of “receivable intents” (e.g.
BOOT_COMPLETED). Any of these may cause the application to
take actions that would not normally occur if the application was
simply launched using the graphical interface. As such, A5 will
use these sets in order to coerce behavior from the malicious ap-
plication. Many of these meet the need for better mobile-specific
interaction.

3.3.1 Stage 1 Static Analysis: AndroidManifest
Much of the stage 1 analysis in A5 revolves around the

AndroidManifest.xml file. This file dictates much of how
an application may interact with the device. Each application must
advertise the desire to receive particular Intents by declaring per-
missions in the AndroidManifest. Similarly, through documenta-
tion [34] and source code analysis [15], use of certain API functions
implies the ability to receive certain Intents.

Even though the manifest is stored in binary XML form, tools
are readily available for parsing key components such as requested
permissions, broadcast receivers, background services, and activi-
ties. Each of these components define key interaction points for the
application, and are cataloged for later use in dynamic analysis.

For instance, an Android BroadcastReceiver or “receiver”
is a way for an application to register the desire to receive an
Intent from the system or another application. A receiver from
recent Android malware is shown in Figure 2. A5 parses and
saves the action from this portion of the manifest, in this case
receipt of an SMS message. During dynamic analysis, the re-
ceipt of a text message may be the only action that invokes the
.message.SmsReceiver method. Therefore, Analysis sys-
tems that do not employ this SMS interaction will never encounter
the malicious behavior.

Instead of creating yet-another-tool to extract pertinent informa-
tion, we elected to leverage an existing open source tool known as
Androguard [1]. If Androguard did not support a particular func-
tion that A5 required, we implemented the feature and submitted
patches back to the Androguard developers.

3.3.2 Stage 2 Static Analysis: Bytecode
In addition to the relatively naïve stage 1 analysis of the Android

application manifest, we also analyze the Java bytecode of the ap-
plication binaries. The goal of this stage 2 static analysis is to iden-

1 < r e c e i v e r
2 a n d r o i d : n a m e =" . message . SmsReceiver "
3 a n d r o i d : e n a b l e d =" t r u e "
4 a n d r o i d : e x p o r t e d =" t r u e " >
5 < i n t e n t − f i l t e r
6 a n d r o i d : p r i o r i t y =" 214783648 " >
7 < a c t i o n
8 a n d r o i d : n a m e =" a n d r o i d . p r o v i d e r . Te lephony .

SMS_RECEIVED" >
9 < / a c t i o n >

10 < / i n t e n t − f i l t e r >
11 < / r e c e i v e r >

Figure 2: Receiver from ANDROID-DOS malware. A5 notes the ac-
tion for this receiver. Receipt of a text message may be the only way this
method is executed. In other words, the .message.SmsReceiver
code may never be invoked if the instance never receives a text mes-
sage.

tify additional interaction points which enable users or the system
to interact with the application. While many interaction points are
declared in the application manifest, some may be created dynam-
ically by the application, thus being missed by naïve analysis.

An example of an interaction point that may be missed during
stage 1 is shown in Figure 3. The application in Figure 3 performs
a registerReceiver call registering the desire to be notified
when either the user begins interacting with the device or the de-
vice screen turns off. Neither of these Intents are found in the
AndroidManifest.xml.

The stage 2 static analysis algorithm is fairly intuitive. First,
A5 invokes the DED [11] decompiler to create Java classes from
the Android application code. Next, A5 uses Soot [30] to obtain an
Intermediate Representation (IR) and a Control Flow Graph (CFG).
This abstract IR is known as Jimple [31] and is useful because it
eases the burden of dealing with the more complex Java bytecode.

Each node in the CFG represents one Java statement, and the
graph edges correspond to the relationship between the statements
in the malware. A5 traverses the CFG in order to find nodes that
represent a known Android interaction point.

Each CFG node is further decomposed into an Abstract Syntax
Tree (AST) representing individual components of the statement.
Specifically, A5 looks for calls to android.content.Con-
text.registerReceiver() and android.app.Act-
ivity.startActivityForResult(). Calls to an-
droid.content.Context.registerReceiver(), as
shown in line 6 of Figure 3, result in the application becoming
eligible to receive Intents with a specified Action (i.e. a particular
string). Similarly, calls to android.app.Activity.start-
ActivityForResult() result in the application making a call
to another application, but with an embedded Intent for the callee
to make a callback to the target application. When A5 discovers
one of these calls, the CFG is recursively traversed in order to
resolve variable definitions. These definitions must be resolved
in order to capture Intents that represent interaction points. For
example, Figure 4 shows a call to registerReceiver at line 5,
however, the AST node only contains the component for variable
bootcif. A5 recursively traverses the CFG to determine the
variable definition at line 2.

Much like the stage 1 static analysis, the output of the bytecode
static-analysis is a set of receivable Intents for use during the dy-
namic analysis.
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1 p u b l i c s t a t i c vo id h ( C o n t e x t pa ramContex t )
2 {
3 I n t e n t F i l t e r l o c a l I n t e n t F i l t e r = new I n t e n t F i l t e r ( ) ;
4 l o c a l I n t e n t F i l t e r . addAc t ion ( " a n d r o i d . i n t e n t . a c t i o n . USER_PRESENT" ) ;
5 l o c a l I n t e n t F i l t e r . addAc t ion ( " a n d r o i d . i n t e n t . a c t i o n . SCREEN_OFF" ) ;
6 pa ramContex t . r e g i s t e r R e c e i v e r ( new U s e r A c t i v i t y R e c e i v e r ( ) , l o c a l I n t e n t F i l t e r ) ;
7 r e t u r n ;
8 }

Figure 3: Code section reverse engineered from a GoldDream malware sample. Here, the desire to receive USER_PRESENT and SCREEN_OFF
Intents are registered dynamically - these Intents do not appear in the AndroidManifest.xml and would be missed by analysis techniques that do not
incorporate bytecode level analysis.

1 C a l e n d a r c = C a l e n d a r . g e t I n s t a n c e ( ) ;
2 S t r i n g b o o t c = " a n d r o i d . i n t e n t . a c t i o n .

BOOT_COMPLETED" ;
3 i n t s e c o n d s = c . g e t ( C a l e n d a r .SECOND) ;
4 i n t e n t F i l t e r b o o t c i f = new i n t e n t F i l t e r ( b o o t c ) ;
5 r e g i s t e r R e c e i v e r ( b o o t c i f ) ;

Figure 4: Code section demonstrating the need to resolve variables.
In this case the CFG is recursively traversed in order to find the value
of bootcif at the time registerReceiver is called in line 5. In this
case, A5 concludes that the program dynamically registered the desire
to be notified when the system has finished booting.

3.4 Dynamic Analysis
The ingestion process and static analysis components execute

relatively quickly, but the dynamic analysis portion is more time-
consuming. Fortunately, it also lends itself to parallel execution.
Figure 1 depicts many workers on a single A5 host. Worker pro-
cesses on each A5 host retrieve jobs from the shared job queue for
processing. Once a new job has been reserved from the queue, the
Worker inspects a pool of candidate Android instances available
to that particular host attempting to reserve a compatible instance.
A compatible instance is one in which the malware sample is ex-
pected to run. For example, a mobile application that declares a
minimum SDK (Android API) level of 8, will not run on a level 4
device. Even if the application were to be modified by A5 to specify
level 4 prior to instance selection, the application may actually rely
upon a feature not available until level 8. Assuming a compatible
instance is available, the Worker continues with dynamic analysis.
If no compatible device is available, the job is placed back into
the queue with a delay in order to reduce the chances that Work-
ers repeatedly reserve the same job when no compatible instance is
available – effectively de-prioritizing other pending samples.

Figure 5: Worker process flow. Communication with the device in-
stance is performed using the Android Debug Bridge (ADB), and out-
put from the static analysis is utilized in dynamic analysis interaction.

The Worker then boots the instance and follows the process de-
picted in Figure 5. Communication with a running instance is per-
formed with the SDK debugging tool known as the Android Debug
Bridge (ADB)2. Since the boot may take some time, the worker
initiates the boot process, then, using ADB, blocks until the device
is fully booted. Once booted, A5 uses ADB to install the malware
sample into the instance. Once the sample is installed, the Worker
coerces malicious behavior from the instance, again using ADB.
After a set period of time the Worker terminates the instance and
returns it to a known state.

3.5 Instance Pools
When retrieving a new job, the Worker must locate a device in-

stance compatible with the malware sample. For this reason, A5
maintains pools of devices on each host. Each instance in the pool
may be a physical or virtual instance, as detailed below. Workers
synchronize the use of instances by maintaining instance state in a
data structure shared among Workers on each host.

Virtual instances have the benefits of being low-cost, easy to au-
tomate and generally flexible. On the other hand, virtual devices
are not typically used in everyday computing, so malware that can
detect the virtual environment may elect to exhibit alternate behav-
ior. In this light, the use of physical devices may be warranted.

3.5.1 Virtual Instances
Virtual instances in A5 are realized with modified versions of

the emulator distributed with the Android SDK. These instances all
are stored and executed on commodity computer hardware. Using
virtual instances allows A5 to scale easily by simply creating larger
instance pools as needed. Resetting a virtual instance to a known
state is as simple as starting the instance with a “wipe data” flag or
deleting and recreating the instance image from scratch.

However the emulator offers a subset of features found on a real
device. The lack of features can be coarsely grouped into two
classes: features not implemented by the emulation system and
software that is not present in the emulated device image. An ex-
ample of the former is Bluetooth, which is not implemented in the
emulator, but is present on most devices. An example of the latter
is the Google Play application, which is pre-installed in nearly ev-
ery Android device sold, but is not present in the default emulated
device image.

The lack of features presents a fundamental problem to a dy-
namic analysis system: if malware makes use of one these missing
features, the malware will not run properly. This change in behav-
ior may be explicit (malware employs “virtualization detection”) or
implicit (the malware happens to try to use a missing feature). In
either case, the desired behavior from the sample will not be real-
ized.

2http://developer.android.com/tools/help/
adb.html
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1 S t r i n g v0 = T e l e p h o n y U t i l s . g e t I m s i ( ( ( C o n t e x t )
t h i s ) ) ;

2 i f ( v0 == n u l l ) {
3 r e t u r n ;
4 }
5
6 p u b l i c s t a t i c b o o l e a n i s E m u l a t o r ( ) {
7 b o o l e a n v0 ;
8 i f ( ( B u i l d .MODEL. e q u a l s I g n o r e C a s e ( " sdk " ) ) | |

( B u i l d .MODEL. e q u a l s I g n o r e C a s e ( "
g o o g l e _ s d k " ) ) ) {

9 v0 = t r u e ;
10 }
11 e l s e {
12 v0 = f a l s e ;
13 }
14 r e t u r n v0 ;
15 }

Figure 6: Simple evasions are starting to appear in real malware ob-
served “in-the-wild.” This example is from Android.hehe malware,
which attepts to evade analysis by detecting that an instance is an em-
ulator via Build strings common in developer SDKs, and by checking
for the lack of a device subsciber ID which is common in the Android
emulator.

On traditional computers, virtualization detection was initially
not found at all. It was later employed more frequently to evade
dynamic analysis systems: If the malware detected it was running
within a virtual machine, the malware would demonstrate benign
behavior. The increased use of virtualization detection by malware
in turn led to creating dynamic systems employing physical ma-
chines [28]. However, as virtual machines and, more generally, vir-
tualization, is increasingly employed on laptops and desktop com-
puters, running in a virtual machine is not a give-away that the plat-
form is attempting to analyze a piece of malware. In other words,
new forms of malware may paradoxically employ virtualization de-
tection less frequently.

In today’s mobile computing paradigm, the devices physically
move with the user and data bandwidth at any given time varies
greatly. Contrary to traditional computing platforms, there is not
yet a clear use-case for virtualization in typical end-user environ-
ments. Resources such as bandwidth or power are far more con-
strained and devices are typically not shared among multiple users.
However, if systems like A5 are increasingly deployed – as we be-
lieve they will be – virtualization detection in mobile malware will
become a reality.

Manual analysis of malware families in 2012 [39] revealed that
the current generation of mobile malware did not yet employ vir-
tualization detection. Even so, Vidas and Christin explored pos-
sible methods such detection might be implemented and provided
a taxonomy of several methods [33]. Following this work, recent
malware is starting to employ such detections “in-the-wild”. For in-
stance, a recent Android Malware (Jan 21, 2014), Android.hehe [9],
implements two checks: (1) the nonexistance of an IMSI - a unique
cellular subscriber numer and (2) the existance of Build. strings
that are exactly “sdk” or “google_sdk” as shown in Figure 6. Simi-
larly, Android Malware "Oldboot" (Apr 2, 2014) identifies the run-
ning location of the malware instance (/sbin/meta_chk) and
exits if the path is not as expected or if there is no sim card present.

In A5, the emulator software is built from source, and subse-
quently the resulting emulator is similar to the emulator distributed
with the binary Android SDKs. However, we enhanced the em-
ulator to evade some virtualization detection features. For exam-
ple, an unmodified emulator will always return the same values

for APK calls such as TelephonyManager.getDeviceId()
(all zero’s) or Settings.Secure.ANDROID_ID (null). By
modifying the virtual instances such that values indicating a physi-
cal rather than a virtual device is in use, A5 becomes less detectable
by malware seeking to determine if execution is occurring in a vir-
tual sandbox. A5 makes such changes in Build parameters, the
TelephonyManager class, and the default networking configu-
ration. A5’s emulator instances have configurable settings in these
cases each instance returns values that simulate values observed on
real devices.

However, even with modifications that make the emulated An-
droid instance more like a physical device, there are large voids in
the emulated environment. Malware need only check for one of the
many hardware features not currently implemented such as Blue-
tooth, Wi-Fi, sensors, etc. These hardware features are very com-
mon in physical devices and are simply not present in the emulator.
Implementing entire systems to emulate these is a large undertak-
ing and has not been done as part of the current A5 implementation.
For this reason, it is currently trivial for malware to detect that the
malicious application is currently running in a virtual environment
and not a real device. To address this issue, we complement our
virtual environment with physical device pools.

3.5.2 Physical Instances
By using real, physical devices in A5 device pools, we prevent

malware from being able to trivially determine from hardware pres-
ence that the sample is being processed by a dynamic analysis sys-
tem. The real devices possess actual hardware for systems that
are missing in the virtualized environment, such as Bluetooth. A5
systems relying upon physical instances can scale linearly by pur-
chasing more devices.

Physical devices embody a wide range of software features and
hardware capabilities. As with typical computers, more recent de-
vices have more computing power and are distributed with more
recent software. In order to process all samples with physical de-
vices, at least one device is needed for every Android SDK target
version.

Resetting a physical device to a known state is not as simple as
resetting a virtual instance. Android devices do not typically have
boot modes that can be controlled remotely, such as PXE found on
many modern network adapters. In fact, typically the only boot-
time interface to Android devices is the USB/charging port. Vari-
ous manufacturers support proprietary flashing protocols, but some
devices employ the more approachable fastboot protocol. Critically
for A5, fastboot supports erasing from and writing to device data
partitions. A device may enter fastboot mode prior to loading the
operating system when a person uses a special hardware key combi-
nation. However, ADB can also be used to reboot a running device
directly into fastboot mode. In this way A5 can programmatically
return a physical device to known state prior to each execution.
In order to write data to a partition, the device must be “unlocked.”
Manufacturers each have different positions on whether a consumer
should have the ability to write data to a device. Developer-friendly
devices, such as the Nexus-branded devices, can all easily be un-
locked. Similarly, these devices also support fastboot making them
ideal devices for automated use in A5.

Unlike virtual devices, physical devices are capable of actual
physical medium communication. Physical devices can communi-
cate over cellular, Wi-Fi, Bluetooth, NFC, etc. To permit devices to
exhibit network behavior, A5 devices are configured to connect to a
wireless access point that routes to the Internet. This wireless con-
nection provides a method for for network package capture, but can
also leak sensitive information or be used by a miscreant to attack
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a local resource. Furthermore, the wireless environment around the
device may change due to outside circumstances. For example, a
neighbor may install a new wireless access point to which the de-
vice may connect. For all of these reasons, physical device pools
should be placed into an radio frequency (RF) isolated environment
along with the routing access point.

3.6 Malware Interaction
Regardless of the instance type, once the malware is installed, A5

must interact with the instance to coerce the malicious behavior. Of
course, A5 can, and does, start the main activity of applications that
place an icon in the application list for users to click. However, A5
employs other techniques for interaction.

The primary method for interaction is via receivable Intents as-
certained during stage 1 and stage 2 static analysis as described in
sections 3.3.1 and 3.3.2. Using ADB, a Worker can send intents
to a running instance. Intents are sent to the device sequentially
and feedback from ADB can be used to verify that an Intent was
successfully registered on the instance.

A5 could simply send every type of Intent available for the SDK
version of the instance. However, this coarse style of fuzzing
presents two problems: inability to discern custom Intents and poor
performance. Each version of the SDK specifies dozens of Intents
and permissions [4], simply iterating through all of these takes
considerable time which would lower the overall performance of
A5. More importantly, applications can specify custom Intents [4],
which may not be known a priori. Figure 7 depicts the creation
and receipt of custom Intent, some.custom.intent.FOO. For
these reasons, A5 employs a more granular system, precisely issu-
ing Intents derived from static analysis.

1 I n t e n t i = new I n t e n t ( ) ;
2 i . s e t A c t i o n ( some . custom . i n t e n t .FOO) ;
3 c o n t e x t . s e n d B r o a d c a s t ( i ) ;
4
5 p u b l i c c l a s s I n c o m i n g R e c e i v e r e x t e n d s

B r o a d c a s t R e c e i v e r {
6 p u b l i c vo id onRece ive ( C o n t e x t c o n t e x t , I n t e n t

i n t e n t ) {
7 i f ( i n t e n t . g e t A c t i o n ( ) . e q u a l s ( some . custom .

i n t e n t .FOO) ) {
8 / / some a c t i o n
9 }

10 }
11 }

Figure 7: An example of a custom Intent, line 2. A broadcastReceiver
as defined in lines 5-11 can receive such an Intent by observing the
custom string in the Intent’s action (line 7).

Some Intents do not require any additional information. Send-
ing the BOOT_COMPLETED Intent unambiguously indicates that
the device has finished its startup procedures. Other Intents lose
meaning without additional information. For instance, consider a
text message (SMS), which requires associated telephone numbers
and message content. In order to handle these more complex sit-
uations, A5 uses a custom library, libIntent, to create Intents that
consist of well-formed data. Continuing with the SMS example,
when static analysis has indicated that an application may receive
an SMS, A5 uses libIntent to send text messages via ADB to the de-
vice with random message content and random, valid 10-digit tele-
phone numbers as the source. In A5’s current implementation, lib-
Intent handles SMS messages, power events, battery level changes,
network events (delay, speed, cellular type, etc), GPS data, Voice

calls, and the ability to pass through generic events in case users
wish to use libIntent independently from A5.

The final method of interaction is via a software feature known
as a “monkey.” Android’s developer software distribution con-
tains a program named monkey for use in user interface testing.
The monkey program “generates pseudo-random streams of user
events such as clicks, touches, or gestures, as well as a number of
system-level events” [4]. By using the monkey, A5 can automati-
cally simulate user input. This rather coarse method of graphically
fuzzing the application can change the state of the installed pro-
gram, possibly making the instance more likely to respond to in-
teraction. For instance, consider an application that blocks access
using a modal dialog with a EULA. A monkey may be invoked to
“click” many times, bypassing the access restriction.

3.7 Network Traffic
Any network communication destined for the Internet from an

instance is routed to the Internet by A5. This is a design decision
that permits malware that connects to remote servers to commu-
nicate with these servers so that the network traffic can be cap-
tured and used to inform network countermeasures. Other com-
mercial and academic sandbox systems operate in a similar fash-
ion. Some systems selectively route some traffic to the Internet and
direct other traffic to controlled servers or honeypots [6].

For virtual instances, A5 utilizes the network capture feature of
the emulator. Using the emulator feature is not only convenient to
initiate, but also results in a single data file for each input sample.

For physical instances, the devices are connected to a Wi-Fi
network which is monitored. Unlike the emulator feature, net-
work capture is performed on a shared medium. To obtain device-
specific data, the network capture is filtered using the device’s
MAC address.

Regardless of the instance type, the resulting capture file will
contain a combination of malicious traffic, administrative traffic
(such as ADB), and, in the case of repackaged applications, legiti-
mate traffic. Each of which presents a unique problem with regard
to the creation of network countermeasures. The administrative
traffic is generally very easy to filter. For example, ADB traffic can
typically be filtered based on the TCP port. Since the ADB ports
vary by the instantiating of each instance, it is unlikely that a TCP
port-based filter will omit any data erroneously. This simple filter
can reduce the network capture substantially. For instance, filtering
ADB traffic reduces the network capture for the “NotCompatible”
piece of malware [26] by 65%.

Unfortunately, filtering legitimate traffic is more difficult as the
characteristics of the legitimate traffic are not known a priori.
Repackaging of applications in order to add malicious function-
ality creates additional difficulty. One might imagine learning al-
gorithms that observe similar behavior across a family of malware.
However, with repackaging, the shared behavior may be the legit-
imate traffic from the original application or it may indicate the
same malicious software was injected into several different appli-
cations.

In the current implementation of A5, the network captures are
pruned such that much of the traffic that is not beneficial to net-
work countermeasures is filtered out. From the network captures,
analysts can then create, for instance, intrusion detection system
signatures; while the process is not entirely automated, A5 facili-
tates this through an extensible plugin framework.

3.8 Plugin Framework
A5 further assists the analyst through a modular post-analysis

framework. Plugins are Python scripts that conform to a simple

7



1 a l e r t t c p any any −> any any ( msg: " a u t o c r e a t e d dns−>h o s t r u l e " ; c o n t e n t : " Host | 3 A20 | " ; c o n t e n t : "
n o t c o m p a t i b l e a p p . eu . | 0 D 0A | " ; w i t h i n : 6 4 ; )

2 a l e r t udp any any −> any 53 ( msg: " a u t o c r e a t e d dns−>dns r u l e " ; c o n t e n t : " n o t c o m p a t i b l e a p p . eu . " ; n oc a se ; )
3 a l e r t udp any any −> any 53 ( msg: " a u t o c r e a t e d NotCompat ib le d a t a d e c r y p t o r " ; c o n t e n t : " n o t c o m p a t i b l e a p p

. eu " ; no ca se ; )
4 a l e r t udp any any −> any 53 ( msg: " a u t o c r e a t e d NotCompat ib le d a t a d e c r y p t o r " ; c o n t e n t : " 3 na3bude t9 . ru " ;

n oc as e ; )
5 a l e r t t c p any any −> any 8014 ( msg: " a u t o c r e a t e d NotCompat ib le d a t a d e c r y p t o r " ; f l o w : e s t a b l i s h e d ,

t o _ s e r v e r ; d s i z e : 1 3 ; c o n t e n t : " | 0 4 | " ; d e p t h : 1 ; c o n t e n t : " | 0 1 05 00 00 00 00 07 0 0 | " ; )

Figure 8: Candidate Snort signatures automatically created by A5’s post-analysis framework following the analysis of a NotCompatible sample.
Lines 1 and 2 were created by default plugins, whereas lines 3 - 5 were created by a custom plugin designed specifically for the NotCompatible
malware family.

API, requiring each plugin to only define a handful of functions and
follow a naming convention. Each plugin is loaded dynamically
by A5 during malware execution and evaluated against dynamic
analysis results or submitted samples, or both. Plugins generate
two types of output, signatures intended to be used in an IDS, and
freeform text that is intended to provide additional context to an A5
report. An analyst can elect to deploy any suggested signatures in
light of the A5 report including any information added by plugins.

The default plugins create candidate signatures blindly—that is,
without having any prior knowledge of the malware. For exam-
ple, malware may issue a DNS query in order to determine the IP
address of a Command-and-Control server. A perfectly acceptable
IDS signature may look for this particular DNS query and block the
communication, thus preventing the malware from further interac-
tion with the remote controller. On the other hand, a DNS query
may be legitimate traffic issues with the purpose of determining the
IP address of a server that is used to save high score data in a game.
Default plugins are a simple attempt to automate the analyst’s work
when a sample has never before been encountered by A5. Since the
default plugins are fairly generic, they may have limited value, but
they do automate the signature creation process and may help pre-
vent costly typographical mistakes in signature creation.

Unlike newly encountered malware, the plugin framework can
also be employed to automate signature creation for known mal-
ware families. The framework facilitates programmatic access to
the data collected during dynamic analysis and the associated An-
droid application. In this way, malware can be identified using
the submitting application, or via captured traffic, or both. Subse-
quently, prior knowledge can be applied to new variants of malware
to automate many analysis tasks.

As we will show in section 4, a plugin can be used to automate
specific identification, data extraction, decryption, and the crafting
of IDS rules well suited for a malware family. A5 plugins provide
a general method of applying actions that may otherwise take con-
siderable time for an analyst.

We provide an example of candidate signatures created by the
post-analysis framework in Figure 8. While the plugin here cre-
ates Snort signatures, other IDS (e.g., Bro) could be supported in a
similar manner.

The signatures have been automatically created from the dy-
namic analysis of the NotCompatible malware [26]. An analyst
would still be charged with identifying that the candidate on line 1
is likely of little value, but that lines 2–5 may be useful. Lines 1
and 2 were created by default plugins that assume that DNS queries
still present in the pruned network traces search for malicious do-
mains, and thus a DNS based rule or an HTTP rule based on the
DNS name may be useful. However, the NotCompatible malware
doesn’t use the HTTP protocol, so a signature looking for a Host
header is not relevant.

The real power of the plugin framework is actually more evident
in lines 3–5. Rather than a specific piece of malware, NotCom-
patible actually defines a family of related pieces of malware—we
have observed dozens of different samples in the wild. Using a
previously seen variant of NotCompatible, a family-specific plugin
was able to produce a custom rule for this (unseen before) variant
of NotCompatible in lines 3–5. In other words, our plugin is able
to automatically generate IDS signatures for new variants of Not-
Compatible as long as the overall networking protocol used in the
malware family does not change.

More precisely, the plugin identifies NotCompatible malware
based on the unique networking protocol employed by the malware.
Once the malware is identified, the plugin can then automatically
decrypt the command-and-control server data stored in the APK.
This is very useful for the analyst since the dynamic analysis sys-
tem is likely to only create network traffic to the initial command-
and-control server, therefore never having to resort to the backup
server.

4. EVALUATION
Here we evaluate an implementation of A5. We evaluate our de-

sign goals with the specific implementation, measure performance
of the system, and compare A5 with an existing Android runtime
analysis system.

4.1 Design Goals
In section 3.1, we enumerated five criteria that our A5 must em-

body in order to be a successful sandbox. Here we discuss how A5
fulfills each of these metrics in turn.
Autonomy and scalability. A5’s distributed and expandable archi-
tecture permit A5 to grow linearly with the growth of mobile mal-
ware samples. Additional Workers can be added to an A5 instal-
lation by adding resources to an existing node or by adding ad-
ditional nodes. Further, the periodic ingestion process along with
on-demand web service submission affords A5 the flexibility of in-
teracting with a user dynamically or autonomously processing mal-
ware feeds without user interaction.

Whether samples are processed automatically or on-demand, A5
attempts to ease the burden placed on the analyst by filtering out in-
nocuous traffic and presenting candidate signatures for the remain-
ing network activity. For identified malware families, additional
post-processing can be performed in order to further automate anal-
ysis and countermeasure creation. Ultimately, human interaction is
still required for final determination of network countermeasures,
but this interaction is substantially less than if the analyst had to
perform any analysis manually.
Mobile-specific interaction. The methods of malware coercion cer-
tainly vary between mobile and PC-centric malware. Here A5 em-
ploys a variety of mobile-specific coercion techniques. The most
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straight-forward interaction is actually running the mobile applica-
tion. For most applications, the interaction is similar to that of PC-
malware: starting the default Android Activity. However, through
two stages of static analysis, A5 determines many types of coercion
that would otherwise be omitted from a dynamic analysis system.
Intents determined from static analysis are then issued in an An-
droid instance dynamically, effecting the malicious behavior.

Evasion resistance. When interacting with malware, A5 takes steps
to present plausible information to the application under evaluation.
For instance, text messages appear to originate from random, valid
numbers. By using plausible data and avoiding predictable data,
A5 seeks to be less identifiable to malware that inspects the high
level state of the device.

Knowing that virtualization detection has a mature presence in
targeting other malware sandboxes, it is a foregone conclusion that
Android malware will employ similar tactics. Therefore, virtual in-
stances used in A5 employ a modified Android emulator that takes
steps to hide its virtual nature by embodying programmatic charac-
teristics of a physical device. Even so, some types of virtualization
detection are simply too difficult to implement as a modification to
the standard Android emulator. A5 allows system implementers to
mitigate this risk by using physical instances thus avoiding use of
an emulator altogether. By using real devices, the malware actually
runs on hardware making sandbox detection much more difficult
for malware authors.

In another way, A5 avoids a type of evasion in that malware tar-
geting any particular Android API version will run in A5. If A5
only supported a subset of API versions then malware might not
run in A5 at all, rendering no analysis and effectively evading the
entire system. By allowing device pools to cover the entire range
of Android APIs, among any combination of virtual and physical
instances, A5 can start a Worker for any API version required by a
particular sample.

Network-level indicator collection. The collection of network in-
dicators is critical to enabling enterprises and network providers to
protect their networks, even when individual mobile devices may
have little or no security-oriented software. For virtual instances,
A5 makes use of a feature built-in to the Android emulator to col-
lect network activity during dynamic analysis. For physical in-
stances, A5 makes use of commodity network capture tools used on
a shared WIFI access point. Network traffic capture on the shared
network is filtered based on the known MAC addresses of the phys-
ical devices installed in the A5 instance. For either instance type,
A5 creates candidate network countermeasures for never before
seen samples and performs extended post-analysis on recognizable
malware families leading to additional network countermeasures.

Modularity A5 is written in a very modular, object-oriented way.
Interaction with dependent software (such as ADB) are written as
libraries providing a re-usable interface. Use of support systems
such as database and job queuing are also done in very standard
ways using mature subsystems. In these ways, A5 is adaptable
to existing research environments that have different workflows or
special needs.

However, for the general user of A5, the more useful form of
modularity comes from the post-analysis plugin framework. This
framework facilitates in automating tasks upon dynamic analysis
results and submitted malware samples. Plugins can be used to
automatically create candidate network signatures, decode sections
of network traffic, decrypt malware payloads, and any number of
other uses.

Plugins currently implemented in A5 focus on Snort [24] IDS
format, though modifying for other formats is often merely a matter

of syntax. Since any given user may prefer a particular IDS, each of
which may have very custom syntax, preprocessors, configurations,
etc. the default plugins are likely of limited value to any given user.
However, the modularity of the plugin framework allows simple
creation of new plugins such that candidate rules can be readily
deployed to a particular system.

We measured A5 performance using 1260 samples from the
dataset described by Zhou and Jiang [39]. The A5 system is on
an 8 processor (Intel Xeon E5620 @ 2.4 GHz) Linux machine with
64GB of RAM. A5 was configured to use 5 Workers, and the arbi-
trary sleep time for each sample (see Figure 5) was set to 60 sec-
onds. The entire device pool was set to be virtual instances, with
two device instances for each SDK version. As shown in Table 1,
the average runtime for samples was 149.1 seconds, requiring just
over 50 hours of cumulative execution to run all 1260 samples [39].
By using 5 Workers, the time required to process the entire set was
reduced to just 10 hours.

A5 Stage Min
Time

Max
Time

Average
Time

Stage 1 Static Analysis 1.9 5.6 2.6
Stage 2 Static Analysis 10.0 120.7 12.7
Dynamic Analysis 124.5 202.3 133.8
Total runtime 136.4 328.6 149.1

Table 1: A5 runtimes per sample (in seconds). Each time is was calcu-
lated by processing the entire dataset described by Zhou and Jiang [39].

Stage 1 Static Analysis performed correctly for all samples.
Stage 2 Static Analysis prematurely terminated on 10% of sam-
ples. In particular, the DED decompiler [11] failed to decompile
10% (131) of samples. Of the 1129 applications that successfully
decompiled, Stage 2 Analysis discovered Intents in 4.5% (51) of
samples (14 of 50 families).

We also analyzed some more recent malware using A5 and veri-
fied the results manually. For example, NotCompatible is Android
malware that does not “root” the infected device, but nonetheless
is able to act as a TCP proxy, tunneling malicious traffic through
an infected device [26]. This malware has typical botnet like fea-
tures such as the ability for a remote actor to control the software
through a publicly accessible server, known as a command-and-
control server. A5 was able to identify remote servers associated
with NotCompatible malware. The primary remote server was
immediately observable in the DNS request (Figure 9) and sub-
sequent malware communication. Manual static analysis also re-
vealed the remote address, but required significant time to under-
stand the Dalvik classes and required decrypting a data file. One
operation of the NotCompatible malware allows a remote server
to update the remote destination address, so the next remote com-
munication would happen with a different server. Static analysis
would not be able to discern this next server address.

The NotCompatible malware also highlights the usefulness of
A5’s Android-specific coercion techniques. NotCompatible mal-
ware does not execute upon installation. Instead, the malware
waits for certain system events, namely BOOT_COMPLETED or
USER_PRESENT. In other words, NotCompatible’s malicious ser-
vice will only start when the device is rebooted, or when the user
unlocks the device’s screen lock. A5 is able to determine the ne-
cessity to mimic these events and successfully coerce the malware.

The post-analysis plugin is useful to create the candidate sig-
natures (shown earlier in Figure 8). In this case, previous analy-
sis was leveraged to create a plugin capable of automatically de-
termining that, in addition to the traffic observed to the primary
server, notcompatibleapp.eu, other infected devices may at-
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1 12 : 1 4 : 5 6 .918698 IP 1 0 . 0 . 2 . 1 5 . 2 2 2 1 9 > 1 0 . 0 . 2 . 3 . domain : 22666+ A? n o t c o m p a t i b l e a p p . eu . ( 3 7 )
2 0 x0000 : 4500 0041 a717 4000 4011 7b83 0 a00 020 f
3 0 x0010 : 0 a00 0203 56 cb 0035 002d 7610 588 a 0100
4 0 x0020 : 0001 0000 0000 0000 106 e 6 f74 636 f 6d70
5 0 x0030 : 6174 6962 6 c65 6170 7002 6575 0000 0100
6 0 x0040 : 0120

Figure 9: ASCII representation of network traffic captured by A5 from NotCompatible malware. NotCompatible’s namesake domain is clearly
present (line 1) in this DNS query from 10.0.2.15, an A5 device.

tempt to connect to the backup domain 3na3budet9.ru, which
is encrypted and stored within the malware. This specific sample
uses TCP port 8014 on both servers, which A5 was able to automat-
ically detect, and create IDS rules, based on the generic template
created from a higher-level description of the malware family.

4.2 Existing sandbox comparison
In order to highlight some of A5’s advancements we can evalu-

ate some metrics with another Android sandbox. Unfortunately the
source code and design of other sandboxes are not publicly avail-
able, so for comparison, we submitted samples to Andrubis via its
web interface [2]. We observe that when a sample is submitted, the
estimated job completion time is always reported to be about eight
minutes. If we submit samples very quickly, multiple submissions
queue sequentially causing a delay before the submitted sample is
processed, indicating that Andrubis does not process samples in
parallel. For this reason, we purposefully submitted samples one
at a time, waiting for a current sample to complete before submit-
ting another. Even though this is a public web service, we did not
observe any other user of Andrubis during our testing.

We created an Android application that extracted virtualization
information mentioned in 4.1. Namely, the Android Build strings
and TelephonyManager identifies Andrubis’ runtime software
as an Android emulator. From this, we conclude that Andrubis does
not appear to employ physical devices nor emulator detection mit-
igations. We also submitted a second application that was identical
to this first application except for an appended null byte in order to
give the otherwise identical application a different file size and as-
sociated cryptographic hash. This was meant to ensure that submit-
ted applications are actually executed by Andrubis and to observe
similarity between two similar samples submissions. The reports
were very similar even though execution time for the two samples
were reported to be 227 seconds and 337 seconds respectively, so
there is some variance in Andrubis’ application runtime.

We then created 14 variations of the test Android application,
each different only in that the settings for minimum, maximum and
target SDK as configured in the AndroidManifest.xml. It
seems that Andrubis only supports a subset of Android SDK ver-
sions supported by TaintDroid, namely 2.1 and 2.3. For example,
submitting an APK with the minimum, maximum and target SDK
each set to 8, denoting Android 2.2, in the AndroidManifest causes
dynamic analysis to fail. Andrubis fails in this way for many com-
binations of SDK values causing the sample to not be analyzed at
all.

Another difference is that Andrubis does not appear to use the
static analysis portions to inform the dynamic analysis. This is
easily evidenced by submitting an application that takes no action
except upon some other, outside event, such as the receipt of a text
message, or activation of the screen lock. Unfortunately, this means
that for malware like NotCompatible, Andrubis will not observe
any of the malicious behavior.

In practice, Andrubis often does not start processing samples im-
mediately, in fact, only once did a sample start processing immedi-

ately. Instead, of the 15 submissions, Andrubis reported an average
delay of 92 minutes (min: immediate, max: 16 hours). Overall,
the execution time across our submissions averaged 253 seconds
(min:227, max:337 seconds). Given that both Andrubis and A5
must incorporate certain delay in dynamic processing, the differ-
ence in average runtime is not significant.

As a final difference, A5 reports contain only meta information
about the sample, but also contain IDS signature candidates. In
this way A5 provides immediately actionable results. Conversely,
Andrubis reports do not contain IDS signatures and may require
more evaluation from an analyst, who then must manually create
IDS signatures.

5. LIMITATIONS
In section 3, we detailed several components of our analysis sys-

tem. Design decisions and implementation choices affect the capa-
bilities of each of these components. Here we address the current
limitations for each component of A5.

5.1 Static Analysis
In addition to general limitations of dynamic analysis systems,

A5 has several additional limitations. In static analysis, A5 depends
upon tools such as Androguard [1] and Soot [30]. Deficiencies in
these tools may also manifest in A5.

The bytecode static analysis is limited to finding only behav-
iors that are statically defined and extractable from the bytecode
itself. For instance, a given application component such as an Ac-
tivity is started either by the Android middleware, or by another
application, by sending an appropriate Intent to the application.
Ideally, we would want to know all Intents receivable by the ap-
plication, so we can coerce its behavior. Unfortunately, for meth-
ods which receive Intents, the method is provided the Intent via
an android.content.Intent object, which contains a string
with the name of the Intent used to trigger the target application.
As the value in this string is filled in dynamically at runtime when
the Intent is created, A5 is unable to statically determine the string
content. In order to statically identify the Intent that triggered the
activity or other application component, every Intent would need to
be of a different type which is statically specified. However, this is
not the case, and A5 is unable to extract or identify Intents received
by receivers. Hence, the bytecode static analysis is able to extract
only Intents which the application registers to receive, as the In-
tent action string is set statically when notifying the system of the
Intents to receive.

The traversal of the CFG is intra-procedural, and the CFG analy-
sis is flow-insensitive meaning all branches and loops are ignored.
While this a priori could result in unsound analysis, this has not
been an issue in the context of A5. Indeed, the two types of interac-
tion points currently sought are method invocations and interaction
points are extracted by observing the values of arguments passed
to the method. Typically, the argument construction leading to the
method invocation would be linear code in the same basic block
without any conditional statements. In this case, flow-insensitive
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analysis would be sufficient for analysis. Flow-insensitive analysis
may also introduce false positives. However, since in the case of
additional false positives the malware coercion would only require
a subset of identified interactions which would result in effective
coercion. The primary issue with false positives is decreased per-
formance due to unnecessary coercion.

In addition, by virtue of static analysis being static, any dynami-
cally received code updates by the application cannot be analyzed.
For instance, the static analysis will have no access to bytecode or
Java/Dalvik classes received at runtime and subsequently executed.
However, A5’s dynamic-analysis phase will still be able to collect
network indicators of the dynamically executed code. This type of
update attack [39] has been detected in malware in the wild,

5.2 Dynamic Analysis
A5 exhibits well-known limitations similar to any dynamic anal-

ysis system. For example, if the malware behavior changes based
on time of day, the success of A5 would depend greatly on when
the sample happened to be selected by a Worker. Similarly, if mal-
ware targets a specific manufacturer other than the manufacturer
employed in dynamic analysis, the malware may exhibit alternate
behavior during analysis. Generally, it is just not possible to en-
sure that all possible functionality of a sample is explored during
execution [14]. As with any sandbox system, the primary use is
to quickly process volumes of malware – handling most samples
correctly, not focusing on individual accuracy of a given sample.

There is some evidence that randomly issuing input to the user
interface may not yield successful results [18]. Gilbert et al. con-
clude that random input, as is expected from an Android Mon-
key, may yield as low as 40% coverage of all possible UI input.
On the other hand, more structured input is explored by Zheng et
al. [38] which exhibits its own drawbacks, in particular the inability
to handle certain logic when interacting with the UI. This particu-
lar implementation [38] has other drawbacks, but many can likely
be overcome. Much as the hybrid static and dynamic analysis em-
ployed by A5, the best UI interaction is likely a combination of ran-
dom and structured input. Additionally, new methods of UI interac-
tion are increasingly available as Android’s SDK evolves. Devices
using API 16 or higher have a “Dump view hierarchy” that could
be used to inform a UI automator. This hierarchy presents a tree of
UI components that could be traversed as part of dynamic analysis.
Continuing with the previous example of the EULA modal dialog,
using such a UI automator could enable a dynamic system to pre-
cisely “click” an accept button instead of randomly happening to
“click” the screen in a correct location.

In practice, ADB is not reliable, often not performing the desired
action, yet returning a successful return code. In order to perform in
lieu of these faults, A5 monitors ADB execution repeating actions
until the desired effect is observed.

6. CONCLUSIONS
We have presented a system, A5, to completely automate the

dynamic execution of Android malware. Our system extracts in-
formation from the malware prior to execution in order to better
understand how to interact with the malware. In this way, A5 is
able to better coerce malicious behavior from the malware and ul-
timately capture network threat indicators. These indicators can
be used simply to quickly, better understand the malware, and to
inform network-oriented countermeasures.

The implementation we have described uses novel methods of
interacting with mobile applications, extracting interaction points
during static analysis to inform the dynamic analysis process.

The distributed, parallel design of A5 allows instances to scale
with the growth of mobile malware. A5 is not only highly paral-
lel but also modular in design, allowing wholesale replacement of
components in favor of newer, better performing options.

Any sandbox implementation for Android must be aware that
current virtualization capabilities are incomplete, and analysis will
likely soon encounter malware that employs virtualization detec-
tion techniques. A5 aims to partially address this issue both by
making virtual instances more evasion-resistant and by having the
flexibility to use actual physical devices during dynamic analysis.

We also presented performance measurements of a specific im-
plementation of A5 using a public dataset of 1,260 unique Android
malware samples. On modest hardware, the implementation was
able to process the malware set averaging 149 seconds per sample.

A5 represents a new generation of automated analysis able to
cope with large volumes of mobile malware. A5 is able to better
coerce malicious behavior by interacting with mobile malware in
mobile-specific ways. By focusing on network threat indicators, A5
is immediately useful to cellular providers and operators of wireless
networks.

An implementation of A5 is publicly available at http://
dogo.ece.cmu.edu/a5. Sourcecode for A5 is publicly avail-
able at https://github.com/tvidas/a5.
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