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guessed passwords and thus make passwords more difficult for attackers to guess. However, many users
struggle to create and recall their passwords under strict password-composition policies, for example, ones
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1. INTRODUCTION

To guide users toward passwords that are hard for attackers to guess, many service
providers enforce password-composition policies. These policies put requirements on
password creation, such as requiring that passwords contain a minimum number of
characters, use particular character classes, or not be contained in a list of common
passwords. However, when these requirements become too onerous, users struggle to
create and remember their passwords [Komanduri et al. 2011].

For example, Carnegie Mellon University uses a “comprehensive” password policy
that requires eight characters, four character classes, and includes a dictionary check.1
Our prior research found that users struggled to create and recall passwords under
this comprehensive policy [Komanduri et al. 2011]. We also found that password cre-
ation and recall were easier, and passwords were overall significantly more difficult
to guess, under an alternative policy that only requires that passwords be at least 16
characters long. However, a small, but nonnegligible, number of participants created
very easily guessed passwords under this alternative “longer password” policy, such as
passwordpassword [Kelley et al. 2012; Komanduri et al. 2011]. As a result, this simple
policy based on longer passwords, despite its usability and some security advantages,
may not be quite suitable for real-world deployment.

In this article, we describe our search for password-composition policies that we can
recommend to service providers. Specifically, we ran two large user studies and ex-
amined 15 password-composition policies, testing several permutations of length and
character-based requirements. We compared the strength of passwords created under
each policy, as well as user sentiment, timing, and attempts required for password cre-
ation and recall. The first study examined 13,751 passwords created by participants
under one of eight policies. To confirm the previous results that suggested that length
requirements alone are not sufficient for usable and secure passwords, in addition
to the comprehensive 8-character policy earlier described, we tested policies requir-
ing 12, 16, and 20 characters without further requirements. We also tested adding a
three-character-class requirement to the length-12 and length-16 requirements. These
policies attempted to strike a balance between comprehensiveness of the policy and
length requirements. This study showed that certain combinations of character re-
quirements and longer-length requirements led to fewer easily guessed passwords
than a policy purely based on length, while still being more usable and more secure
than a comprehensive policy with shorter length requirements.

Several observations from data collected during the first study led to hypotheses
that we tested in the second study. We noticed that certain substrings appeared to be
markers of weak passwords. For example, passwords containing the substring 1234
were twice as likely to be guessed as those that did not. Hence, we studied passwords
collected under a blacklist requirement, which prohibited passwords from containing
any substring from a specified list. Further, we observed that passwords that were
required to have multiple character classes rarely began and ended with lowercase
letters. Instead, participants tended to put special characters at the start or end of
their passwords. Those passwords that did begin and end with lowercase letters were
quite strong. This observation led us to test a pattern requirement—the requirement
that passwords begin and end with lowercase letters.

1http://www.cmu.edu/iso/governance/guidelines/password-management.html.
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The second study presented in this article examines eight password policies, includ-
ing policies based on the blacklist and pattern requirements. We collected data from
8,740 participants and found further evidence that a password policy requiring 12
characters and two or three character classes is more usable and more secure than a
comprehensive policy.

We also found evidence that while users often meet longer-length password require-
ments in predictable ways, policies can break users of undesirable password-creation
habits. The blacklist requirement succeeded in leading users to create significantly
stronger passwords. While the blacklist requirement also made password creation
more difficult, it did not affect password recall. Overall, the blacklist requirement of-
fers a very favorable tradeoff between security and usability for a number of real-world
use cases. The pattern requirement induced a more even character-class distribution
within passwords. This led to a significant increase in password strength, even over
passwords with the blacklist requirement. While the pattern requirement did make
passwords more difficult to create and recall, we believe that the substantial improve-
ment in strength means the pattern requirement may be well suited to highly sensitive
environments.

In sum, this work makes contributions to both researchers and system administra-
tors, who previously had to rely on educated guesses rather than scientific data when
selecting password-composition policies [Burr et al. 2011].

We conduct large-scale human-subjects testing on both deployed and new password-
composition policies. The comprehensive data we collect about the security and us-
ability of these policies leads us to recommend three policies in place of the more
traditionally deployed comprehensive policy based on multiple requirements. All three
of the policies we recommend strike a balance between length and character-class com-
plexity in their requirements. We also find that requiring that passwords begin and
end with a lowercase letter leads users to place digits and symbols in less predictable
places in their passwords. Furthermore, we find that blacklisting common password
substrings leads to passwords that are less predictable by attackers without being
less memorable to users, and we propose an algorithm for creating such a password
blacklist from a password corpus.

We continue with a discussion of previous research in Section 2. We describe the
methodology behind our studies and discuss its limitations in Section 3. We present
findings from our first study in Section 4. In Section 5, we discuss how the findings from
our first study led to the conditions in our second study. We then present the findings of
the second study in Section 6. In Section 7, we compare two pairs of salient conditions
from across the two studies. Finally, in Section 8, we discuss the implications of our
studies, and practical advice for service providers that they lead to.

2. BACKGROUND AND RELATED WORK

We next present background and related work to provide context for the reader. Sec-
tion 2.1 discusses the offline attack model, which is the threat model on which we focus.
Section 2.2 discusses prior research on password-composition policies in order to show
how our work fits into the larger passwords-research landscape. Because our studies
collected data online, Section 2.5 discusses prior online password-policy research. Fi-
nally, Section 2.6 discusses how previous passwords research has motivated our own
focus on longer passwords.

2.1. Threat Model: Offline Attack

The work in this article is intended to help service providers keep users’ online accounts
safe from hijacking through password-composition requirements that are usable, and
that lead to secure passwords. Account hijacking can lead to financial harm, as well as
emotional distress and embarrassment [Shay et al. 2014]. Despite the shortcomings of
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text passwords, none of the immediate candidates to replace them appear to offer all
of their advantages [Bonneau et al. 2012]. Researchers have argued that no proposed
replacement is likely to replace them as the entrenched standard any time soon [Herley
and Van Oorschot 2012].

In an online attack against a password-protected account, the attacker tries guessing
the victim’s password on a live system. The service provider can lock out the attacker
after a fixed number of failed log-in attempts over a short period of time. However, an at-
tacker can avoid detection by spreading out the guesses over time [Florêncio et al. 2014].

This article focuses on the offline attack model, in which an attacker steals a hashed
password file from a service provider. Theft of hashed password sets is occurring
frequently enough to make the news many times per year, affecting millions of users
[Perlroth 2013; Engberg 2013; Lord 2013; Kumparak 2013; Baraniuk 2015; Zheng
2015].

We assume that the passwords in the password file are both salted and
hashed [Florêncio and Herley 2010]. A salt is a string, unique to each user, that is
added to each password before being hashed. A hash is a one-way function which,
when given a (salted) password as input, deterministically produces an output string
that cannot be used to determine the input string. A salt prevents two users who share
the same password from having the same hash.

Attackers in an offline attack typically generate a password guess candidate and
apply the same salt and hashing function as the targeted passwords in the stolen file.
Salts are generally stored in clear text near the corresponding password. If the result of
hashing the guess candidate matches a victim’s hash, then the attacker knows the guess
candidate was correct. If not, the attacker can continue making and hashing guesses,
bounded by time and hardware. An optimal attacker will guess the most likely, or
expected, passwords first. Therefore, an attacker’s success depends on the relative un-
predictability or strength of the victim’s password. Password-guessing algorithms can
enable attackers to leverage existing password corpora to generate password guesses
in probability order, as we will describe in greater detail in Section 3.2.

An attacker conducting an offline attack hashes each password guess. While many
common hashing algorithms are designed to execute quickly, there are also hashing
algorithms that are deliberately designed to be slow in order to hobble attackers con-
ducting an offline attack. The bcrypt hashing scheme, for example, can be configured
with a cost factor that exponentially increases its execution time by requiring a se-
quential series of computations [Provos and Mazieres 1999]. Other password-hashing
schemes, including scrypt [Percival 2009] and Argon2 [Biryukov et al. 2015], rely on
sequential memory-hard functions. Because a service provider can use a slower hash
function to increase the time each guess requires for an attacker, we present our secu-
rity results in terms of the number of guesses, as opposed to wall-clock time.

An important question in the password ecosystem is the degree to which one should
expect users to shoulder the burden of password security by creating hard-to-guess
passwords, as opposed to system administrators following best practices. The ability
of a password to withstand a large number of adversarial guesses matters far less
for a system that secures passwords using one of the password-hashing schemes de-
scribed above. However, recent password breaches show that websites still often use
computationally inexpensive hash functions like MD5, making large-scale offline at-
tacks feasible. For instance, the 2015 breach of educational technology company VTech
revealed that their passwords were stored using MD5 [Zheng 2015]. While initial re-
ports about the 2015 breach of Ashley Madison, a dating site for married individuals,
revealed that passwords were stored using bcrypt, a legacy database was later dis-
covered; the legacy database contained many of the same passwords hashed using
MD5 [Goodin 2015]. These events suggest that a security-conscious user should not
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rely exclusively on websites following best practices for storing passwords. Consistent
with the idea of defense in depth, a rational user should also make a password that is
hard for attackers to guess.

Other technical mechanisms aim to protect the password databases themselves. In
order to make password files themselves more difficult to steal, researchers have pro-
posed distributing authentication across multiple servers [Camenisch et al. 2015; Ford
and Kaliski Jr 2000]. However, despite such a scheme being proposed in 2000, it has not
seen widespread adoption, likely because it requires additional hardware and server
coordination. Researchers have also proposed schemes that make offline attacks easy
to detect using decoy passwords [Juels and Rivest 2013]. While such a scheme helps
a service provider quickly detect an attack and thereby minimize potential damage, it
does not directly help users who have reused the same password across sites. There-
fore, while improving server security in general is a crucial long-term goal, helping
users make stronger passwords is an immediate step that can help to protect users.

2.2. Password-Composition Policies

Many service providers have password-composition policies intended to prevent users
from creating easily guessed passwords. These policies constrain the space of allowed
passwords, attempting to prevent users from making passwords that an attacker would
guess easily. An ideal password-composition policy helps users make strong passwords,
without making it onerous to create and recall passwords.

Without a password-composition policy to force them to make stronger passwords,
research has shown that many users will opt to create simple, easily guessed pass-
words. In a 1995 study, researchers requested that system administrators send them
hashed passwords. The researchers were able to crack about 40% of the approximately
14,000 passwords using a dictionary attack. This led to a call for “proactive pass-
word checking” to make sure passwords comply with a set of password-composition
requirements [Bishop and Klein 1995]. The National Institute of Standards and Tech-
nology (NIST) has also advocated instituting password-composition requirements to
force users to make stronger passwords, noting that users often make passwords as
simple as they are allowed [Burr et al. 2006]. More recently, we found that study par-
ticipants required to create passwords with no requirement other than having eight
characters created passwords that were significantly weaker than participants with
more strict password-composition requirements [Kelley et al. 2012].

Password-composition policies need to consider both the security of the passwords
created under them, and the usability of those passwords. In a study of over 25,000
members of the Carnegie Mellon University community, users who were annoyed
by the university’s password-composition policy made weaker passwords [Mazurek
et al. 2013]. A 32-participant diary study, published in 2010, observed that password-
composition policies were often burdensome to users and could lead to decreased pro-
ductivity [Inglesant and Sasse 2010]. Multiple interview studies have suggested that
users struggle to create strong passwords [Stobert and Biddle 2014; Ur et al. 2015a].
These studies indicate that the password-composition policies intended to protect users
can also impose a burden on them. In addition to negative sentiment, user burden can
lead to help-desk calls and password reuse [Herley 2009].

Password-composition policies are intended to make it difficult for attackers to guess
passwords by making passwords less predictable. However, their effectiveness is often
limited because users tend to fulfill their requirements in predictable ways [Burr et al.
2011]. For example, one study found that users often select symbols from only a small
fraction of the symbols on a keyboard [Shay et al. 2010]. Another study found that when
users employ digits, symbols, and uppercase letters in their passwords, they often do
so predictably [Weir et al. 2010]. Users tend to make passwords that are semantically
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meaningful [Veras et al. 2014] and follow grammatical rules [Rao et al. 2013; Ur
et al. 2015a]. Furthermore, passwords often contain predictable phrases [Bonneau
and Shutova 2012; Ur et al. 2013], dates [Veras et al. 2012], and common types of
words [Veras et al. 2014].

2.3. Understanding How Users Manage Passwords

Our work focuses on contrasting different password-composition policies. Prior work
has focused on understanding how users treat their passwords. That work provides
context for our own, and may help to explain our participants’ behavior.

Many studies have found that password reuse is common. Based on analyses of
leaked datasets, researchers have concluded that around half of users reuse the same
password across different websites [Das et al. 2014]. In an interview study of 27 partic-
ipants’ strategies for password usage and management, researchers found that partici-
pants used an average of 11 different accounts in a week yet had an average of only five
unique passwords. Although most participants used software like Apple Keychain to
help manage passwords, none used a dedicated password manager [Stobert and Biddle
2014]. Security experts also frequently reuse passwords, yet often take into account
the security risks of doing so [Stobert and Biddle 2015]. Researchers have used theo-
retical modeling to suggest that some degree of password reuse is a rational behavior
by users for low-value accounts. They argue that weak passwords and password reuse
are behaviors that are unlikely to change [Florêncio et al. 2014].

Password reuse and other coping strategies, such as writing passwords down, are
necessary because users have dozens of accounts. In a large-scale, in-situ study of
nearly 500,000 participants who installed a Windows toolbar, researchers found that
users have an average of 25 accounts and 6.5 different passwords. Most of these pass-
words were only lowercase letters, except for accounts that required multiple character
classes [Florêncio and Herley 2007]. A 2013 study of 2,000 United Kingdom adults
found participants had an average of 19 accounts [Experian 2014].

Users’ mental models are a crucial driver in the management of passwords. A number
of researchers have found that some, but not all, users believe different accounts have
different value and importance, impacting how they create and manage passwords for
those accounts [Ur et al. 2015a; Stobert and Biddle 2014, 2015]. As evidenced by a
series of 33 interviews investigating how users understand online threats, users often
have a poor understanding of threat models. This poor understanding of why or how
attackers would access their data might lead to users making suboptimal security-
related decisions [Wash 2010]. Security experts’ mental models of passwords have
been found to differ from nonexperts’ mental models; experts felt losing a password
was analogous to losing a credit card number, whereas nonexperts compared losing a
password to losing a physical key [Asgharpour et al. 2007].

2.4. Measuring Password Strength

Earlier research on passwords has used estimated password entropy to measure pass-
word strength [Florêncio and Herley 2007; Shay et al. 2010]. The uneven distribution
of the predictability of user-created passwords, however, makes the entropy of an entire
password set a less useful metric. More recently, researchers have argued against using
entropy, preferring to use metrics likes “marginal guesswork” [Pliam 2000]. This metric
examines the number of guesses required to guess a given password, for a given way
of generating guesses. Furthermore, the entropy of a password set does not sufficiently
convey how difficult it is for an attacker to guess passwords from that set. Researchers
have presented statistical techniques for modeling how much of a password set with-
stands attacks of different strengths, demonstrating these techniques on a very large
corpus of passwords [Bonneau 2012]. While excellent for large corpora of passwords,
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these statistical techniques do not apply to small datasets and do not reflect real-
world attackers. As a result, we present password strength as a function of how many
guesses a password requires to be guessed under given password-cracking approaches
using particular training data [Komanduri 2016]. We do so using our group’s Password
Guessability Service (PGS) [Carnegie Mellon University 2015], which we have shown
in separate work to be a conservative proxy for an expert, human attacker [Ur et al.
2015b]. We detail how we calculated guessability in Section 3.2.1.

A number of researchers have studied how to compare password sets efficiently. Ma
et al. [2014] proposed comparing sets using probabilistic password-cracking approaches
(e.g., a probabilistic context-free grammar or a Markov model) by focusing on proba-
bilities, rather than the number of guesses a particular password-cracking approach
takes to arrive at a given password. Recently, researchers demonstrated an efficient
way to estimate the number of guesses a given probabilistic algorithm would need to
guess a password. Their technique uses Monte Carlo simulation and can be adjusted
to trade off speed for accuracy [Dell’Amico and Filippone 2015].

2.5. Prior Mechanical Turk Password Studies

Our research group has used Amazon’s Mechanical Turk crowdsourcing service
(MTurk) to study password policies in previous studies. In prior MTurk-based password
studies, we found evidence that asking participants to role-play results in significantly
stronger passwords, suggesting that participants are more invested in the passwords
they are creating. Compared to participants who were asked to create passwords as
part of a study, participants who were asked to imagine that they were creating a pass-
word for their real email account made significantly stronger passwords [Komanduri
et al. 2011]. This result suggests that asking participants to role-play makes them
treat study passwords as more real, even though study passwords objectively have no
actual value to a participant.

In our prior MTurk studies, we found that password-composition policies can affect
both usability and security. One policy we studied requires eight characters, four char-
acter classes, and a dictionary check. Compared to a more lax policy that only required
eight characters, passwords created under this comprehensive policy were much less
likely to be guessed. However, they were also more difficult to create and recall [Kelley
et al. 2012]. We studied system-assigned passwords and passphrases and found that
users struggled with both. Three- and four-word system-assigned passphrases did not
offer usability advantages over system-assigned passwords of equal entropy, and were
often less usable [Shay et al. 2012]. We also studied password-strength meters and
found they can lead to significantly stronger passwords. While the visual depiction
of password strength did not appear to make a difference, having a more stringent
meter led to stronger passwords [Ur et al. 2012]. In addition, we conducted a study
focused on giving users real-time password-creation feedback. We found that giving
participants feedback on whether and how their passwords met requirements reduced
password-creation errors without reducing password strength [Shay et al. 2015].

A research group unaffiliated with our own recently used a similar methodology to
study passwords. They used MTurk to collect data from over 5,000 participants, using
a two-part methodology that follows our general data-collection outline. Participants
were either assigned a password, created their own password, or were assigned a
password and asked to modify the password. They found that allowing users to modify
system-assigned passwords made those passwords more memorable, yet less secure.
They also found evidence that modified system-assigned passwords were more secure
than user-created passwords, and in some cases were as memorable [Huh et al. 2015].

Any online, role-playing study raises questions of ecological validity. To understand
better the ecological validity of MTurk studies about passwords, we compared the
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single-sign-on passwords of approximately 25,000 Carnegie Mellon University fac-
ulty, staff, and students to sets of passwords created by MTurk workers [Mazurek
et al. 2013]. In particular, we asked MTurk workers to create passwords under CMU’s
password-composition policy on a sequence of web pages that mimicked the actual
CMU pages. Unlike the CMU affiliates’ passwords, the MTurk workers’ passwords had
no actual value. We found that the MTurk workers did create passwords that were
slightly weaker than the genuine ones. Surprisingly, however, they were relatively
close in strength. In addition, the two sets of passwords shared many characteris-
tics, including structure and composition. This finding provided evidence that MTurk
is a valid platform for conducting research into the effects of password-composition
policies. Researchers from another university similarly studied the ecological validity
of research studies about passwords. Participants from their university created pass-
words for either an online study or a laboratory study, and the researchers compared
these passwords to those users’ actual passwords for their university account [Fahl
et al. 2013]. While they found laboratory studies to result in study passwords that are
more representative of participants’ actual passwords, only one third of passwords from
the online study were not representative of participants’ actual university passwords.

2.6. Motivation for Studying Longer Passwords

One promising alternative policy that we identified in our prior work was to require
only that passwords contain at least 16 characters. We found that password creation
and recall were easier and less error-prone under this alternative policy than under the
more complex comprehensive policy described earlier [Komanduri et al. 2011; Kelley
et al. 2012]; and that, overall, passwords were also less likely to be guessed by an
attacker making a large number of guesses (1012). However, under this alternative
16-character policy, some participants created simple, easily guessed passwords. As a
result, an attacker with the ability to make only 108 guesses would be able to crack more
passwords under the 16-character policy than under the comprehensive 8-character
policy.

Because of these easily guessed passwords, we did not feel comfortable recommending
the otherwise-promising longer password policy. In this paper, we advance the state of
the art in password-policy research by finding policies that can be recommended for
use in practice. We find policies that are more usable than the comprehensive policy we
have seen deployed in practice, are as secure against a resource-constrained attacker,
and more secure against an attacker capable of a larger number of guesses.

3. METHODOLOGY

We conducted a pair of two-part online studies to examine how participants create
and use passwords. In this section, we describe our data-collection protocol, how we
analyzed that data, and the limitations to our approach. Our two studies had different
conditions but otherwise used the same methodology. We used MTurk to recruit and
pay participants. We assigned participants at random to conditions because we wanted
to draw causal conclusions to make specific policy recommendations.

In the first part of each study, Part 1, we asked participants to create a password
under a given policy. Participants then filled out a brief survey and recalled their pass-
word. Two days later, we invited participants to return for the second part of the study,
Part 2. We asked them to recall their password again, and to take a second survey. We
paid participants 55 cents for completing Part 1 and 70 cents for completing Part 2. Pre-
vious passwords research has used a similar data-collection methodology [Komanduri
et al. 2011; Kelley et al. 2012; Shay et al. 2012; Ur et al. 2012].
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3.1. Study Overview

Participants needed to be at least 18 years old and located in the United States, as
determined by MTurk. In Part 1, we asked participants to imagine that their email
provider had been compromised and required they create a new password, under a
policy determined by their condition. We informed participants that we would ask
them to return and recall their password again in a few days. We asked participants
to take whatever steps they normally would to remember and protect their passwords.
Prior work showed that asking participants to imagine creating email passwords leads
to stronger passwords than just asking them to create study passwords [Kelley et al.
2012].

After creating and confirming a password, participants completed a 5-minute survey
about their experience. We then asked participants to recall their password, which
we call Part 1 Recall. If participants did not enter the password successfully in five
attempts, we showed it to them.

Two days later, we invited participants to return for Part 2 of the study. We did this
using an MTurk feature that allowed us to email participants without knowing their
email addresses. Once they returned, we asked participants to recall their passwords,
which we call Part 2 Recall. Participants who entered five incorrect passwords saw
their password on the screen. Participants could also follow a “Forgot Password” link
to be emailed a link to their password. After Part 2 Recall, we administered a 5-minute
survey about whether and how participants stored their passwords.

3.2. Measuring Password Guessability

In order to evaluate password guessability across conditions, we simulated an offline
attacker with a stolen salted-and-hashed password file. The attacker attempts to guess
a user’s password using a particular password-cracking algorithm configured with
particular training data. For each guess, the attacker salts and hashes that guess. If
the hash of the guess matches the entry in the password database for a particular user,
the attacker has discovered that user’s password.

We calculated how many guesses were required to guess a given password in two
ways, and we conservatively took the smaller guess number from these two methods.
The first method was a probabilistic context-free grammar (PCFG) password-guessing
algorithm [Kelley et al. 2012; Weir et al. 2009]. The second method was the CMU
Password Guessability Service (termed PGS) [Carnegie Mellon University 2015]. We
explain both below.

First, we ran an attack targeted to each particular set of passwords created by
our participants under a given password-composition policy. We term this method a
targeted PCFG, a type of PCFG password-guessing algorithm. The PCFG approach uses
training data to generate guesses in order of likelihood, up to a probability minimum
cutoff. For each study condition, we randomly divided its passwords into two folds, and
we used each fold to help train the PCFG algorithm for cracking the other fold [Shay
et al. 2014; Kelley et al. 2012].

For our targeted PCFG approach, we improved the PCFG algorithm to help it crack
the longer passwords that are the focus of this work. The original algorithm could only
guess a password containing a long string of letters if that exact string was found in the
training data. For example, unless training data contained the string desktopbackup,
any password containing that string would not be guessed. To address this, we aug-
mented the grammar of the PCFG algorithm to include word breaks. Thus, a password
containing desktopbackup could be guessed if the training data contained desktop and
backup as separate strings. We tokenized passwords using a word-level, frequency-
based n-gram model, where an n-gram model is used to determine separation points
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in unbroken text [Komanduri 2016]. Using this model, we break up long alphabetic
strings into individual words.

We also adjusted the PCFG algorithm to include the frequencies of letter strings
so that passwords with more common letter strings be found first. The original
PCFG implementation assigned letter strings uniform frequencies for performance rea-
sons [Weir 2010]. Our refinement improves the effectiveness of the guessing algorithm
by favoring high-probability strings but also increases computational and memory re-
quirements due to the large increase in number of training strings. We mitigate this
by quantizing probabilities, trading accuracy for speed [Komanduri 2016]. Groups of
strings with the same frequency are packed together into a data structure and treated
as a single unit, greatly increasing speed. We use the Lloyd-Max algorithm, which
minimizes the mean squared error of the quantization, so accuracy is not reduced too
much [Komanduri 2016].

We configured the targeted PCFG approach to generate only guesses that conform to
the length, character-class requirements, and pattern requirements of the password-
composition policy. Because we perform our guessability analyses using code that imple-
ments the PCFG as a lookup table [Kelley et al. 2012], rather than a list of enumerated
guesses, we were unable to configure the PCFG approach to avoid guesses that match
a dictionary or blacklist. Thus, conditions with dictionary or blacklist checks might
appear slightly more resistant to guessing than they would be in practice.

Second, we ran each set of passwords through the PGS, a public service for re-
searchers that our group released based on evaluating numerous configurations of dif-
ferent approaches to password cracking [Ur et al. 2015b]. In particular, our PGS guess
numbers conservatively represent the smallest guess number across three approaches
to password cracking: an order-5 Markov model [Ma et al. 2014]; the password-cracking
tool oclHashcat [Steube 2015]; and a PCFG [Kelley et al. 2012; Weir et al. 2009] that
differs from the one described above by not using cross-validation, yet using a more
recent PCFG implementation that considers unseen terminals [Komanduri 2016] and
also guesses passwords from the training data before abstracting them into a gram-
mar [Ur et al. 2015b]. Guess numbers generated by a PCFG and Markov model only
generate guesses that comply with the length and character-class requirements of the
password-composition policy. In contrast, Hashcat guess numbers are not filtered by
password-composition policy because the oclHashcat software tool does not offer such
filtering in the modes in which it is used for PGS [Ur et al. 2015b].

3.2.1. Modeling the Attacker. We trained our targeted PCFG using publicly available
data and more targeted data. The publicly available data included the Google web cor-
pus [Brantz and Franz 2006] and a free password-cracking dictionary from the Open-
wall Project.2 We trained on two publicly available leaked password sets: the RockYou
set of over 30 million passwords [Vance 2010] and the MySpace set of about 45,000
passwords [Schneier 2006]. We also trained on passwords created in one of our prior
studies [Kelley et al. 2012]. We collected them on MTurk using a similar methodology.
An attacker could conduct similar data collection to make a similar training set.

The PGS attacks were also trained using leaked passwords and dictionaries. The
passwords were taken from breaches of MySpace [Schneier 2006], RockYou [Vance
2010], and Yahoo [Goodin 2012]. In addition, PGS uses the natural-language dictio-
naries found most effective in prior work [Weir et al. 2010; Kelley et al. 2012]: all
single words in the Google Web corpus [Brantz and Franz 2006], the UNIX dictio-
nary [Beeman 2004], and a 250,000-word inflection dictionary [SCOWL 2015]. For
cracking approaches that take only a wordlist, without frequency information, PGS

2http://www.openwall.com/wordlists/.
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uses a wordlist ordered by descending frequency and with duplicates removed. To gen-
erate additional guesses for the Hashcat attacks, we augmented this wordlist with the
wordlists provided by InsidePro [InsidePro 2005].

For our resource-intensive targeted PCFG attacks, we were able to simulate 1012

guesses in each condition. For PGS, the guessing cutoff differs by password-cracking
approach, depending on the resource requirements per approach, but exceeds 1014

guesses for the most computationally efficient approaches. As a result, the PGS guess
numbers reflect 1014 guesses for each condition.

One way we compared password strength between conditions was looking at how
many passwords in each condition were guessed after a certain number of guesses.
We use two guess-number cutoffs: 106 and 1014 guesses. Florêncio et al. [2014] have
suggested these as guess-number thresholds for offline and online attacks, respec-
tively. Previous research suggests that some policies that perform well against an at-
tacker making a larger number of guesses might perform comparatively poorly against
an attacker making a smaller number of guesses and vice-versa [Kelley et al. 2012].
Our offline guess-number cutoff is optimistic and assumes that the service provider
is following good practices, including using a slow hash function, monitoring for data
breaches, and forcing password resets if a breach is detected. If the service provider is
not following these practices, then an attacker might make a larger number of guesses.

To provide a rough idea of how these guess numbers translate to time, we performed
benchmarking tests in our lab. We used a standard laptop computer3 to perform hashes
with the deliberately slow bcrypt password-hashing function [Provos and Mazieres
1999]. We hashed 1,000 passwords of eight random lowercase letters each. This took
73.3 seconds. In order to reach 1012 guesses, it would take the attacker over 2,000 years.
We used the default setting for bcrypt; increasing the cost factor parameter would have
made this take longer. In comparison, using MD5 to hash 1012 passwords on the same
computer would take 55.9 days.

3.3. Limitations

Next, we discuss limitations of our protocol and analysis. We tested recall only after
a few minutes and a few days. In practice, users can utilize passwords in a variety of
patterns. Real-world users might not use their passwords for a long period of time or
may be using them multiple times per day. Thus, our study only covers a subset of real-
world use-cases. We examined only a limited number of password-composition policies.
Furthermore, we used only one particular set of training data to calculate password
guessability. While prior work has shown this particular set of training data to support
guessability analyses that are a conservative proxy for an experienced attacker [Ur
et al. 2015b], a new set of attack techniques or novel set of training data could prove to
be substantially more effective against some or all of the password-composition policies
we test.

Unlike real-world, high-value passwords, study participants would not suffer neg-
ative consequences if they chose a weak password. Although we requested that par-
ticipants treat their study password as if it were the password for their main email
account, they were not otherwise incentivized to remember their study passwords or
to treat these passwords as genuine.

As described in Section 2.5, in prior work we found that MTurk workers created simi-
lar passwords to genuine Carnegie Mellon University passwords [Mazurek et al. 2013].
Further, we found evidence that asking users to role-play during password creation ap-
pears to increase buy-in, as participants make stronger passwords [Komanduri et al.

32012 MacBook Pro, running OSX 10.10.1 (Yosemite), Retina display, 8GB 1,600MHz Memory, with a four-
core single-processor 2.3GHz Intel Core i7, running ruby 1.9.3.
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2011]. Another study recruited participants from a German university and compared
study passwords with genuine university passwords. Those researchers concluded that
46% of the passwords from the online study were fully representative of those users’
actual passwords, and another 23% were partially representative [Fahl et al. 2013].
These studies provide evidence for the ecological validity of online passwords research.

One realistic advantage of a novel password policy is that an attacker has less train-
ing data. However, this benefit may be temporary. If more service providers adopted
the novel policy, more passwords created under that policy would appear in leaked
password sets, giving attackers more training data. In our research, we were practi-
cally limited in the training sets and the password-cracking algorithm we used. It is
likely that future attackers will have access to additional leaked password sets and
more advanced password-cracking algorithms.

Our study had a high number of participants who began but did not complete both
parts. We cannot be sure why participants opted not to complete the study. Some
participants may have missed our emails inviting them to return, and others might
have been confused, bored, or frustrated by the study. We discuss study dropout and
completion rates in Sections 4.4.1 and 6.3.1. We observe cases where there are statisti-
cally significant differences across conditions for dropout rates, which we interpret as
evidence of usability differences across conditions.

Finally, there were study factors beyond our control. For instance, we did not control
the device or keyboard used to input passwords. Prior work has indicated that input de-
vices do make a difference in password strength [von Zezschwitz et al. 2014; Yang et al.
2014; Melicher et al. 2016]. Password creation on mobile devices takes more time and
results in more errors and greater user frustration [Melicher et al. 2016]. Mobile key-
boards may be substantially different from standard desktop keyboards. There is also
a considerable ranges of styles and usability among mobile-device keyboards [Schaub
et al. 2012]. As a result, our results may not apply fully to passwords created on mobile
devices.

3.4. Statistical Testing

Our statistical tests used significance level α = .05. For omnibus comparisons on quan-
titative data, we used Kruskal-Wallis (KW). For omnibus comparisons on categorical
data, we used Chi-Squared (χ2). If the omnibus test was significant, we performed
pairwise tests with Holm-Bonferroni correction (HC). We used Mann-Whitney U (MW)
for pairwise quantitative comparisons and Fisher’s Exact Test (FET) for pairwise cate-
gorical comparisons. These tests do not assume a normal distribution among our data.
Whenever this text calls a comparison significant, it indicates statistical significance.
All time-based statistical comparisons use medians instead of means.

4. STUDY 1

This section presents the conditions and findings of our first study. We found two pass-
word policies that were more usable and more secure than the shorter comprehensive
policy. These policies both combined longer-length and character-class requirements.
We also observed patterns among easily guessed passwords that motivated the second
study presented in this paper. Table I summarizes the findings for this first study.

4.1. Conditions

comp8—We asked participants to include “at least 8 characters,” including a “lowercase
English letter,” “uppercase English letter,” “digit,” and “symbol (something that is not
a digit or an English letter).” We also told participants, “Taken together, the letters
must not form a word in our dictionary.” We used the free Openwall password-cracking
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Table I. A Summary of Findings for Study 1

Each condition is compared to comp8. Light blue indicates being statistically signifi-
cantly better than comp8, and dark red indicates being worse. No shading indicates no
statistically significant difference.

dictionary4 for the dictionary check. We removed digits and symbols from the password
and checked it against this dictionary, case-insensitive. This condition is similar to a
traditional strong password policy. We wanted to find other policies that would perform
better in either security or usability, without being worse in any metric.

basic12, basic16, basic20—We asked participants to include at least 12, 16, or 20
characters. b16 was previously found to be more usable than comp8, but also to allow
more easily guessed passwords [Kelley et al. 2012]. We wanted to replicate that result
with basic16 and also to examine both longer and shorter length-only requirements.

3class12, 3class16—We asked participants to include at least 12 or 16 characters, and
at least three of the four character classes. These conditions combined longer length
requirements with a subset of the character-class requirements of comp8. We hypoth-
esized that these conditions might combine the greater usability of longer passwords
while preventing easily guessed passwords that would be created under length-only
requirements.

2word12, 2word16—We asked participants to include at least 12 or 16 characters
and to have “at least two words (letter sequences separated by a nonletter sequence).”
We hoped to encourage passphrases, which can be more memorable than traditional
passwords [Keith et al. 2009]. These conditions combined longer-length requirements
with fairly minimal character-class requirements, and we hoped they would be more
secure and more usable than comp8.

4.2. Participants

We recruited participants between April and June 2013. Table II shows the number
of participants per condition. Of the 15,108 participants who began our study, 13,751
finished Part 1. Other than the discussion of dropout rates, our analysis focuses on
these participants or a subset of these participants. 8,565 returned for Part 2 within 3
days of receiving our invitation; 8,143 of them finished Part 2. When discussing metrics
from Part 2, we focus on these participants.

Of the participants, 51.5% reported being male and 47.4% reported being female.
Participants’ mean age was 29.3 years (median 26). These did not vary significantly

4http://www.openwall.com/wordlists/.
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Table II. Summary of Password Attributes and Creation Failure on the First Attempt

Length Upper Lower Digit Sym. Fail Length Class Dict. 2word
Condition Participants (median) (median) (median) (median) (median) (%) (%) (%) (%) (%)
comp8 1996 10 1 5 2 1 58.0 6.5 26.3 39.0 –
basic12 1693 13 0 10 3 0 40.6 38.2 – 18.5* –
basic16 1757 17 0 14 3 0 52.6 50.4 – 6.3* –
basic20 1715 21 0 18 3 0 59.9 57.3 – 4.3* –
3class12 1653 13 1 8 3 1 44.5 38.2 9.5 23.4* –
3class16 1625 17 1 11 3 1 52.2 47.2 10.0 9.7* –
2word12 1659 14 0 11 2 0 54.5 30.4 9.9 6.5* 45.4
2word16 1653 18 0 14 2 1 59.8 44.8 9.6 2.6* 45.1

A password can fail multiple ways. We omit failure from blank fields and confirmation mismatch. Dict shows the percent of
comp8 participants who failed the dictionary check on their first attempt. It also shows the percentage of final passwords in
other conditions that would have failed the dictionary check.

between conditions. Looking at user-agent strings, only 1.5% of participants appeared
to be using mobile devices.

4.3. Security Results

We next describe our findings for password strength, the calculation of which we dis-
cussed in Section 3.2. Table II has descriptive statistics for how users created their
passwords. For example, participants typically avoided uppercase letters or symbols in
their passwords, but often included digits.

Figure 1 shows the percentage of passwords cracked in each condition as additional
guesses are made. Table I shows the percentages of passwords guessed in each condition
after 106 and 1014 guesses, with pairwise significant differences in Table III.

Conditions basic16 and basic20 performed relatively well after 1014 guesses. How-
ever, they contained a number of easily guessed passwords and therefore performed
poorly against an attacker limited to 106 guesses. The comp8 condition was relatively
strong against an attacker limited to 106 guesses but performed poorly against an
attacker capable of making 1014 guesses. This is consistent with the findings of our
prior work [Kelley et al. 2012].

Several conditions combining longer length and character-class requirements, such
as 3class12 and 2word16, performed well across a range of guess numbers. Condition
3class16 was strong after both 106 and 1014 guesses. The 2word and 3class conditions
were stronger than their basic counterparts. 3class12 was similar to comp8 until around
1010 guesses and is stronger after.

It is interesting to note the disparity between 2word12 and 2word16. Adding the
2word requirement improves basic16 more than basic12. Examining participants who
finished Part 2 shows that 2word16 participants created passwords with three or more
words 31.8% of the time, almost twice as often as 2word12 participants. Examples of
these passwords from 2word16 include bite-the-wax-tadpole and kill the vampire in
your life. The 2word approach seems more effective with a length-16 requirement, at
least in part because this leads to more participants creating passphrases.

To understand how participants perceived the strength of their study passwords, we
asked whether they agreed with the statement, “If my main email provider had the
same password requirements as used in this study, my email account would be more
secure.” Agreement ranged from 59.8% for 3class16 and 59.7% for comp8 to 35.2% for
basic12. Participants in comp8 were more likely to agree than in any other condition
except 3class16. This suggests that user perception of password strength does not
align with our strength analysis. We suspect that participants expected the comp8
requirements to lead to strong passwords because it is similar to a traditional “strong”
policy.
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Fig. 1. The percentage of passwords cracked in each condition by the number of guesses made, in log scale.
Our cutoff for guess numbers was 1014. Table I shows significant differences in cracking rates between
conditions.

4.4. Usability Results

In this section, we examine dropout rates, as well as password storage, creation, and
recall. Overall, we found that most conditions are significantly more usable than comp8
on a number of metrics.

4.4.1. Study Dropout. We consider higher dropout rates to indicate increased confusion,
boredom, or frustration. We interpret statistically significant differences in dropout
rates between conditions to be caused by differing usability between conditions. Among
15,108 participants who began the study, 91.0% finished Part 1. Part 1 completion
varied significantly by condition (χ2

7 =246.60, p<.001), ranging from 83.0% for comp8
to 94.5% for basic12. Participants in comp8 were significantly less likely to finish Part 1
than those in any other condition (HC χ2, p<.001). Participants in 3class16 (90.5%)
were significantly less likely to finish Part 1 than those in basic12 (94.5%) or basic16
(93.9%) (HC χ2, p<.004). Of those participants who finished Part 1, 62.3% returned
within 3 days of being invited back; this did not vary significantly by condition (χ2

7 =7.69,
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Table III. Significant Differences in the Probability of Passwords Cracked after 106 and 1014 Guesses,
Representing More and Less Resource-Constrained Attackers

Cracked passwords after 106 guesses
Omnibus χ2

7 =270.784, p<.001
cond 1 % cond 2 % p-value
basic12 9.1% basic20 5.6% .001

2word12 3.4% <.001
3class12 3.2% <.001
comp8 2.2% <.001
3class16 1.2% <.001
2word16 1.1% <.001

basic16 7.9% 2word12 3.4% <.001
3class12 3.2% <.001
comp8 2.2% <.001
3class16 1.2% <.001
2word16 1.1% <.001

basic20 5.6% 2word12 3.4% .025
3class12 3.2% .008
comp8 2.2% <.001
3class16 1.2% <.001
2word16 1.1% <.001

2word12 3.4% 3class16 1.2% <.001
2word16 1.1% <.001

3class12 3.2% 3class16 1.2% <.001
2word16 1.1% <.001

Cracked passwords after 1014 guesses
Omnibus χ2

7 =1238.038, p<.001
cond 1 % cond 2 % p-value
basic12 52.0% 2word12 46.6% .007

3class12 36.8% <.001
basic16 29.7% <.001
2word16 22.9% <.001
basic20 16.4% <.001
3class16 13.8% <.001

comp8 50.1% 3class12 36.8% <.001
basic16 29.7% <.001
2word16 22.9% <.001
basic20 16.4% <.001
3class16 13.8% <.001

2word12 46.6% 3class12 36.8% <.001
basic16 29.7% <.001
2word16 22.9% <.001
basic20 16.4% <.001
3class16 13.8% <.001

3class12 36.8% basic16 29.7% <.001
2word16 22.9% <.001
basic20 16.4% <.001
3class16 13.8% <.001

basic16 29.7% 2word16 22.9% <.001
basic20 16.4% <.001
3class16 13.8% <.001

2word16 22.9% basic20 16.4% <.001
3class16 13.8% <.001

Figure 1 illustrates these guess numbers along a curve. In both tables, the more secure condition is
in the cond 2 column.

p=0.361). Of those who returned for Part 2, 95.1% completed Part 2 within 3 days of
being invited back; this also did not vary significantly by condition (χ2

7 =4.15, p=0.762).

4.4.2. Password Storage. Our analysis of password storage looked at participants who
finished Part 2, because we asked participants about their storage behavior only in
the Part 2 survey. To analyze storage, we classify participants into two groups: storage
and nonstorage participants. To be considered a nonstorage participant, the participant
must tell us the password was not stored in two separate questions in the Part 2 survey.
Further, the participant must not be detected pasting or using browser autocomplete
in Part 2 Recall, except after returning via the password-reminder link.

Of the participants, 52.6% were storage participants. This ranged from 45.4% for
basic12 to 60.2% for 3class16; Table IV shows significant pairwise differences. 3class16
had a significantly higher storage rate than every other condition except comp8 and
3class12. Password storage rates were highest in conditions that required three or four
character classes, and lowestin the basic conditions.

4.4.3. Password Creation. We interpret taking more password-creation attempts as be-
ing less usable. Participants took an average of 1.9 attempts to create a password. Ta-
ble IV shows significant pairwise differences. comp8 took the most attempts (mean=2.4)
and basic12 took the fewest (mean=1.5). We asked participants whether they agreed
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Table IV. Significant Differences in Study 1 Password-Creation Usability, with the Significantly More Usable
Condition in the Cond 2 Column

Password creation attempts
Omnibus KW χ2

7 =394.337, p<.001
cond 1 mean cond 2 mean p-value
comp8 2.4 basic20 1.9 .011

3class16 1.9 <.001
2word12 1.9 <.001
basic16 1.8 <.001
3class12 1.7 <.001
basic12 1.5 <.001

2word16 2.1 3class16 1.9 <.001
2word12 1.9 <.001
basic16 1.8 <.001
3class12 1.7 <.001
basic12 1.5 <.001

basic20 1.9 3class16 1.9 .011
2word12 1.9 .023
basic16 1.8 <.001
3class12 1.7 <.001
basic12 1.5 <.001

3class16 1.9 3class12 1.7 <.001
basic12 1.5 <.001

2word12 1.9 3class12 1.7 <.001
basic12 1.5 <.001

basic16 1.8 3class12 1.7 <.001
basic12 1.5 <.001

3class12 1.7 basic12 1.5 .006
Password entry time (s)
Omnibus KW χ2

7 =71.58, p<.001
cond 1 median cond 2 median p-value
3class16 16.2 comp8 13.2 .001

2word12 13.1 <.001
basic12 11.6 <.001

basic20 15.3 comp8 13.2 <.001
2word12 13.1 <.001
basic12 11.6 <.001

3class12 14.8 basic12 11.6 .001
2word16 14.6 2word12 13.1 .012

basic12 11.6 <.001
basic16 13.7 basic12 11.6 .003

Password storage
Omnibus χ2

7 =61.87, p<.001
cond 1 % cond 2 % p-value
3classc16 60.2 2word12 51.4 .002

2word16 51.3 .002
basic20 50.0 <.001
basic16 49.9 <.001
basic12 45.4 <.001

comp8 56.9 basic20 50.0 .029
basic16 49.9 .02
basic12 45.4 <.001

3class12 54.9 basic12 45.4 <.001

Agree password creation difficult
Omnibus χ2

7 =239.44, p<.001
cond 1 % cond 2 % p-value

3class16 40.3% basic20 35.2% .019
2word16 34.7% .007
comp8 32.8% <.001
basic16 28.5% <.001
3class12 26.0% <.001
2word12 21.9% <.001
basic12 15.2% <.001

basic20 35.2% basic16 28.5% <.001
3class12 26.0% <.001
2word12 21.9% <.001
basic12 15.2% <.001

2word16 34.7% basic16 28.5% <.001
3class12 26.0% <.001
2word12 21.9% <.001
basic12 15.2% <.001

comp8 32.8% basic16 28.5% .027
3class12 26.0% <.001
2word12 21.9% <.001
basic12 15.2% <.001

basic16 28.5% 2word12 21.9% <.001
basic12 15.2% <.001

3class12 26.0% 2word12 21.9% .032
basic12 15.2% <.001

2word12 21.9% basic12 15.2% <.001
Agree remembering password difficult
Omnibus χ2

7 =83.89, p<.001
cond 1 % cond 2 % p-value

3class16 42.9 3class12 35.3 .012
basic20 32.9 <.001
2word12 31.0 <.001
basic16 30.1 <.001
basic12 27.4 <.001

comp8 39.3 basic20 32.9 .035
2word12 31.0 .001
basic16 30.1 <.001
basic12 27.4 <.001

2word16 36.8 basic16 30.1 .03
basic12 27.4 <.001

3class12 35.3 basic12 27.4 .002
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Fig. 2. Participant agreement with “Creating a password that meets the requirements given in this study
was difficult” and “Remembering the password I used for this study was difficult.” Significant differences are
in Table IV.

with the statement, “Creating a password that meets the requirements given in this
study was difficult.” Figure 2 shows responses and Table IV shows significant differ-
ences. Agreement ranged from 15.2% for basic12 to 40.3% for 3class16.

4.4.4. Creation Failure. For a better understanding of password-creation failures, we
looked at participants’ first failed attempt. Table II shows these failures. Many partic-
ipants failed to meet length requirements, with 57.3% of participants in basic20 using
less than 20 characters. 26.3% of participants in comp8 used too few character classes,
compared to between 9% and 10% of participants in other conditions that required
nonletter characters. This suggests that participants struggle more to create a pass-
word with four classes compared to three. The largest source of failure in comp8 was
the dictionary check. Only comp8 had a dictionary check, so we looked at how many
passwords in other conditions would have been prevented by that check. These num-
bers are included in the same column in Table II with an asterisk. This was 23.4% of
passwords in 3class12, 18.5% in basic12, and less than 10% in any other condition. The
dictionary check strips away nonletter characters and checks the remaining letters
against a dictionary. We speculate that the longer conditions were less likely to fail
the dictionary check because longer passwords tend to have more letters than a single
dictionary word.

4.4.5. Part 1 Recall. Participants recalled their passwords after filling out a brief survey
in Part 1. 93.5% of participants correctly entered their password on the first attempt
and this varied by condition (χ2

7 =27.241, p<0). Participants in basic12 (95.7%) were
significantly more likely to enter their passwords correctly on the first try than those
in 2word16 (92.9%), 3class12 (93.1%), 3class16 (92.1%), or basic20 (92.5%) (HC FET,
p<.038).

4.4.6. Part 2 Recall. In Part 2 Recall, participants could use a password reminder to
display their password. Of the participants, 15.5% used this feature, and this did not
vary significantly by condition (χ2

7 =8.31, p=0.306). Among no-storage participants,
21.4% used the reminder, and this also did not vary by condition (χ2

7 =7.72, p=0.358).
80.1% of participants successfully entered their password in five attempts without
using the reminder, and this did not vary significantly by condition (χ2

7 =7.75, p=0.356).
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Table V. Substrings in at Least 1% of Passwords

Substring Using Cracked | Using Cracked | ¬Using p-value
1234 4.9% 69.9% 32.3% <.001
password 3.0% 54.0% 33.5% <.001
123456789 1.7% 79.0% 33.3% <.001
turk 1.5% 45.4% 34.0% .004
char 1.1% 44.0% 34.0% .048
love 1.9% 34.1% 34.1% 1.000
2013 1.6% 31.4% 34.2% 1.000
this 1.6% 31.8% 34.2% 1.000
The second column shows the percent of passwords containing the sub-
string. The next two show percentages of passwords cracked containing
and not containing it. The fifth shows a χ2 test on the difference. The
presence of “2013” likely results from the study being conducted in that
year.

These participants took an average of 1.3 tries, and this also did not vary significantly
by condition (χ2

7 =12.96, p=0.073).
As a measure of usability, we looked at how long participants spent entering their

passwords on their first successful attempt. We looked only at no-storage participants
who did not use the reminder. Median times varied from basic12 (11.6 seconds) to
3class16 (16.2 seconds), with significant differences in Table IV. Overall, participants
in 3class16 took the most time to enter their passwords successfully. Participants in
basic12 and 2word12 took the least time to enter their passwords on the first successful
attempt, despite these passwords being longer than comp8 passwords.

To measure subjective user difficulty, we asked participants whether they agreed
with the statement, “Remembering the password I used for this study was difficult.”
The least difficult condition for recall was basic12 (27.4%), and the most difficult were
comp8 (39.3%) and 3class16 (42.9%). Figure 2 depicts the results, and Table IV shows
significant differences.

4.5. Password Patterns

We next look at themes and patterns that emerge in our study passwords for a better
understanding of how users create passwords.

4.5.1. Common Substrings. We identified the most common substrings in the study’s
passwords. We first made a list of all substrings of 4 to 12 characters present in at
least 1% of the passwords. We removed any substrings that did not exist in at least
1% of study passwords without already being part of another, longer substring on the
list. For example, we removed “sword,” which was almost always present as part of
“password.” This left the eight substrings in Table V. Overall, 1,944 passwords (14.1%)
contain at least one of the eight substrings. We looked at password-cracking rates for
passwords with and without each substring. Table V shows the five substrings such
that passwords containing any of them were significantly more likely to be cracked.
This finding suggests future research on proactively checking prospective passwords
and rejecting any password that contains a substring associated with weak passwords.

4.5.2. Meeting the Comp8 Requirements. Of the passwords, 29.0% in comp8 fulfilled the
symbol requirement only by placing “!” at the end of the password, and 57.7% in comp8
used an uppercase letter as their first character and used no other uppercase letter.
Passwords doing either of these were significantly more likely to be cracked (62.9% to
26.3% cracked) (χ2

1 =240.5276, p<.001). This suggests comp8 can be far more effective
when its requirements are not met in minimal ways.
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4.5.3. Going Beyond the Requirements. Table II shows that participants often exceeded
minimum length and character-class requirements. Each condition has a median length
above its minimum, and all conditions have a median of at least two digits. 66.4% of
participants exceeded their minimum required length, ranging from 59.3% of partici-
pants in basic12 to 76.8% in comp8. Perhaps not surprisingly, passwords that exceeded
the minimum length requirements were less likely to be cracked (28.2% to 45.9%)
(χ2

1 =426.8069, p<.001).
We also looked at exceeding the minimum number of character classes, omitting

comp8 because it already required all four character classes. Of the non-comp8 par-
ticipants 62.4% used more than the minimum number of character classes. Of the
participants, 38.5% in 2word16 and 38.5% in 2word12 used at least three character
classes. Over two thirds of passwords in each of the basic and 3class conditions ex-
ceeded their minima. Passwords exceeding the minimum were significantly less likely
to be cracked, 24.9% to 42.2%, (χ2

1 =382.291, p<.001).

4.5.4. Character Distribution in 3Class12. Participants often responded to the three-
character-class requirement of 3class12 by placing characters other than lowercase
letters at the beginning or end of their passwords. In fact, fewer than 2% of passwords
in 3class12—33 of 1,653—began and ended with lowercase letters. Those 33 passwords
were particularly difficult to guess. After 106 guesses, none were guessed. After 1014

guesses, only one of them was guessed (“family-4ever”). This suggests that encourag-
ing or requiring users to distribute their different character classes more evenly might
make character-class requirements more effective.

4.5.5. Semantic Analysis. For a better understanding of the semantic content of the
passwords, we looked at 100 random passwords per condition from participants who
finished Part 2. Participants who included words were more likely to place nonletter
characters between words rather than within them. Names, dates, and sequences of
characters such as “1234” and “qwerty” were common. We saw a number of study-
related words, and references to animals, love, and pop culture. Consistent with those
themes, looking at all passwords and ignoring case, 42 passwords contained “monkey”
and 294 passwords contained “love.” Future research might explore encouraging par-
ticipants to choose words from a wider range of themes and to add special characters
within words.

5. USING FINDINGS FROM STUDY 1 TO CREATE STUDY 2 CONDITIONS

Looking at Table I, both 3class12 and 2word16 stand out. They performed signifi-
cantly better than comp8 on several usability metrics, were more secure after 1014

guesses, and did not perform worse than comp8 on any metric. Comparing 3class12
and 2word16, passwords in 2word16 were more secure. However, passwords in
3class12 were easier to create, and still significantly more secure than those in comp8.
3class12 is also more similar to policies commonly found in the wild, so participants
may be more comfortable with conditions based on it. Therefore, Study 2 used 3class12
as its baseline condition. Exploring conditions based on 2word16 remains promising
future work.

Section 4.5 showed that a small set of substrings were markers of passwords being
more likely to be cracked. For example, 79.0% of passwords containing “123456789”
were cracked, compared to 33.3% without it. Therefore, we introduced the blacklist
requirement, which requires that passwords not contain any blacklisted substrings. We
hypothesized that preventing common substrings would prevent some easily guessed
passwords. While users may not be familiar with the concept of a substring blacklist,
we hoped that familiarity with common dictionary checks would help them grasp it.
In practice, checking a short substring blacklist would be more feasible to conduct

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 13, Publication date: May 2016.



Designing Password Policies for Strength and Usability 13:21

client-side than a traditional dictionary check. The blacklist we used in Study 2 is
below. Of Study 1 passwords, 69.2% would have passed this requirement, ranging from
57.4% of basic20 to 83.0% of comp8.

As discussed in Section 4.5, fewer than 2% of 3class12 passwords began and ended
with lowercase letters, but those that did were especially difficult to guess. We call
the requirement that passwords begin and end with a lowercase letter the pattern
requirement. We hypothesized it would lead users to distribute nonlowercase letters
more evenly throughout their password.

2class12, 3class12—These conditions required 12 characters and two and three char-
acter classes. We expected that adding more requirements directly to 3class12 would
result in conditions less usable than 3class12 itself. Therefore, we created 2class12,
which is similar to 3class12 but requires one fewer character-class. We created the
other conditions by adding requirements to 2class12.

2class16—3class16 passwords were difficult to create and recall but were also diffi-
cult to guess. We observed that password length was often more usable than charac-
ter complexity. We hoped that reducing the character-class requirements could make
3class16 more usable.

2list12, 2s-list12—These conditions combined the blacklist requirement with the
requirements of 2class12. Participants in 2list12 saw an explicit list of blacklisted
substrings, and those in 2s-list12 were simply told “Do not include words commonly
found in passwords (e.g. password), keyboard patterns (e.g., qazx), or other common
patterns (e.g. 5678).” We used the following blacklist.

—123!, amazon, character, monkey, number, survey, this, turk
—Any year between 1950 and 2049
—The same character four or more times in a row
—Any four consecutive characters from password
—Any four sequential digits (e.g., 5678)
—Any four sequential letters in the alphabet (e.g., wxyz)
—Any four consecutive characters on the keyboard (e.g., wsxc)

2pattern12—This combined 2class12 with the pattern requirement, that the pass-
word start and end with a lowercase letter. We hoped that this would lead to a more even
distribution of special characters within passwords, making passwords more difficult
to guess.

2list-patt12, 2s-list-patt12—These conditions combined the blacklist and pattern
requirements.

6. STUDY 2 FINDINGS

Section 6.1 presents participant demographics in order to provide context for the rest of
the results of our second study. We present security results in Section 6.2 and usability
results in Section 6.3. Section 6.4 discuss patterns we observed in cracked patterns.
Table VI summarizes the findings for this second study.

6.1. Participants

We collected data from December 2013 to January 2014. 9,707 participants began
the study, 8,740 finished Part 1, and 5,111 returned for Part 2 within 3 days of
being notified. Table VII shows the number of participants per condition. Participant
age did not vary significantly by condition (χ2

7 =10.069, p=0.185) (mean=30.59,
standard deviation = 10.45, median = 28). Reported gender did not vary significantly
either (χ2

7 =4.821, p=0.682) (47.9% male, 51.2% female).
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Table VI. A Summary of Findings for Study 2

Each condition is compared to 3class12. Light blue indicates being statistically significantly
better than 3class12, and dark red indicates being worse. No shading indicates no statistically
significant difference.

Table VII. Password Attributes and Creation Failure on the First Try

Len. Up. Low. Digit Sym. Fail Length Class Blacklist Pattern
Condition Participants med med med med med (%) (%) (%) (%) (%)
3class12 1,121 13 1 8 3 1 43.0 37.6 8.4 35.6* 98.0*
2class12 1,131 13 1 8 3 1 41.2 37.2 1.7 32.8* 97.3*
2class16 1,096 17 1 12 3 1 51.9 47.5 2.0 38.3* 96.2*
2list12 1,113 13 1 8 3 1 46.7 29.4 1.2 16.3 96.0*
2s-list12 1,099 13 1 8 3 1 52.3 33.5 1.7 19.6 97.0*
2pattern12 1,076 14 1 9 2 1 70.5 35.2 1.3 28.5* 59.1
2list-patt12 1,059 14 1 9 2 1 69.1 27.9 1.8 13.3 55.9
2s-list-patt12 1,045 14 1 9 2 1 76.7 35.3 2.6 21.8 58.1
Length and character counts are medians. A password can fail in multiple ways. We omit failure from blank
fields and confirmation mismatch. “Blacklist” and “Pattern” show percents of participants who failed those
checks for conditions with those checks. For other conditions (marked with *), they show the percentage of
final passwords that would have failed.

6.2. Security Results

We next compare password strength across conditions. Figure 3 depicts the proportion
of passwords in each condition that were guessed as the number of guesses increased.
Table VIII shows significant differences in guessing after 106 and 1014 guesses. After
1014 guesses, 3class12 and 2class12 did not differ significantly, but they performed sig-
nificantly worse than any other condition. 2list12 and 2s-list12 performed significantly
worse than 2class16 or the conditions using the pattern requirement. The strongest
conditions were 2list-patt12, and 2s-list-patt12.

Table VIII shows differences in cracking after 106 guesses. This smaller number of
guesses simulates an online attack. 3class12 and 2class12 performed worse than the
conditions using both a blacklist and the pattern requirement, though fewer than 3%
of passwords in any condition were guessed.

6.3. Usability Results

Overall, 2class12 and 3class12 had similar usability metrics and were more usable
than the other conditions. The blacklist check made password creation more difficult
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Fig. 3. The percentage of passwords cracked in each condition by the number of guesses made in log scale.
Our cutoff for guess numbers was 1014. Table VIII shows significant differences in cracking rates between
conditions.

but did not affect recall. The pattern requirement negatively affected creation and
recall usability.

6.3.1. Study Dropout. Table VIII shows significant differences in Part 1 dropout rates
(starting but not finishing Part 1). Participants in the pattern conditions were the
most likely to drop out, which may suggest they were more frustrated. There was no
significant difference in rates of returning for Part 2 (χ2

7 =5.826, p=0.56) or completing
Part 2 (χ2

7 =5.97, p=0.543).

6.3.2. Password Storage. Of the Part 2 participants, 58.5% stored their password. Ta-
ble VIII shows significant differences across conditions. Participants in the pattern
conditions were the most likely to store their passwords, which may indicate actual or
expected recall difficulty.

6.3.3. Password Creation. Looking at password creation, Table VIII shows significant
differences in password-creation attempts. Participants in the pattern conditions took
significantly more attempts than in any nonpattern condition. Fewer than one third of
participants in pattern conditions successfully created a password on the first try. In
the other conditions, this ranged from 48% for 2s-list12 to 59% for 2class12.

Over a third of participants in 2pattern12 took three or more attempts to create a
password. A subset of participants, 7.2%, took five or more attempts. One participant,
for example, took 10 attempts to create a password that matched the requirements
of 2pattern12. All except the final, successful attempt of this participant ended with
either a digit or an exclamation point.

As we did in the first study, to learn about perceived password-creation difficulty,
we asked participants whether they agreed with the statements “Creating a pass-
word that meets the requirements given in this study was annoying” and “Creating
a password that meets the requirements given in this study was difficult.” Figure 4
depicts responses, and Table IX shows pairwise differences. Password creation under
the the pattern conditions was more annoying and usually more difficult than under
the nonpattern conditions.

Anecdotal evidence from our previous research suggested that users were fond of
incorporating the term “monkey” into their passwords. To examine this more scientif-
ically, we detected passwords with text matching or similar to “monkey.” After these
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Table VIII. Significant Differences between Conditions in Study 2

Cracked after 106 guesses
Omnibus χ2

7 =60.451, p<.001
cond 1 % cond 2 % p-value
3class12 2.9% 2list12 0.8% .008

2pattern12 0.7% .004
2list-patt12 0.2% <.001
2s-list-patt12 0.0% <.001

2class12 2.1% 2list-patt12 0.2% <.001
2s-list-patt12 0.0% <.001

2class16 1.4% 2list-patt12 0.2% .046
2s-list-patt12 0.0% .001

2s-list12 1.2% 2s-list-patt12 0.0% .005
Cracked after 1014 guesses
Omnibus χ2

7 =602.357, p<.001
cond 1 % cond 2 % p-value
3class12 40.1% 2s-list12 31.3% <.001

2list12 28.5% <.001
2pattern12 17.1% <.001
2class16 14.2% <.001
2list-patt12 11.8% <.001
2s-list-patt12 9.9% <.001

2class12 37.6% 2s-list12 31.3% .015
2list12 28.5% <.001
2pattern12 17.1% <.001
2class16 14.2% <.001
2list-patt12 11.8% <.001
2s-list-patt12 9.9% <.001

2s-list12 31.3% 2pattern12 17.1% <.001
2class16 14.2% <.001
2list-patt12 11.8% <.001
2s-list-patt12 9.9% <.001

2list12 28.5% 2pattern12 17.1% <.001
2class16 14.2% <.001
2list-patt12 11.8% <.001
2s-list-patt12 9.9% <.001

2pattern12 17.1% 2list-patt12 11.8% .004
2s-list-patt12 9.9% <.001

2class16 14.2% 2s-list-patt12 9.9% .015

Part 1 dropout rate
Omnibus χ2

7 =58.579, p<.001
cond 1 % cond 2 % p-value

2s-list-patt12 14.0% 2class16 9.6% .021
2s-list12 9.5% <.013
2list2 8.1% <.001
3class12 8.0% <.001
2class12 6.7% <.001

2list-patt12 12.6% 2list12 8.1% .008
3class12 8.0% .005
2class12 6.7% <.001

2pattern12 11.3% 2class12 6.7% .002
Proportion of storage participants
Omnibus χ2

7 =57.391, p<.001
cond 1 % cond 2 % p-value

2s-list-patt12 67.5% 2class16 56.7% .002
2s-list12 56.5% .002
3class12 52.7% <.001
2class12 50.8% <.001

2list-patt12 64.0% 3class12 52.7% .002
2class12 50.8% <.001

2pattern12 61.7% 3class12 52.7% .031
2class12 50.8% .002

2list12 59.6% 2class12 50.8% .032
Password creation attempts
Omnibus KW χ2

7 =795.632, p<.001
cond 1 count cond 2 count p-value

2s-list-patt12 2.6 2list-patt12 2.4 .001
2pattern12 2.4 .001
2s-list12 1.9 <.001
2class16 1.8 <.001
2list12 1.8 <.001
3class12 1.6 <.001
2class12 1.6 <.001

2list-patt12 2.4 2list-patt12 1.9 <.001
2class16 1.8 <.001
2list12 1.8 <.001
3class12 1.6 <.001
2class12 1.6 <.001

2pattern12 2.4 2s-list12 1.9 <.001
2class16 1.8 <.001
2list12 1.8 <.001
3class12 1.6 <.001
2class12 1.6 <.001

2s-list12 1.9 3class12 1.6 <.001
2class12 1.6 <.001

2class16 1.8 3class12 1.6 <.001
2class12 1.6 <.001

2list12 1.8 3class12 1.6 .036
2class12 1.6 <.001

The first column shows differences in proportions of passwords cracked after 106 and 1014 guesses, with the
significantly more secure condition on the right. The next column shows significant usability differences.
These include differences in the Part 1 drop rate, Storage rate for Part 2 participants, and the number of
attempts needed to create a satisfactory password. In each case, the more usable condition is in the Cond 2
column.
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Table IX. Significant Usability Differences

Agreement with creation difficult
Omnibus χ2

7 =405.645, p<.001

cond 1 % cond 2 % p-value

2s-list-patt12 50.2% 2class16 40.1% <.001

2list12 32.8% <.001

2s-list12 27.4% <.001

2class12 25.1% <.001

3class12 24.1% <.001

2list-patt12 50.0% 2class16 40.1% <.001

2list12 32.8% <.001

22s-list12 27.4% <.001

2class12 25.1% <.001

3class12 24.1% <.001

2pattern12 46.8% 2class16 40.1% .015

2list12 32.8% <.001

2s-list12 27.4% <.001

2class12 25.1% <.001

3class12 24.1% <.001

2class16 40.1% 2list12 32.8% .003

2s-list12 27.4% <.001

2class12 25.1% <.001

3class12 24.1% <.001

2list12 32.8% 2s-list12 27.4% .044

2class12 25.1% <.001

3class12 24.1% <.001

Agreement with recall being difficult
Omnibus χ2

7 =85.906, p<.001

cond 1 % cond 2 % p-value

2list-patt12 49.1% 2class16 38.5% .003

3class12 36.0% <.001

2list12 35.7% <.001

2class12 35.4% <.001

2s-list12 32.6% <.001

2s-list-patt12 49.0% 2class16 38.5% .002

3class12 36.0% <.001

2list12 35.7% <.001

2class12 35.4% <.001

2s-list12 32.6% <.001

2pattern12 47.4% 2class16 38.5% .019

3class12 36.0% <.001

2list12 35.7% <.001

2class12 35.4% <.001

2s-list12 32.6% <.001

Time for participants successful on the first try in Part 1
Omnibus KW χ2

7 =117.625, p<.001

cond 1 median cond 2 median p-value

2class16 8.9 2list-patt12 8.4 .039

2list12 8.0 <.001

3class12 7.7 <.001

2s-list12 7.7 <.001

2class12 7.2 <.001

2pattern12 8.8 2list12 8.0 .003

3class12 7.7 <.001

2s-list12 7.7 <.001

2class12 7.2 <.001

2s-list-patt12 8.7 2list12 8.0 .033

3class12 7.7 .002

2s-list12 7.7 .006

2class12 7.2 <.001

2list-patt12 8.4 2class12 7.2 <.001

2list12 8.0 2class12 7.2 .001

3class12 7.7 2class12 7.2 .021

2s-list12 7.7 2class12 7.2 .01

Agreement with creation annoying
Omnibus χ2

7 =303.957, p<.001

cond 1 % cond 2 % p-value

2list-patt12 77.3% 2class16 70.0% .001

2list12 61.4% <.001

2s-list12 57.9% <.001

3class12 57.3% <.001

2class12 54.0% <.001

2s-list-patt2 76.0% 2class16 70.0% .019

2list12 61.4% <.001

2s-list12 57.9% <.001

3class12 57.3% <.001

2class12 54.0% <.001

2pattern12 74.7% 2list12 61.4% <.001

2s-list2 57.9% <.001

3class12 57.3% <.001

2class12 54.0% <.001

2class16 70.0% 2list12 61.4% <.001

2s-list12 57.9% <.001

3class12 57.3% <.001

2class12 54.0% <.001

2list12 61.4% 2class12 54.0% .005

The more usable conditions are in the Cond 2 column. The first column shows agreement with password
creation being annoying and difficult. The second shows Part 1 Recall timing and agreement with recall
being difficult.
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Fig. 4. Participant agreement with “Creating a password that meets the requirements given in this study
was difficult” and “Remembering the password I used for this study was difficult.”.

participants finished Part 1, we asked, “We couldn’t help but notice that you have
a Monkey-ish word in your password. Please tell us why you included [text] in your
password.” We detected 17 passwords with a monkey-ish phrase (0.2%). Participants
reported liking monkeys, finding them cute, and having “monkey” be a nickname or
pet name. This is further anecdotal evidence that users often make passwords related
to things they like.

6.3.4. Creation Failure. Table VII shows types of password-creation failures on the first
attempt. Participants struggled to meet the pattern requirement. Over two thirds of
participants with this requirement failed on their first attempt, and over half of these
failures were due to the pattern requirement itself. The blacklist requirement appears
to have prevented fewer passwords than the dictionary check of comp8.

6.3.5. Part 1 Recall. In Part 1 recall, 93.2% of participants entered their passwords
correctly on the first attempt. This was not significantly different between condi-
tions (χ2

7 =5.101, p=.648). Table IX shows significant differences in password-entry
time for participants who correctly entered their password on the first try. Passwords
in 2class16 took longest to enter, followed by 2pattern12. 2class12 took significantly
less time than any other condition. However, the effect size is small. Median times
ranged from 7.2 seconds (2class12) to 8.9 seconds (2class16).

6.3.6. Part 2 Recall. Of the participants, 5,111 returned and finished Part 2 within
3 days of being invited back; 14.9% of them used the reminder and this did not vary
significantly by condition (χ2

7 =6.833, p=0.446); and 80.0% of participants entered their
password correctly within five attempts without the reminder, and this also did not vary
by condition (χ2

7 =5.401, p=0.611). Among these success participants, the number of
recall attempts did not vary significantly (χ2

7 =3.009, p=0.884). Among the 2,120 no-
storage participants, there was also no significant difference in using the reminder
(χ2

7 =9.727, p=0.205) or successfully recalling the passwords (χ2
7 =9.518, p=0.218).

To understand perceived difficulty, we asked participants whether they agreed with,
“Remembering the password I used for this study was difficult.” While the above ob-
served metrics for password recall did not vary by condition, perceived difficulty did.
Agreement was 47.4% to 49.1% for pattern conditions and 38.5% to 32.6% for the non-
pattern conditions. Table IX shows significant differences. Each pattern condition had
significantly more difficulty than any nonpattern condition.
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6.4. Password Patterns

Next, we examine how participants met and exceeded password-composition
requirements.

6.4.1. Common Substrings. Analyses presented in Section 4.5 found eight substrings
that were present in at least 1% of Study 1 passwords. This led to the blacklist re-
quirement for some Study 2 conditions. The substring “love” is in 1.4% of passwords
created in conditions with the blacklist requirement. No other substring was in 1%
or more of these passwords. Containing this substring was correlated with passwords
being more likely to be cracked (35.8% to 23.9%) (FET, p = .006). This shows that the
blacklist requirement did help prevent participants from using common substrings in
their passwords. This may help explain why 2s-list12 and 2list12 passwords were less
likely to be cracked than 2class12 passwords.

6.4.2. Going Beyond the Requirements. Conditions in Study 2 required either 12 or 16
characters. Of the passwords, 65.4% exceeded their minimum length requirement.
These passwords were significantly less likely to be cracked than passwords that did
not exceed the minimum (18.9% to 33.8%) (χ2

1 =239.9686, p<.001). Each condition re-
quired either two or three different character classes. In addition, 84.3% of passwords
exceeded their minimum character-class requirement. These passwords were signifi-
cantly less likely to be cracked than passwords that did not exceed the minimum (20.1%
to 45.4%) (χ2

1 =404.8158, p<.001).

6.4.3. The Pattern Requirement and Character Distribution. The pattern requirement was
intended to cause participants to distribute nonlowercase-letter characters throughout
their passwords, rather than putting most of them at the beginning or end. To measure
how effective this was, we compared character-class distributions in 2pattern12 and
2class12 passwords, which differed only in having the pattern requirement.

The structure of a password is a representation of its character classes [Weir et al.
2009]. For example, the structure of password “P4ssword!” is “UDLLLLLLS”, where
for example “U” indicates an uppercase letter. We examined how often passwords in
2class12 and 2pattern12 had unique patterns. Because 2class12 had more participants,
we did not make a direct comparison of the number of unique passwords in each
condition. We instead took a random sample of 1,000 participants from each condition
and counted how many of them had structures unique among the 1,000. We repeated
this experiment 1,000 times. For 2class12, an average of 63.4% of passwords had unique
structures. For 2pattern12, it was 81.8%. This is evidence that the pattern requirement
led participants to more diverse password structures.

Figure 5 visualizes character-class distributions of 2class12 and 2pattern12. It de-
picts the character classes of the first and last six characters, because those conditions
both require 12 characters. Passwords in 2class12 frequently have special characters
at the start and end. While 2pattern12 passwords do not have an even distribution of
character classes, they appear to be better mixed than in 2class12. This may explain
why the pattern requirement led to stronger passwords.

7. COMPARISON OF CONDITIONS BETWEEN STUDIES

After we conducted both studies and analyzed the results, there were two pairs of
conditions that we wanted to compare between the studies. We wanted to compare
2word16 and 2s-list12, because both were more secure than 3class12 without being
more difficult to recall. We also wanted to compare comp8 and 2class12, given how
similarly 2class12 and 3class12 performed. Both of these comparisons could help us
make more specific recommendations to service providers.
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Fig. 5. For the first and last six characters, these graphs show the percentage of each character class in
2class12 and 2pattern12.

We collected data for Study 1 and Study 2 at different times. Therefore, we had con-
cerns about comparing conditions between the studies. To determine whether we could
reasonably compare across studies, we compared the two sets of 3class12 participants
who finished Part 2 of either study. These two sets of 3class12 participants did not
differ significantly in password strength, difficulty with password creation or recall,
password storage, or attempts needed to create or recall their passwords (p ≥ .1). The
similarity of 3class12 between studies made us comfortable with making the following
two comparisons.

7.1. Comparing 2Word16 and 2S-List12

We compared the 981 2word16 participants who finished Part 2 of Study 1 to the 648
2s-list12 participants who finished Part 2 of Study 2. After 106 guesses, their propor-
tions of guessed passwords did not differ significantly (χ2

1 =0.004, p=0.948). After 1014

guesses, 2word16 passwords were less likely to be guessed (22.9% to 29.6%) (χ2
1 =8.833,

p=0.003). Participants in 2s-list12 were less likely to find password creation difficult
(27.3% to 35.2%) (χ2

1 =10.695, p=.001) and took fewer attempts to create their pass-
words, (1.8 to 2.0 mean attempts) (KW χ2

1 =15.666, p<0). Participants in 2word16 were
less likely to store their passwords (51.3% to 56.5%) (χ2

1 =4.045, p=0.044). There was no
significant difference in finding password recall difficult (χ2

1 =2.892, p=.089) or Part 2
recall attempts (KW χ2

1 =0.047, p=.829). Neither condition stood out as clearly superior.

7.2. Comparing Comp8 and 2Class12

We compared the 1200 comp8 participants who finished Part 2 of Study 1 to the
661 2class12 participants who finished Part 2 of Study 2. 2class12 passwords were
less likely to be cracked than comp8 passwords, after both 106 guesses (0.9% to
2.4%) (χ2

1 =4.473, p=0.034) and 1014 guesses (35.4% to 49.3%) (χ2
1 =32.566, p<.001).

Participants in 2class12 were less likely to find password creation difficult (24.7% to
32.6%) (χ2

1 =12.424, p<.001). They also took fewer password-creation attempts (2.3
to 2.4) (χ2

1 =80.039, p<.001). There was no significant difference in recall attempts
for Part 1 (χ2

1 =0.183, p=0.669) or Part 2 (χ2
1 =1.71, p=0.191). There was no signif-

icant difference for password-recall difficulty (χ2
1 =2.635, p=0.105). Participants in

2class12 were less likely to store their passwords than those in comp8 (50.8% to
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56.9%) (χ2
1 =6.126, p=0.013). This suggests that, similar to 3class12, 2class12 offers

both security and usability advantages over comp8.

8. DISCUSSION

We succeeded in finding policies that offer advantages over the traditional comp8 policy,
without being worse in any metric we analyzed. We found that forcing uses to break
their password-creation habits can increase difficulty, but can also lead to stronger
passwords. In this section, we summarize our findings and present recommendations
for service providers.

8.1. Results Summary

We conducted two studies on password-composition policies that require longer pass-
words. Tables I and VI show security and usability metrics from both studies. For each
metric, each other condition is compared with the base condition for its study—comp8
for Study 1 and 3class12 for Study 2. We focus on guessnumber thresholds of 106 to
simulate an online attack and 1014 to simulate an offline attack [Florêncio et al. 2014].
The darker red color indicates an unfavorable significant comparison with the base
condition, and the lighter blue color indicates a favorable comparison.

Study 1 examined password policies with different minimum lengths, and poli-
cies that combined length and character-class requirements. Conditions 3class12 and
2word16 compared favorably to the comp8 policy. Their passwords were easier to create
and to recall. Further, their passwords were less likely to be guessed after 1014 guesses,
and no more likely after 106 guesses. Other conditions in the study had advantages, but
either compared unfavorably with comp8 in one or more metrics or were not stronger
than comp8 after 1014 guesses.

Study 1 found evidence that users often met longer-length password requirements in
predictable ways. Study 2 examined ways to break users of their predictable password-
creation habits for longer passwords. Adding the blacklist or pattern requirement
to 2class12 made the resulting passwords more secure. The blacklist requirement
made passwords more difficult to create, and the pattern requirement made password
creation and recall more difficult and error-prone.

8.2. Creating a Substring Blacklist

A substring blacklist made passwords more secure without making recall more difficult.
The ideal contents of a substring blacklist depend on context. For example, passwords in
our studies often contained the substring “turk” because we conducted them on MTurk.
Most websites would not benefit from having “turk” in their substring blacklist, unless
they were websites about Constantinople. Administrators should be sure to include
domain-specific keywords, and their service-provider name, in their blacklists.

Given a set of known passwords, creating an optimal set of k substrings to preclude
the maximum number of passwords from the set can be reduced to the maximum
coverage problem, which is known to be NP-hard. Let each password be an element.
Each substring can be considered to be a subset of those passwords. Any password
containing that substring is considered to be in the subset of elements associated with
that substring. The objective then becomes to create a blacklist of k substrings (or
subsets) such that the maximum number of passwords (elements) is covered.

Our technique for creating a substring blacklist from a password corpus might be
useful to service providers. We first created a list of all password substrings with lengths
between four and the length of the shortest password in the corpus. Then we removed
from the list any substring in fewer than 1% of passwords. We made a second pass
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through the list and removed substrings that did not occur in at least 1% of passwords
without being part of a larger substring in the list.

We applied this blacklist-creation algorithm to the 289,039 passwords with at least
eight characters in the Yahoo password set [Goodin 2012]. The only two substrings
common to at least 1% of these passwords were “1234” and “love.” An algorithmic
approach to creating a substring blacklist can lead to over-fitting, and we recommend
manually improving the blacklist. This can include, for example, adding the name
of the website and other terms related to the service. The blacklist that we used
in the study would have prevented 12.5% of the passwords in the Yahoo password
set.

8.3. The Pattern Requirement

Study 1 indicated that participants required to use special characters usually met those
requirements by putting special characters at the start or end of their passwords. This
predictable placement can help attackers guess victims’ passwords. In Study 2, we
tested the pattern requirement, which required passwords to begin and end with low-
ercase letters. The pattern requirement succeeded in effecting a more even character
distribution, as well as an increase in password strength.

However, we also observed that many participants struggled to create and recall
passwords that met the pattern requirement. Participants appeared to be so accus-
tomed to putting special characters at the start or end that forcing them to place them
within the password caused difficulty. Because of its promising effects on password
strength, future work might investigate how this requirement could be made more
acceptable to users. For example, it is likely that our participants had never encoun-
tered a similar requirement before. Perhaps, after becoming more familiar with it, the
requirement would become more usable to them. Further, participants might not have
understood the reasoning behind the pattern requirement. It is possible that a better
understanding of its function would help users follow the requirement.

8.4. Recommendations for Service Providers

8.4.1. Avoid Using Length-Only Requirements. A number of the password-composition poli-
cies we tested required only length. These policies were relatively usable. Many pass-
words created under these policies were quite strong. However, many participants
assigned these policies created very weak, easily guessed passwords. Introducing fur-
ther requirements to longer-length requirements helped prevent this. Therefore, we
recommend against using length-only password requirements, even if a longer length
is used.

8.4.2. If You are Using Comp8, Replace It. We chose to study comp8 because it is tradition-
ally considered a “strong” password-composition policy. Our research has shown that
there are other policies that are more usable and more secure. We found three policies—
2class12, 3class12, and 2word16—that we can directly recommend over comp8. We
recommend that an organization using a policy similar to comp8 replace it with one of
these.

8.4.3. More Organizations Should be Using Substring Blacklists. Our results are generally
positive for including substring blacklists in password-composition requirements. We
found that including a blacklist made passwords significantly more secure against of-
fline attacks. While this requirement made some passwords more difficult to create,
it did not make their recall more difficult. Many use-cases for passwords involve rela-
tively infrequent password creation, and continual password recall. In these scenarios,
a substring blacklist could increase password strength without being a burden on
users.
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Because substring blacklists make password-creation more difficult, it may not be
suited to every service provider. A website or online service wanting to sign up as
many users as possible may wish to avoid using a blacklist because it might turn
away prospective users. An organization that requires frequent password expiration
might also wish to avoid substring blacklists because of the burden they place on users
creating passwords. On the other hand, substring blacklists are very well suited to
universities having their students and faculty make passwords. It is also well suited to
institutions that do not require frequent password expiration. In both cases, a more dif-
ficult password-creation process would not turn away users, and it would be infrequent
enough not to cause too much frustration. We describe how we created a substring
blacklist in Section 8.2.

8.4.4. The Pattern Requirement May be Appropriate for High-Security Service Providers. The
pattern requirement requires passwords start and end with lowercase letters. With-
out this requirement, the vast majority of study participants tended to start or end
with required special characters. It appears that users are so accustomed to meeting
requirements by putting special characters at the start and end of their passwords
that the pattern requirement led to usability difficulty. However, this makes the pat-
tern requirement especially promising for high-security service providers. The pattern
requirement increases password strength, and we speculate that it makes users un-
able to re-use many of their existing “strong” passwords. The pattern requirement,
however, does make password create and recall more difficult. Therefore, requiring
passwords start and end with lowercase letters may be appropriate for high-security
service providers such as banks and email providers.
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Dinei Florêncio and Cormac Herley. 2007. A large-scale study of web password habits. In Proc. WWW.
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