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Abstract. This paper presents a formal, quantitative evaluation of the impact
of bounded-rational security decision-making subject to limited information and
externalities. We investigate a mixed economy of an individual rational expert
and several naı̈ve near-sighted agents. We further model three canonical types
of negative externalities (weakest-link, best shot and total effort), and study the
impact of two information regimes on the threat level agents are facing.
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1 Introduction

Users frequently fail to deploy, or upgrade security technologies, or to carefully pre-
serve and backup their valuable data [10, 12], which leads to considerable monetary
losses to both individuals and corporations every year. A partial interpretation of this
state of affairs is that negative externalities impede end-users’ investments in security
technologies [11, 14]. Negative network externalities occur when the benefit derived
from adopting a technology depend on the actions of others as is frequently the case
in the context of network security. For example, users who open and respond to un-
solicited advertisements increase the load of spam for all participants in the network,
including participants who are making the effort to adopt secure practices. Similarly,
choosing a weak password for a corporate VPN system can facilitate compromises of
many user accounts, possibly including those of individuals with strong passwords if
trust relationships inside the VPN exist.

In other words, a rational user facing negative externalities could make the deci-
sion not to invest in security primitives given that their personal investment may only
marginally matter if other users are adopting insecure practices, or if the perceived cost
of a security breach significantly exceeds the cost of investing in security [9].
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In prior work, we addressed different canonical types of interdependencies, but we
focused our analysis on users capable of gathering all relevant information and cor-
rectly understanding all implications of interconnectedness [4, 5]. This paper extends
our prior analysis by relaxing several restrictive assumptions on users’ rationality and
information availability.

First, we anticipate the vast majority of users to be non-expert, and to apply approx-
imate decision-rules that fail to accurately appreciate the impact of their decisions on
others [1]. In particular, in this paper, we assume non-expert users to conduct a simple
self-centered cost-benefit analysis, and to neglect externalities. Such users would secure
their system only if the vulnerabilities being exploited can cause significant harm or a
direct annoyance to them (e.g., their machines become completely unusable), but would
not act when they cannot perceive or understand the effects of their insecure behavior
(e.g., when their machine is used as a relay to send moderate amounts of spam to third
parties). In contrast, an advanced, or expert user fully comprehends to which extent her
and others’ security choices affect the network as a whole, and responds rationally.

Second, we address how the security choices by users are mediated by the infor-
mation available on the severity of the threats the network faces. We assume that each
individual faces a randomly drawn probability of being subject to a direct attack. In-
deed in practice, different targets, even if they are part of a same network, are not all
equally attractive to an attacker: a computer containing payroll information is, for in-
stance, considerably more valuable than an old “boat anchor” sitting under an intern’s
desk. Likewise, a machine may be more attractive than another due to looser restrictions
in the access policies to the physical facility where the machine is located.

As an initial step, we study the strategic optimization behavior from the perspec-
tive of a sophisticated user in an economy of inexperienced users, using three canonical
security games that account for externalities [4]. This approach results in a decision-
theoretic model [2, 3, 13]. We present the mathematical formulation and analysis method-
ology in the following section, which is based on our recent work focusing exclusively
on the weakest-link externality [6].

2 Model and Analysis

Basic Model: Consider a game in which each of N network users is responsible for
choosing security investments for their individual node. Each player begins the game
with an initial endowment M , and suffers a maximum loss of L if a security breach oc-
curs. The risk of a security breach is determined by an exogenous probability pi ∈ [0, 1],
which for this paper we assume to be uniformly distributed. Security risks can be miti-
gated in two distinct ways. We denote by protection those security investment strategies
which benefit the public network (such as installing antivirus software or firewalls), and
we denote by self-insurance those strategies which benefit only the contributing user
(such as keeping private data backups) [4]. The cost of full protection investment is de-
noted b and the cost of full self-insurance is denoted c. Each player chooses a protection
investment level ei ∈ [0, 1] and a self-insurance investment level si ∈ [0, 1]. The man-
ner in which protection strategies jointly affect players in the network is determined by
an aggregate protection function H(e1, . . . , eN ), of which we will consider three types:



weakest link (H(e1, . . . , en) = minj ej), best shot (H(e1, . . . , en) = maxj ej), and
total effort (H(e1, . . . , eN ) = 1

N

∑
j ej). The utility for player i is given by

U(i) = M − piL(1−H(e1, . . . , eN ))(1− si)− bei − csi . (1)

Bounded rationality and limited information: We consider distinct approaches
to relax assumptions on user rationality and information availability.

First, we distinguish users based on their treatment of network interdependencies.
We say a player is naı̈ve if she does not take network interdependency into account
in her decisions, i.e., she operates under the assumption that H(e1, . . . , eN ) = ei.
Whereas a player is of the type expert if she correctly perceives and understands the
interdependent nature of the game. That is, she properly considers the role of H into
her payoff function.

Second, we distinguish between the level of information users have about others’
risks. We say that a player has complete information if she knows all the risk factors
associated to the other players. In contrast, a player has incomplete information if she
knows her own risks but not the risks of other players. Clearly, a naı̈ve player does not
use the external risk information (because she is not aware of its effects), but an expert
player does. To provide a decision framework for an expert with limited information, we
assume that the distribution on risk parameters is known to all players. Thus, an expert
with limited information can still conduct an expected cost-benefit analysis to make
a strategic decision. This setup allows us to study the extent to which the complete
information is beneficial to the players and to the network.

Methodology: The overarching aim of our analysis is to understand how expertise
and knowledge affect player payoffs. To this end, our study considers a single expert
agent in a field of N − 1 naı̈ve agents, subject to one of the two information conditions,
and the incentives of the utility function defined above.

We begin by determining, for each of the three games, (best shot, weakest link, and
total effort), and for each of the two information conditions, (complete and incomplete),
the payoff-maximizing strategy for an expert in that game. These strategy conditions
involve the parameters b, c, L, M , N , pi and in the case of complete information pj for
j 6= i.

We next compute an average or expected payoff for the expert as a result of playing
this strategy. The expected value is taken with respect to the various probabilities pi

and pj , which we assume are each drawn independently from the uniform distribution
on [0, 1]. This final expected payoff is a function of parameters b, c, L, M , and N .
The required computations often require us to consider selected parameter orientations
as separate cases; but there are a small number of separate cases (at most 6) for each
game, and the expected payoff functions and case conditions can be recorded neatly in
tables.

We compute these payoff functions for an expert with complete information, for
an expert with incomplete information, and also for one of the many naı̈ve players.
These functions tell the whole story in terms of how a player in this game, with a given
level of knowledge and expertise, will fare in a given parameter configuration of this
game. Unfortunately, the functions involve five free variables, and it remains to distill
the information for further interpretive analysis.



To begin this part of the process, we fix the parameters related to the initial endow-
ment, M , and the total maximum loss, L by setting M = L = 1. The assumption
M = L says that an agent can lose her entire endowment if a completely unprotected
attack occurs, and may be considered as simply an interpretative statement about the
initial endowment. The assumption L = 1 generates a relatively simple scaling effect –
while it does affect the gross payoffs linearly, the assumption does not, for example, af-
fect the configuration of other parameters that yield the minimum or maximum payoff.
After incorporating these assumptions, what remains is a payoff function that depends
only on the cost of protection, b, the cost of self-insurance, c, and the number of players,
N .

The final step is to isolate the parameter conditions that yield interesting and sub-
stantive results. It turns out that there is only a narrow range of parameter configuration
in which a substantial payoff difference exists between various agent types, and so we
focus our attention on those cases.

3 Results

Due to limited space in this version of the paper, we exemplify this methodology by
focusing on the case of an expert with limited information in the best shot game. Com-
plete analytical results for all three games, – strategies and expected payoffs, together
with all accompanying derivations – may be found in our companion technical report
[8] and in our in-depth discussion of the weakest-link externality [6].

3.1 Analytical Results

Consider the factors influencing the decisions of an expert with incomplete information
in the best shot game. First, note that because of the linear, monotonous nature of the
utility function given in Eqn. (1), only three strategies are potentially utility-maximizing
for player i: passivity (ei = 0, si = 0), full protection (ei = 1, si = 0), and full
insurance (ei = 0, si = 1). Any other strategy can be shown to result in sub-optimal
payoffs [4, 8].

Now, if player i protects, her payoff is M−b; if she insures, her payoff is M−c, and
if she does neither, then her payoff is M−piL(1−Pr∗¬i) where Pr∗¬i is the probability
that one of the N − 1 naı̈ve players protects. Because we know the strategy for naı̈ve
player j is to protect if and only if b ≤ pjL and b ≤ c, we may compute Pr∗¬i as{

0 if c < b

1−
(

b
L

)N−1
if b ≤ c

. Hence the payoff for the expert when she does nothing is

M − piL when c < b, and M − piL( b
L )N−1 when b ≤ c. These values can be found in

the lower portion of Table 1, which also records initial payoffs as the results of strategy
choices under the complete information condition.

The next step is determine what our expert should do given known values for the pa-
rameters. Consider the case b ≤ c. Here the expert with incomplete information would
never choose to insure because protection is cheaper for the same result. On the other
hand, the assumptions that b ≤ L ≤ 1 imply that the inequality M − piL

(
b
L

)N−1 ≤



Table 1. Best shot security game: Payoffs for different strategies under different information
conditions

Case Information Payoff Payoff Payoff
Type Passivity Self-Insurance Protection

c < b Complete M − piL M − c M − b

b ≤ c and maxj 6=i pj < b/L Complete M − piL M − c M − b

b ≤ c and b/L ≤ maxj 6=i pj Complete M M − c M − b

c < b Incomplete M − piL M − c M − b

b ≤ c Incomplete M − piL (b/L)N−1 M − c M − b

M − b is tautological. Hence the expert will also never protect. We find that in the pa-
rameter case b ≤ c, an expert with incomplete information will always choose to be
passive. This result can be found in Table 2 under the appropriate parameter case and
information condition.

Table 2. Best shot security game: Conditions to select protection, self-insurance or passivity
strategies

Case Information Conditions Conditions Conditions
Type Passivity Self-Insurance Protection

c < b Complete pi < c/L pi ≥ c/L Never
b ≤ c and maxj 6=i pj < b/L Complete pi < b/L Never pi ≥ b/L

b ≤ c and b/L ≤ maxj 6=i pj Complete Always Never Never
c < b Incomplete pi < c/L pi ≥ c/L Never
b ≤ c Incomplete Always Never Never

Finally, to determine an expected payoff for the expert with incomplete information
in the best shot game with b ≤ c, we compute the probability that she protects (over
her draw of pi) times the expected payoff for protection, plus the probability that she
insures times the expected payoff for insuring, plus the probability that she is passive
times her expected payoff for passivity. The end result is M − L

2

(
b
L

)N−1
. This value

is recorded in Table 3, along with expected total payoffs for other parameter cases and
player information conditions.

Tables and derivations for the other two canonical games can be found in the com-
panion technical report [8].

3.2 Applications

We highlight two applications from our study. A more thorough discussion can be found
in the technical report [8].

Our first result is that the range of security parameters conducive to an environ-
ment in which limited information plays a significant role is somewhat restricted, and



Table 3. Best shot security game: Total expected game payoffs

Case Information Type Total Expected Payoff
c < b Complete M − c + c2/2L

b ≤ c Complete M − b (1− b/2L) (b/L)N−1

c < b Incomplete M − c + c2/2L

b ≤ c Incomplete M − L/2 (b/L)N−1

c < b Naı̈ve M − c + c2/2L

b ≤ c Naı̈ve M − b + b2/2L
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Fig. 1. Strategy boundaries in the incomplete information scenario for the expert player as a
function of protection and self-insurance costs. (Here the number of players is fixed at N = 4,
and the initial endowment and the potential loss are fixed at M = L = 1.) For the relevant
analytic results used to construct these graphs, please refer to the technical report [8].
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Fig. 2. Heat plots showing the extent of payoff discrepancy between the expert with complete
information and the expert with incomplete information as a function of protection and self-
insurance costs. (As in Fig. 1, N = 4, and M = L = 1.) For the relevant analytic results used to
construct these graphs, please refer to the technical report [8].



becomes more restricted as the number of players increases. Consider the three graphs
in Figure 1. These graphs show dividing lines between various dominant strategies as
function of the two types of investment costs – protection and self-insurance. Compar-
ing these to the graphs in Figure 2, the direct relationship is clear between the parameter
conditions that determine certain dominant strategies and the parameter conditions un-
der which additional information has an effect on an expert player’s payoff. From these
graphs we can tell that information plays a substantial role in the smaller-sized cases,
but in the other cases (i.e., N large), the additional information has little to no effect.
Another striking observation (not shown in these figures) is that for every game, the
size of the interesting parameter cases shrinks toward zero as we increase the number
of players.

Our second result is that, even in the parameter ranges in which information plays a
role, that role is limited. In all games, the maximum percent increase in expected pay-
off as a result of additional information is around 18%. This occurs in the weakest link
game with exactly four players, and under fixed costs of protection and self-insurance
that are set to produce maximum information impact. So having information about costs
and risks of others is not a dominant factor – in other words, using educated guesses
to predict these values does not hurt the bottom line too much. In contrast with this
observation, the expected payoff of the naı̈ve player is greatly reduced as a result of his
imperfect situational perception. So if network users do not understand the interdepen-
dent nature of their security threats, their payoff is greatly reduced.

3.3 Value of information

The degree of darkening in the graphs of Figure 2 allows us to visualize the payoff
discrepancy as a result of incomplete information, and is something we might refer
to as the value of information. It is nontrivial to arrive at a definitive answer for this
quantity’s best measure and is in fact the subject of a full related paper [7], but we
consider the following ratio definition as a first step towards the goal of reasonably
quantifying the value of information in this context.

Expected payoff of an expert agent in the complete information environment
Expected payoff of an expert agent in the incomplete information environment

4 Conclusions

In our work we emphasize that security decision-making is shaped by the structure
of the task environment as well as the knowledge and computational capabilities of
the agents. In our model, decisions are made from three distinct security actions (self-
protection, self-insurance or passivity) to confront the security risks of weakest-link,
best shot and total effort interdependencies [4, 14]. In these environments, we inves-
tigate the co-habitation of a single fully rational expert and N − 1 naı̈ve agents. The
naı̈ve agents fail to account for the decisions of other agents, and instead follow a sim-
ple but reasonable self-centered rule-of-thumb. We further study the impact of limited
information on the rational agent’s choices.



We find that in general, the naı̈ve agents match the payoff of the expert when self-
insurance is cheap, but not otherwise. Even with limited information, the sophisticated
agent can generally translate her better structural understanding into decisions that min-
imize wasted protection investments, or an earlier retreat to the self-insurance strategy
when system-wide security is (likely) failing.

To analyze the impact of the different information conditions we have proposed
a new mathematical formalization. We measure the value of complete information as
the ratio of the payoff in the complete information environment to the payoff in the
incomplete information environment. Our analysis of Figure 2 is a first step in that
direction, however, we defer a more formal analysis to a companion research paper [7].

Finally, a system designer is not only interested in the payoffs of the network par-
ticipants given different information realities (e.g., due to frequent changes in attack
trends). He is also concerned with how well-fortified the organization is against attacks.
To that effect we plan to include a more thorough presentation of the parameter condi-
tions that cause attacks to fail due to system-wide protection, and when they succeed
(due to coordination failures, passivity, and self-insurance).
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