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Abstract. Even the most well-motivated models of information security have ap-
plication limitations due to the inherent uncertainties involving risk. This paper
exemplifies a formal mechanism for resolving this kind of uncertainty in inter-
dependent security (IDS) scenarios. We focus on a single IDS model involving
a computer network, and adapt the model to capture a notion that players have
only a very rough idea of security threats and underlying structural ramifications.
We formally resolve uncertainty by means of a probability distribution on risk pa-
rameters that is common knowledge to all players. To illustrate how this approach
might yield fruitful applications, we postulate a well-motivated distribution, com-
pute Bayesian Nash equilibria and tipping conditions for the derived model, and
compare these with the analogous conditions for the original IDS model.

1 Introduction

Starting with the Morris Worm in 1988, security attacks on computer systems have
gradually shifted from “point-to-point” attacks, where a single attacker targets a single
defender, e.g., to deny service, to propagation attacks, where the attacker attempts to
compromise a few machines and, similar to an epidemic, uses these compromised ma-
chines (“bots” or “zombies”) to infect additional hosts. The advantage of propagation
attacks is that the miscreants behind them can commandeer reasonably quickly a very
large pool of machines, which can, in turn, be monetized. Among many other activi-
ties, bots have been used to send spam email, host phishing websites [22], or acquire
banking credentials [5].

Traditional security models that pit a defender (or a set of defenders) against an
external attacker may not capture all the intricacies of propagation attacks, as the at-
tacker population may vary over time. In contrast, models of interdependent security
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(e.g., [18]), where hosts in the network may (involuntarily or not) act on behalf of the
attacker, appear more suitable to characterize propagation attacks.

Interdependent security models have been used in the context of airline security
[14], and disease propagation [15]. In these contexts, it may be possible to characterize
infection rates or measure attack probability based on historical data. In the context of
information security, on the other hand, we posit that uncertainty on the possibility of an
attack, and ambiguity on the configuration of other networked hosts imposes significant
challenges for the selection of effective security strategies.

For instance, networks in many organizations may be quite large, and are prone to
have poorly known configuration parameters, even by their own administrators [19]. A
firewall that governs the entrance to the network may have thousands of rules, some
of them obsolete, some of them redundant, and thus it may be difficult to explicitly
characterize the probability a given outside attack could actually succeed in penetrating
the corporate network. Network configurations may be relatively complex, and two
machines located close to each other geographically may be far apart in the network
topology. In the end, network administrators may only have very rough estimates of
the various probabilities of external attacks or of attack propagation between interior
nodes [3].

The contribution of this paper is to introduce and exemplify a method for resolving
risk uncertainty by means of a well-motivated probability distribution on risk param-
eters. We introduce the method within the context of a single interdependent security
game that draws its motivation from an organizational LAN in which agents have a sig-
nificant residual impact on the security of their own and their peers’ resources (e.g., such
as in university and many corporate networks). Our examples show that such distribu-
tions can be easily motivated, and that the resulting derived conditions for equilibria and
tipping effects are reasonable, in the sense that they compare similarly to equilibrium
conditions derived in the original IDS model using the distribution’s expected values of
the model’s risk parameters.

The rest of this paper is organized as follows. We review related work in Section 2.
In Section 3, we describe our model, which is directly inspired by the work of Kun-
reuther and Heal [18], and explain how we address risk uncertainty within this model.
We provide formal and numerical analysis of interdependent security games with homo-
geneous and heterogeneous populations, and with or without uncertainty, in Section 4.
We conclude in Section 5.

2 Related work

2.1 Interdependent security

In their 2003 study, Kunreuther and Heal formalize the concept of interdependent secu-
rity with their primary example stemming from the airline industry [14,18]. In this case,
the individual airlines are concerned about a major single attack that may originate at



some point in the network, but could be propagated to another airline in the system. Air-
lines can defend themselves against direct attacks, however, they are powerless against
dangerous loads received from other aviation entities. In follow-up work, they also con-
sider a game in which players can protect themselves effectively against direct and
indirect attacks through some protection measure (e.g., vaccination), however the bene-
fit of the security investment diminishes with its popularity in the population [15]. This
research has motivated follow-up contributions in algorithmic computation of equilibria
with real-world data [17], and human-subjects experimentation in the laboratory [16].

In this paper, we refer to a complementary computer security model commented
upon by Kunreuther and Heal [18]. In this scenario, a single compromised network
resource can adversely impact other connected entities multiple times. We study this
game more formally by deriving game-theoretic equilibrium solutions for different in-
formation conditions and network-wide behaviors (e.g., tipping point phenomena).

Concurrently to the research on interdependent security, Varian started a formal
discussion on the role of security as a public good [25]. In our work, we expanded on
his work by developing a security games framework including additional games and
investment strategies (i.e., self-insurance) [9]. We also considered the impact of player
heterogeneity [10], and the influence of strategically acting attackers on the security
outcome [7].

An alternative optimization approach is pursued by Miura-Ko et al. who derive
Nash equilibrium conditions for simultaneous move games in which the heterogeneous
interactions of players can be represented with a set of piece-wise linear conditions [21].
They further enrich their basic model to develop three studies on password security,
identity theft, and routing path verification. The authors verify the robustness of their
approach to perturbations in the data, however, do not formally consider the role of
uncertainty.

2.2 Uncertainty and security

In the context of the value of security information, research has been mostly concerned
with incentives for sharing and disclosure. Several models investigate under which
conditions organizations are willing to contribute to an information pool about secu-
rity breaches and investments when competitive effects may result from this coopera-
tion [8]. Empirical papers explore the impact of mandated disclosures [4] or publication
of software vulnerabilities [24] on the financial market value of corporations.

Other contributions to the security field include the computation of Bayesian Nash
outcomes for an intrusion detection game [20], security patrol versus robber avoidance
scenarios [23], and the preservation of location privacy in mobile networks [6]. A dif-
ferent approach is followed by Alpcan and Başar who present an application of game
theory and stochastic-dynamic optimization to attack scenarios in the sensor network
context [2].



In our prior work, we studied the impact of uncertainty in three different games
[11,13]. We also developed a set of metrics to study the value of better information [12].

A more extended review of theoretical and empirical work is presented by Acquisti
and Grossklags in which they discuss the moderating role of risk, uncertainty and am-
biguity in the areas of privacy and security [1].

3 Model

3.1 Interdependent network security

We focus our attention on interdependent security games that directly model network
security. For the basic setup, suppose that each of n players is responsible for operating
her personal computer, and that players’ computers are connected to each other through
a given internal network, e.g., a corporate LAN. Each computer is also connected to an
external network, e.g., the Internet. The external connection poses certain risks (e.g.,
infection with viruses), and if a user’s resources are compromised then she will suffer a
total loss, normalized to 1. In addition, some of these viruses have the ability to propa-
gate through the internal network to compromise all the other players’ computers. If a
player’s computer is compromised in this way, she also faces a total loss.

Each player has a choice of investing in security mechanisms with a cost c to elimi-
nate the risk of being infected by an external virus. However, there is no effective way to
protect from the risk of an internal contamination as the result of another player passing
along a virus through the internal network. This modeling choice reflects a relatively
common situation in corporate networks where security policies are set to have com-
puters almost blindly trust contents coming from inside the corporate network (which
facilitates automated patching, and software updates for instance), while contents com-
ing from outside of the network are thoroughly inspected.

In addressing the risk factors associated with the virus infection and contamination,
we consider two versions of this game – a homogeneous version and a heterogeneous
version. In the homogeneous version, p is the probability that a given computer becomes
infected with a virus, and q is the probability that a computer with a virus contaminates
other computers in the system. Since a computer can only transmit a virus once it is
infected, we may assume that q ≤ p. In the heterogeneous version, pii is the probability
that player i becomes infected with a virus, and pij is the probability that player i causes
player j to become contaminated due to virus transmission. Again since a computer
must be infected before contaminating another computer, we may assume that pij ≤ pii
for every i and j.

The utility of each player in this game depends not only on her choice to protect,
but also on the choices of other players. If there are k players in the network who are
not protecting, then player i’s choice can be framed as follows. If she protects, then she
pays a cost c, eliminating the risk of a direct virus infection, but she still faces the risk
of internal contamination from k different players. If she fails to protect, then she does



not pay c, but she faces both the risk of an internal contamination from one of the k

players, as well as the risk of an external infection. The utility function for player i is
derived directly from these considerations.

For the homogeneous version of the game, the expected utility of player i is given
by the equation:

Ui =

{
−c+ (1− q)k if player i protects

(1− p)(1− q)k if player i does not protect
(1)

where k is the number of players other than i who choose not to protect.
In the heterogeneous version of the game, the expected utility for player i is given

by:

Ui =

{
−c+

∏
j 6=i:ej=0(1− pji) if player i protects

(1− pii)
∏
j 6=i:ej=0(1− pji) if player i does not protect

(2)

where ej in a binary indicator variable telling us whether player j chooses to protect.

3.2 Uncertainty

In the usual treatment of interdependent security (IDS) games such as the one above,
the risk parameters are assumed to be known. We are interested in the case in which the
risks of virus infection and contamination are unknown. Such uncertainty is especially
well-motivated in the IDS computer network game since computer users in general do
not know or understand well the potential risks posed by various types of viruses.

For our model with uncertainty, we assume that players do not know the risks, but
they believe and agree upon some probability distribution over risk parameters. In other
words, there is a probability distribution D that describes players beliefs about the rel-
evant risks. True to rational Bayesian form, everyone believes that the relevant risk
parameters are drawn from the same distribution D.

In the homogeneous case, D is a distribution on [0, 1] × [0, 1], representing the
players’ mutually-held beliefs about the parameters p and q. In the heterogeneous case,
D is a distribution on [0, 1]n×n, representing players’ mutually-held beliefs about the
parameters pij .

4 Analysis

4.1 Overview

Our analysis focuses on determining equilibrium conditions. We start with the homo-
geneous version and then proceed to the heterogeneous version. In each case, we begin
by looking at the game with full information and computing conditions under which
various Nash equilibria exist and how they can be tipped or disrupted. We extend these



results to the realm of uncertainty by positing a general distribution D and rewriting the
equilibria conditions using expected values of aggregate risk parameters conditioned
on D. We follow by providing and motivating a parametrized example distribution Dε

and using this distribution to compute various equilibrium conditions explicitly. In the
homogeneous version, we analyze these conditions numerically and graphically, and
compare the results to the original IDS game in which risk parameters are known.

4.2 Homogeneous case: A monoculture of potential failure modes

Nash Equilibrium We begin with the homogeneous case. Let’s first assume that p
and q are known. This game has two possible strong Nash equilibria, one in which
all players protect, and one in which no player protects. Considering a simple cost-
benefit analysis, the “everyone-protects” equilibrium is achievable if and only if the
cost of protection is less than the cost of an external infection (i.e. c < p). Similarly,
the “everyone-defects” equilibrium is achievable if and only if the cost of protection
is greater than the likelihood that a player is infected, but not compromised, assuming
that all of the other players are failing to protect (i.e. c > p(1 − q)n−1). In the middle
area p(1 − q)n−1 < c < p, both equilibria are possible, the protection equilibrium is
Pareto optimal, and both equilibria are subject to the possibility of tipping phenomena
in which forcing a certain number of players to switch strategies will effect the opposite
equilibrium.

Tipping Phenomenon To understand this game’s tipping phenomenon when there are
n players, it suffices to understand the game’s defection equilibrium conditions when
there are k players and k < n.

If players are in an “everyone defects” equilibrium, then to tip the equilibrium to
one in which everyone protects, it is necessary (and sufficient) to force protection upon
enough players so that universal defection among the remaining players is no longer an
equilibrium strategy. The number of forced protections required to accomplish this is
the least integer k such that c < p(1 − q)n−1−k. In words, k is the least integer such
that universal defection fails to be an equilibrium strategy in a game with only n − k

players.
Similarly, if players are in an “everyone protects” equilibrium, then the number of

defections required to tip the equilibrium toward universal defection is the least integer
k such that c > p(1 − q)k. In this case k is the least integer such that, in a game with
k + 1 players, universal defection is an equilibrium strategy.

In any case, the boundary conditions that describe the tipping phenomenon are the
same conditions that describe defection equilibria in games with fewer players.

Uncertainty When dealing with a joint probability distribution over the parameters
p, q, the above reasoning applies with the exception that players compute an expected



value for p and p(1 − q)n−1 using the distribution D. Thus “everyone protects” is an
equilibrium if and only if c < ED[p] and “everyone defects” is an equilibrium if and
only if c > ED[p(1 − q)n−1]. The tipping phenomenon have an analogous translation
involving these expected values.

Example distribution Dε To exemplify the scenario, we propose a class of distribu-
tions Dε, parametrized by a number ε ∈ [0, 1]. To motivate this distribution, we suppose
that there is a fixed number ε ∈ [0, 1] such that players believe the risk of external infec-
tion, p, is no more than ε. Dε then assigns a probability to the pair p, q ∈ (0, 1)× (0, 1)

according to the following two-step procedure. First draw p from the uniform distribu-
tion on (0, ε). Then draw q from the uniform distribution on (0, p). Since the only thing
players really know for certain about the risks are that 0 ≤ q ≤ p ≤ 1, the parametrized
distribution Dε represents an effort to reflect the notion that “infection is somewhat un-
likely, (‘somewhat’ being explicitly quantified by the parameter ε), and contamination
as a result of infection is even less likely, and aside from that we do not have a very
good idea what the risk is.”

Bayesian Nash equilibrium for Dε To determine the Bayesian Nash equilibrium con-
ditions for the parametrized game with uncertainty, we must compute the expected val-
ues EDε [p] and EDε [p(1 − q)n−1] explicitly. The expected value of p under Dε is
ε
2 , because p is drawn from the uniform distribution on (0, ε). The expected value of
p(1− q)n−1 under Dε can be computed by evaluating the expression:

1

ε

∫ ε

0

(
1

p

∫ p

0

p(1− q)n−1dq

)
dp (3)

where the inner integral is to be evaluated assuming that p is constant relative to q.
The expression evaluates to

1

n

(
1− 1− (1− ε)n+1

ε(n+ 1)

)
. (4)

When ε = 1 this expression simplifies to 1
n+1 . In practical terms, the parameter se-

lection ε = 1 describes a situation in which players have so little knowledge of the risk
factors, that they may as well believe the parameters are uniformly distributed across
all possible options. Under such conditions and with many players, the protection costs
must be very small to counteract defection incentives. On the other hand, from a so-
cial planner’s point of view the situation may be manageable, as the total cost (cost per
player × number of players) necessary to properly incentivize network protection is
bounded by a constant independent of the network size.

Graphical analysis Figure 1 plots the boundary conditions for Bayesian Nash equilib-
rium as a function of ε, for a range of N . For comparison, Figure 2 plots the boundary



conditions for Nash equilibria in the full information case when p = ε
2 and q = ε

4 .
Figure 3 exemplifies the equilibrium tipping phenomenon in a 7-player game.
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Fig. 1. Bayesian Nash equilibrium boundaries for the homogeneous game with N players.
If (c, ε) is below the solid line then “everyone protects” is a Bayesian Nash Equilibrium. If (c, ε)
is above the dashed line, then “everyone defects” is a Bayesian Nash equilibrium. In the middle
area, there are competing equilibria, and tipping points.
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Fig. 2. Nash equilibrium boundaries for the homogeneous case with p and q common knowl-
edge among all players. For comparison with Figure 1, we assume that p = ε

2
and q = ε

4
.

4.3 Heterogeneous case: Unknown and diverse configuration problems

Nash Equilibrium For the heterogeneous case, we begin by assuming the pij are
known. Here, once again, the strategy “everyone protects” is a Nash equilibrium if and
only if c < pii. The strategy “everyone defects” is a Nash equilibrium if and only if
c > pii

∏
j 6=i(1− pji). In the middle area pii

∏
j 6=i(1− pji) < c < pii, both equilibria

are possible, the protection equilibrium is Pareto optimal, and the situation is subject to
the tipping phenomenon.

Tipping Phenomenon The tipping phenomenon in the heterogeneous case is com-
pletely analogous to the homogeneous case. Tipping conditions for an n-player game
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Fig. 3. Tipping point boundaries for the homogeneous game with 7 players. In this example,
the risk threshold value is ε = 0.9 and the protection cost is c = 0.25. In the model incorporating
uncertainty, it takes 2 defections to tip a protection equilibrium into a defection equilibrium, while
in the model in which risk parameters are known, it takes 3 defections to tip the equilibrium from
protection to defection. In the other direction from universal defection to universal protection,
tipping the equilibrium requires 5 forced protections in the case of the uncertainty model and 4
forced protections in the case of knowledge assumptions.

are determined by considering the defection equilibrium conditions for games with
fewer players.

Uncertainty In the presence of uncertainty with beliefs about risk parameters gov-
erned by a general distribution D, the same analysis as above holds with ED[pii] and
ED[pii

∏
i6=j pji] replacing pii and pii

∏
j 6=i(1− pji), respectively.

Example distribution Dε To exemplify the heterogeneous scenario, we propose a
class of distributions Dε, analogous to the homogeneous case, again parametrized by
a number ε ∈ [0, 1]. As before, players believe the risk of external infection, pii, is no
more than ε. Dε then assigns a probability to the matrix pij ∈ (0, 1)n×n according
to the following procedure. First draw each pii independently from the uniform distri-
bution on (0, ε). Then draw each pij independently from the uniform distribution on
(0, pii), so that 0 ≤ pij ≤ pii ≤ 1 for every i 6= j.

Bayesian Nash equilibrium for Dε To determine the Bayesian Nash equilibrium con-
ditions for the parametrized game with uncertainty in the heterogeneous case, we must
compute the expected values EDε [pii] and EDε [pii(1− pji)

n−1] explicitly. Unlike the
homogeneous case, these expected values are trivial to compute because all the vari-



ables in relevant expressions are independent, thus we can use linearity of expectation.
The expected value of pii is ε2 , and the expected value of pii(1−pji)n−1 is ε2 (1−

ε
4 )
n−1.

We omit the graphical analysis for the heterogeneous case both due to space con-
straints and because there is no simple way to compare results with the original model
due to differences in the number of free parameters.

Another example distribution, Dε,i One final example to consider is one in which
players mutually acknowledge that some computers are more likely to be infected than
others. We can exemplify this scenario by using a distribution Dε,i that discriminates
among risk parameters for different players. Dε,i assigns a probability to the matrix
pij ∈ (0, 1)n×n according to the following procedure. First draw each pii indepen-
dently from the uniform distribution on (0, εi). Then draw each pij from the uniform
distribution on (0, pii). The distribution Dε,i reflects the same uncertain sentiment re-
garding risk as Dε, yet it also accommodates a notion – certainly realized in practice –
that some assets bear higher risk level than others.

Under the distribution Dε,i, the computations involved in determining each player’s
strategic response to the behavior of others are analogous to those computations un-
der the distribution Dε. Again the individual variables in the relevant expressions are
drawn independently so that linearity of expectation can be applied. For example, when
all other players are failing to protect, player i will also fail to protect if and only if
c > εi

2

∏
j 6=i(1−

εj
4 ). Unfortunately, determining all possible Bayesian Nash equilibria

requires addressing a number of caveats, because players have different incentives due
to the homogeneity in their beliefs about their respective risks. We defer a thorough
analysis of this scenario to future work.

5 Discussion and Conclusions

Interdependent models of information security in corporate networks seem especially
well-motivated, but it is difficult to utilize the sharpness of these models due to uncer-
tainty regarding real world risk factors. Our approach has been to make these models
smoother, by incorporating players’ uncertainty about various risk parameters.

Our objective has been to develop a mechanism for dealing with risk uncertainty in
a security context. We focused on a single IDS model involving a computer network,
and we adapted the model to capture a notion that players have only a very rough idea
of security threats and underlying structural ramifications. We formally resolved this
uncertainty by means of a probability distribution on risk parameters, one that was com-
mon knowledge to all players. We postulated a reasonable such distribution, computed
Bayesian Nash equilibria and tipping conditions for the resulting model, and compared
those to the same conditions for the original model.

Crucially from a practical standpoint, we incorporated this new probabilistic ma-
chinery while actually assuming less – indeed our adapted model using the example



distribution Dε reduced the number of free parameters. Nonetheless, we found that the
adapted model maintains characteristic equilibrium properties and asymptotic behav-
iors when information assumptions are relaxed. There are still only the two extreme
equilibria. There is still a range of cost and risk distribution parameters for which the
equilibrium can be tipped the other way by encouraging some players to switch strate-
gies. Even the boundary conditions for equilibrium conditions and tipping effects are
similar to those obtained from the original model, and we would expect such similarities
to extend to other well-motivated probability distributions in other contexts.

There were some mild differences compared to the full knowledge model using the
distribution’s expected values of model parameters. In our homogeneous model incor-
porating uncertainty, a generally low contamination risk facilitated the possibility of
slightly more defections, while a generally moderate to high contamination risk facili-
tated fewer defections. An application of this phenomenon is that when risks are small,
it may be better from a social planner’s standpoint to communicate such risks by using
expected values of parameters, while if risks are large it may be better to present them
in a manner that incorporates uncertainty using a distribution.

As a general rule, when we apply a security model to a real world situation, we
expect that some real world data will be substituted for the parameters in the model.
Unfortunately this is oftentimes difficult or impossible to do, especially for risk param-
eters. Without knowing the risks, we are left with the problem of how to use the model
for anything at all. Our approach addresses this situation in a reasonable way for a very
simple model. The approach itself is quite general and we expect to find additional
applications in future work.
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