
Regret Minimizing Audits:
A Learning-theoretic Basis for Privacy Protection

Jeremiah Blocki
Carnegie Mellon University

Nicolas Christin
Carnegie Mellon University

Anupam Datta
Carnegie Mellon University

Arunesh Sinha
Carnegie Mellon University

Abstract—Audit mechanisms are essential for privacy pro-
tection in permissive access control regimes, such as in hospi-
tals where denying legitimate access requests can adversely
affect patient care. Recognizing this need, we develop the
first principled learning-theoretic foundation for audits. Our
first contribution is a game-theoretic model that captures the
interaction between the defender (e.g., hospital auditors) and
the adversary (e.g., hospital employees). The model takes prag-
matic considerations into account, in particular, the periodic
nature of audits, a budget that constrains the number of actions
that the defender can inspect, and a loss function that captures
the economic impact of detected and missed violations on the
organization. We assume that the adversary is worst-case as is
standard in other areas of computer security. We also formulate
a desirable property of the audit mechanism in this model
based on the concept of regret in learning theory. Our second
contribution is an efficient audit mechanism that provably
minimizes regret for the defender. This mechanism learns from
experience to guide the defender’s auditing efforts. The regret
bound is significantly better than prior results in the learning
literature. The stronger bound is important from a practical
standpoint because it implies that the recommendations from
the mechanism will converge faster to the best fixed auditing
strategy for the defender.

I. INTRODUCTION

Audits complement access control and are essential for
enforcing privacy and security policies in many situations.
Specifically, audits serve an important function for pro-
tecting privacy in organizations that collect, share and use
personal information. Health care providers, in particular,
use permissive access control policies to grant access to
patient records since wrongly denying or delaying access
to a patient’s record could have adverse consequences on
the quality of patient care. Unfortunately, a permissive
access control regime opens up the possibility of records
being inappropriately accessed. Recent studies have revealed

This work was partially supported by the U.S. Army Research Office con-
tract “Perpetually Available and Secure Information Systems” (DAAD19-
02-1-0389) to Carnegie Mellon CyLab, the NSF Science and Technology
Center TRUST, the NSF CyberTrust grant “Privacy, Compliance and
Information Risk in Complex Organizational Processes,” the AFOSR MURI
“Collaborative Policies and Assured Information Sharing,” and HHS Grant
no. HHS 90TR0003/01. Jeremiah Blocki was also partially supported by
a NSF Graduate Fellowship. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

that numerous policy violations occur in the real world as
employees access records of celebrities, family members,
and neighbors motivated by general curiosity, financial gain,
child custody lawsuits and other considerations [1], [2].

Audit mechanisms help detect such violations of policy. In
practice, organizations like hospitals conduct ad hoc audits
in which the audit log, which records accesses and dis-
closures of personal information, is examined to determine
whether personal information was appropriately handled. In
contrast to access control, the audit process cannot be com-
pletely automated for relevant privacy policies. For example,
a recent formal study of privacy regulations [3] shows that a
large fraction of clauses in the HIPAA Privacy Rule [4] re-
quires some input from human auditors to enforce. We seek
to develop an appropriate mathematical model for studying
audit mechanisms involving human auditors. Specifically,
the model should capture important characteristics of prac-
tical audit mechanisms (e.g., the periodic nature of audits),
and economic considerations (e.g., cost of employing human
auditors, brand name erosion and other losses from policy
violations) that influence the coverage and frequency of
audits.

This paper presents the first principled learning-theoretic
foundation for audits of this form. Our first contribution is a
repeated game model that captures the interaction between
the defender (e.g., hospital auditors) and the adversary
(e.g., hospital employees). The model includes a budget
that constrains the number of actions that the defender
can inspect thus reflecting the imperfect nature of audit-
based enforcement, and a loss function that captures the
economic impact of detected and missed violations on the
organization. We assume that the adversary is worst-case
as is standard in other areas of computer security. We also
formulate a desirable property of the audit mechanism in this
model based on the concept of regret in learning theory [5].
Our second contribution is a novel audit mechanism that
provably minimizes regret for the defender. The mechanism
learns from experience and provides operational guidance
to the human auditor about which accesses to inspect and
how many of the accesses to inspect. The regret bound
is significantly better than prior results in the learning
literature.

The importance of audits has been recognized in com-
puter security and information privacy (see, for example,
Lampson [6], Weitzner et al. [7]). However, unlike access
control, which has been the subject of a significant body of
foundational work, there is comparatively little work on the
foundations of audit. Our work aims to fill this gap.

A. Overview of Results

Mirroring the periodic nature of audits in practice, we use
a repeated game model [8] that proceeds in rounds. A round
represents an audit cycle and, depending on the application
scenario, could be a day, a week or even a quarter.
Adversary model: In each round, the adversary performs
a set of actions (e.g., accesses patient records) of which a
subset violates policy. Actions are classified into types. For
example, accessing celebrity records could be a different
type of action from accessing non-celebrity records. The
adversary capabilities are defined by parameters that impose
upper bounds on the number of actions of each type that
she can perform in any round. We place no additional
restrictions on the adversary’s behavior. In particular, we
do not assume that the adversary violates policy following a
fixed probability distribution; nor do we assume that she is
rational. Furthermore, we assume that the adversary knows
the defender’s strategy (audit mechanism) and can adapt her
strategy accordingly.
Defender model: In each round, the defender inspects a
subset of actions of each type performed by the adversary.
The defender has to take two competing factors into account.
First, inspections incur cost. The defender has an audit
budget that imposes upper bounds on how many actions
of each type she can inspect. We assume that the cost of
inspection increases linearly with the number of inspections.
So, if the defender inspects fewer actions, she incurs lower
cost. Note that, because the defender cannot know with
certainty whether the actions not inspected were malicious
or benign, this is a game of imperfect information [9].
Second, the defender suffers a loss in reputation for detected
violations. The loss is higher for violations that are detected
externally (e.g., by an Health and Human Services audit, or
because information leaked as a result of the violation is
publicized by the media) than those that are caught by the
defender’s audit mechanism, thus incentivizing the defender
to inspect more actions.

In addition, the loss incurred from a detected violation
depends on the type of violation. For example, inappropriate
access of celebrities’ patient records might cause higher loss
to a hospital than inappropriate access of other patients’
records. Also, to account for the evolution of public memory,
we assume that violations detected in recent rounds cause
greater loss than those detected in rounds farther in the
past. The defender’s audit mechanism has to take all these
considerations into account in prescribing the number of
actions of each type that should be inspected in a given

round, keeping in mind that the defender is playing against
the powerful strategic adversary described earlier.

Note that for adequate privacy protection, the economic
and legal structure has to ensure that it is in the best interests
of the organization to invest significant effort into auditing.
Our abstraction of the reputation loss from policy violations
that incentivizes organizations to audit can, in practice, be
achieved through penalties imposed by government audits as
well as through market forces, such as brand name erosion
and lawsuits.
Regret property: We formulate a desirable property for
the audit mechanism by adopting the concept of regret
from online learning theory. The idea is to compare the
loss incurred when the real defender plays according to
the strategy prescribed by the audit mechanism to the loss
incurred by a hypothetical defender with perfect knowledge
of the number of violations of each type in each round. The
hypothetical defender is allowed to pick a fixed strategy to
play in each round that prescribes how many actions of each
type to inspect. The regret of the real defender in hindsight is
the difference between the loss of the hypothetical defender
and the actual loss of the real defender averaged over all
rounds of game play. We require that the regret of the
audit mechanism quickly converge to a small value and, in
particular, that it tends to zero as the number of rounds tends
to infinity.

Intuitively, this definition captures the idea that although
the defender does not know in advance how to allocate
her audit budget to inspect different types of accesses (e.g.,
celebrity record accesses vs. non-celebrity record accesses),
the recommendations from the audit mechanism should have
the desirable property that over time the budget allocation
comes close to the optimal fixed allocation. For example, if
the best strategy is to allocate 40% of the budget to inspect
celebrity accesses and 60% to non-celebrity accesses, then
the algorithm should quickly converge towards these values.
Audit mechanism: We develop a new audit mechanism that
provably minimizes regret for the defender. The algorithm,
which we name RMA (for Regret Minimizing Audit) is
efficient and can be used in practice. In each round of the
game, the algorithm prescribes how many actions of each
type the defender should inspect. It does so by maintaining
weights for each possible defender action and picking an
action with probability proportional to the weight of that
action. The weights are updated based on a loss estimation
function, which is computed from the observed loss in
each round. Intuitively, the algorithm learns the optimal
distribution over actions by increasing the weights of actions
that yielded better payoff than the expected payoff of the
current distribution and decreasing the weight of actions that
yielded worse payoff.

Our main technical result (Theorem 1) is that the exact
bound on regret for RMA is approximately 2

√
2 lnN

T where

N is the number of possible defender actions and T is
the number of rounds (audit cycles). This bound improves
the best known bounds of O

(
N1/3 logN

3√
T

)
for regret min-

imization over games of imperfect information. The main
novelty is in the way we use a loss estimation function and
characterize its properties to achieve the significantly better
bounds. Specifically, RMA follows the structure of a regret
minimization algorithm for perfect information games, but
uses the estimated loss instead of the true loss to update
the weights in each round. We define two properties of the
loss estimation function—accuracy (capturing the idea that
the expected error in loss estimation in each round is zero)
and independence (capturing the idea that errors in loss
estimation in each round are independent of the errors in
other rounds)—and prove that any loss estimation function
that satisfies these properties results in regret that is close
to the regret from using an actual loss function. Thus, our
bounds are of the same order as regret bounds for perfect
information games. The better bounds are important from a
practical standpoint because they imply that the algorithm
converges to the optimal fixed strategy much faster.

The rest of the paper is organized as follows. Section II
presents the game model formally. Section III presents the
audit mechanism and the theorem showing that the audit
mechanism provably minimizes regret. Section IV discusses
the implications and limitations of these results. Section V
describes in detail the loss estimation function, a core piece
of the audit mechanism. Section VI presents the outline of
the proof of the main theorem of the paper (Theorem 1)
while the complete proofs are presented in the appendices.
Section VII provides a detailed comparison with related
work, in particular, focusing on technical results on auditing
in the computer security literature and regret minimization in
the learning theory literature. Finally, Section VIII presents
our conclusions and identifies directions for future work.

II. MODEL

We model the internal audit process as a repeated game
played between a defender (organization) and an adversary
(employees). In the presentation of the model we will use
the following notations:
• Vectors are represented with an arrow on top, e.g., ~v is a

vector. The ith component of a vector is given by ~v [i].
~v ≤ ~a means that both vectors have the same number
of components and for any component i, ~v [i] ≤ ~a [i].

• Random variables are represented in boldface, e.g., x
and X are random variables.

The repeated game we consider is fully defined by the
players, the time granularity at which the game is played,
the actions the players can take, and the utility the players
obtain as a result of the actions they take. We next discuss
these different concepts in turn and illustrate them using a
running example from an hospital.

Players: The game is played between the organization and
its employees. We refer to the organization as D (defender).
We subsume all employees into a single player A (adver-
sary). In this paper, we are indeed considering a worst-case
adversary, who would be able to control all employees and
coerce them into adopting the strategy most damaging to
the organization. In our running example, the players are
the hospital and all the employees.
Round of play: In practice, audits are usually performed
periodically. Thus, we adopt a discrete-time model for this
game, where time points are associated with rounds. Each
round of play corresponds to an audit cycle. We group
together all of the adversary’s actions in a given round.
Action space: A executes tasks, i.e., actions that are per-
mitted as part of their job. We only consider tasks that
can later be audited, e.g., through inspection of logs. We
can distinguish A’s tasks between legitimate tasks and
violations of a specific privacy policy that the organization
D must follow. Different types of violations may have a
different impact on the organization. We assume that there
are K different types of violations that A can commit (e.g.,
unauthorized access to a celebrity’s records, unauthorized
access to a family member’s records, ...). We further assume
that the severity of violations, in terms of economic impact
on the organization, varies with the types.

In each audit cycle, the adversary A chooses two quanti-
ties for each type k: the number of tasks she performs, and
the number of such tasks that are violations. If we denote
by Uk the maximum number of type k tasks that A can
perform, then A’s entire action space is given by A×A with
A =

∏K
i=1{1, . . . , Ui}. In a given audit cycle, an action by

A in the game is given by 〈~a,~v〉, where the components
of ~a are the number of tasks of each type A performs,
and the components of ~v are the number of violations of
each type. Since violations are a subset of all tasks, we
always have ~v ≤ ~a. In our hospital example, we consider
two types of patient medical records: access to celebrity
records and access to regular person’s record. A typical
action may be 250 accesses to celebrity records with 10
of them being violations and 500 accesses to non-celebrity
records with 50 of them being violations. Then A’s action
is 〈〈250, 500〉, 〈10, 50〉〉.

We assume that the defender D can classify each adver-
sary’s task by types. However, D cannot determine whether
a particular task is legitimate or a violation without inves-
tigating. D can choose to inspect or ignore each of A’s
tasks. We assume that inspection is perfect, i.e., if a violation
is inspected then it is detected. The number of inspections
that D can conduct is bounded by the number of tasks that
A perform, and thus, D’s actions are defined by a vector
~s ∈ A, with ~s ≤ ~a. That is, D chooses a certain number of
tasks of each type to be inspected. Further, in each round t,
D has a fixed budget Bt to allot to all inspections. We
represent the (assumed fixed) cost of inspection for each

0 100 200 300 400
0

100

200

300

400

500

600

Budget Line

number of type 2 actions

number of
type 1 actions

Actions of type 1

Ac
tio

ns
 o

f t
yp

e
2

Figure 1. Feasible audit space, represented by the shaded area.

type of violation by ~C. The budgetary constraints on D are
thus given by ~C · ~s ≤ Bt for all t. Continuing our hospital
example, the maximum number of tasks of each type that
D can inspect is 〈250, 500〉. Assuming a budget of 1500
and cost of inspection vector 〈4, 5〉, D’s inspection space
is further constrained, and then the feasible inspections are
{〈x, y〉 | 4x+ 5y ≤ 1500, 0 ≤ x ≤ 250, 0 ≤ y ≤ 500}. The
discrete feasible audit points are indicated (not all points are
shown) with the asterisks in Figure 1.
Violation detection: Given the budgetary constraints D
faces, D cannot, in general, inspect all of A’s tasks (i.e.,
~C · ~a > Bt). Hence, some violations may go undetected
internally, but could be detected externally. Governmental
audits, whistle-blowing, information leaks are all but exam-
ples of situations that could lead to external detection of
otherwise unnoticed violations. We assume that there is a
fixed exogenous probability p (0 < p < 1) of an internally
undetected violation getting caught externally.

Formally, we define the outcome of a single audit cycle
as the outcome of the internal audit and the number of
violations detected externally. Due to the probabilistic nature
of all quantities, this outcome is a random variable. Let
~Ot be the outcome for the tth round. Then ~Ot is a tuple
〈~Ot

int,
~Ot
ext〉 of violations caught internally and externally.

By our definitions, the probability mass function for ~Ot
int

is parameterized by 〈~a,~v〉 and ~s, and the probability mass
function for ~Ot

ext conditioned on ~Ot
int is parameterized by

p. We make no assumptions about this probability mass
function. Observe that, because not all tasks can be in-
spected, the organization does not get to know the exact
number of violations committed by the employees, which
makes this a game of imperfect information. In our hospital
example, given that A’s action is 〈〈250, 500〉, 〈10, 50〉〉.
In one possible scenario the hospital performs 〈125, 200〉
inspections. These inspections result in 〈7, 30〉 violations
detected internally and 〈2, 10〉 violations detected externally.

Utility function: Since we consider a worst-case adversary,
A’s payoff function is irrelevant to our model. On the other
hand, the utility function of D influences the organization’s
strategy. We define D’s utility as the sum of D’s reputation
and the cost of inspecting A’s actions. In essence, D has
to find the right trade-off between inspecting frequently
(which incurs high costs) and letting violations occur (which
degrades its reputation, and thus translates to lost revenue).

We assume that the cost of inspection is linear in the
number of inspections for each type of action. Hence, if D’s
action is ~s then inspection costs are ~C ·~s. In our running ex-
ample of the hospital, this cost is 〈4, 5〉.〈125, 200〉 = 1500,
which is the also the full budget in our example.

We assume that any violation caught (internally, or ex-
ternally) in a round affects D’s reputation not only in that
round, but also in future rounds and that the exact effect
in any future round is known. We capture this by defining
a function rtk : {1, . . . , Uk} × {1, . . . , Uk} × N → R for
each type k of violation. In round t, rtk takes as inputs
the number of violations of type k detected internally, the
number of violations of type k caught externally, and an
integer argument τ . rtk outputs the effect of the violations
(measured as the loss in reputation) occurring in round t on
D’s reputation in round t+ τ . We assume that violations of
a given type always have the same effect on reputation, that
is, rtk is actually independent of t, which allows us to use
the shorthand notation rk from here on.

Violations caught far in the past should have a lesser
impact on reputation than recently caught violations, thus, rk
should be monotonically decreasing in the argument τ . We
further assume violations are forgotten after a finite amount
of rounds m, and hence do not affect reputation further.
In other words, if τ ≥ m then for any type k, any round
t, and any tuple of violations caught 〈 ~Otint[k], ~Otext[k]〉,
rk(~O

t
int[k],

~Otext[k], τ) = 0.
Moreover, externally caught violations should have a

worse impact on reputation than internally detected vio-
lations, otherwise the organization has a trivial incentive
never to inspect. Formally, rk has the following property.
If for any two realized outcomes ~Ol and ~Oj at rounds l
and j, we have ~Olint[k] +

~Olext[k] = ~Ojint[k] +
~Ojext[k]

(i.e., same number of total violations of type k in rounds
j and l) and ~Olext[k] >

~Ojext[k] (i.e., for type k, the number
of violations caught externally is more than the number
caught internally) then for any τ such that 0 ≤ τ < m,
rk(~O

l[k], τ) > rk(~O
j [k], τ).

We use rk to define a measure of reputation. Because,
by construction, violations only affect at most m rounds of
play, we can write the reputation R0 of the organization at
round t as a random variable function of the probabilistic
outcomes ~Ot, ..., ~Ot−m+1:

R0(~O
t, ..., ~Ot−m+1) = R−

K∑
k=1

t∑
j=t−m+1

rk(~O
j [k], t− j) ,

where R is the maximum possible reputation. We assume
that at the start of the game the reputation is R, and that
rk’s are so that R0 is always non-negative.

We cannot, however, directly use R0 in our utility func-
tion. Indeed, R0 is history-dependent, and the repeated game
formalism requires that the utility function be independent
of past history. Fortunately, a simple construction allows
to closely approximate the actual reputation, while at the
same time removing dependency on past events. Consider
the following function R:

R(~Ot) = R−
K∑
k=1

m−1∑
j=0

rk(~O
t[k], j) .

Rather than viewing reputation as a function of violations
that occurred in the past, in round t, the reputation function
R instead immediately accounts for reputation losses that
will be incurred in the future (in rounds t+ τ , 0 ≤ τ < m)
due to violations occurring in round t.

While R and R0 are different reputation functions, when
we compute the difference of their averages over T rounds,
denoting by ~vmax the maximum possible number of viola-
tions, we obtain:

1

T

t+T∑
τ=t

|R(~Oτ)−R0(~O
τ , . . . , ~Oτ−m)| ≤

1

T

K∑
k=1

m−1∑
j=1

j · rk(~vmax(k), j) .

The right-hand side of the above inequality goes to zero as
T grows large. Hence, using R to model reputation instead
of R0 does not significantly impact the utility function of
the defender. We define the utility function at round t in the
repeated game by the random variable

Lt(〈~at, ~vt〉, ~st) = R(~Ot)− ~C · ~st .

Since utility gains are only realized through loss reduction,
we will equivalently refer to L as a loss function from here
on.

An example of the loss of reputation function rk is
rk(O, t) = ck(Oint + 2 × Oext)δ

t for 0 ≤ t < m and
rk(O, t) = 0 for t ≥ m, where δ ∈ (0, 1). Observe that rk
decreases with t and puts more weight on external violations.
Also for the same number of violations and same value
for argument t rk has different values for different types
of violations due to ck that varies with the types. Then,
considering only one type of violation, the loss function can
be written as

Lt(〈~at, ~vt〉, ~st) = R− c1
m−1∑
j=0

(Ot
int+2×Ot

ext)δ
j − ~C ·~st .

Observe that we can expand the summation in the above
equation to get c1(1 + δ... + δm−1)Ot

int + 2c1(1 + δ... +

δm−1)Ot
ext. Then let Rint = c1(1 + δ... + δm−1) and

similarly let Rext = 2c1(1 + δ... + δm−1). We can rewrite
the loss equation above as

Lt(〈~at, ~vt〉, ~st) = R−Rint ·Ot
int −Rext ·Ot

ext − ~C · ~st .

III. AUDIT MECHANISM AND PROPERTY

In this section, we present our audit mechanism RMA
and the main theorem that characterizes its property. RMA
prescribes the number of tasks of each type that the defender
should inspect in each round of the repeated game. The
property compares the loss incurred by the defender when
she follows RMA to the loss of a hypothetical defender who
has perfect knowledge of how many violations of each type
occurred in each round, but must select one fixed action ~s to
play in every round. In particular, we obtain exact bounds
on the defender’s regret and demonstrate that the average
regret across all rounds converges to a small value relatively
quickly.

A. Audit Mechanism

Our Regret Minimizing Audit (RMA) mechanism is
presented as Algorithm 1. In each round of the game,
RMA prescribes how many tasks of each type the defender
should inspect. It does so by maintaining weights for each
possible defender action (referred to as “experts” following
standard terminology in the learning literature) and picking
an action with probability proportional to the weight of that
action. For example, in a hospital audit, with two types of
tasks—celebrity record access and regular record access—
the possible defender actions ~s are of the form 〈k1, k2〉
meaning that k1 celebrity record accesses and k2 regular
record accesses are inspected. The weights are updated based
on an estimated loss function, which is computed from the
observed loss in each round. γ is a learning parameter for
RMA. Its value is less than but close to 1. We show how
to choose γ in sub-section III-B.

RMA is fast and could be run in practice. Specifically,
the running time of RMA is O (N) per round where N is
the number of experts.

In more detail, RMA maintains weights wt~s for all ex-
perts [10]. wt~s is the weight of the expert before round t
has been played. Initially, all experts are equally weighted.
In each round, an action is probabilistically selected for the
defender. As discussed in the Section II there are two factors
that constrain the set of actions available to the defender:
the number of tasks performed by the adversary and the
budget available for audits. In our hospital example we had
the feasible audit space as {〈x, y〉 | 4x + 5y ≤ 1500, 0 ≤
x ≤ 250, 0 ≤ y ≤ 500}. These considerations motivate the
definition of the set AWAKEt of experts that are awake in
round t (Step 1). Next, from this set of awake experts, one is
chosen with probability pt~s proportional to the weight of that
expert (Steps 2, 3, 4). Continuing our hospital example, 250
celebrity record accesses and 500 regular record accesses

Algorithm 1 RMA
• Initialize: Set w0

~s = 1 for each expert.
• Select Move: On round t let 〈~at, ~vt〉 denote the action

of the adversary.
1) Set

AWAKEt = {~s : ~s ≤ ~at ∧ ~C · ~s ≤ Bt } .

2) Set
W t =

∑
~s∈AWAKEt

wt~s .

3) Set

pt~s =
wt~s
W t

,

for ~s ∈ AWAKE. Otherwise set pt~s = 0.
4) Play ~s with probability p~s (randomly select one

expert to follow).

• Estimate loss function: Set L̃ = est
(
~Ot, ~st

)
.

• Update Weights: For each ~s ∈ AWAKEt update

wt+1
~s = wt~sγ

L̃t(~s)−γL̃t(RMA) ,

where L̃t(RMA) =
∑
~s p

t
~sL̃

t(~s), is the expected (esti-
mated) loss of the algorithm.

will be inspected with probability 0.3 in a round if the expert
〈250, 500〉 is awake in that round and its weight divided by
the total weight of all the experts who are awake is 0.3.
Technically, this setting is close to the setting of sleeping
experts in the regret minimization literature [5], [11].

However, we also have to deal with imperfect information.
Since only one action (say ~st) is actually played by the
defender in a round, she observes an outcome ~Ot for that
action. For example, the 〈250, 500〉 inspection might have
identified 5 celebrity record access violations and 3 regular
record access violations internally; the same number of
violations may have been detected externally. Based on this
observation, RMA uses an algorithm est to compute an
estimated loss function L̃ for all experts (not just the one
she played). We describe properties of the loss function
for which this estimation is accurate in subsection V. We
also provide an example of a natural loss function that
satisfies these properties. Finally, the estimated loss function
is used to update the weights for all the experts who are
awake. Intuitively, the multiplicative weight update ensures
that the weights of experts who performed better than
their current distribution increase and the weights for those
who performed worse decrease. In RMA the weight for
expert ~s increases when L̃t(~s) − γL̃t(RMA) is negative,
i.e., L̃t(~s) < γL̃t(RMA), and since γ is close to 1, the loss
of expert ~s is less than the loss of RMA, i.e., the expert ~s
performed better than RMA.

B. Property

The RMA mechanism provides the guarantee that the de-
fender’s regret is minimal. Regret is a standard notion from
the online learning literature. Intuitively, regret quantifies the
difference between the loss incurred by the defender when
she follows RMA and the loss of a hypothetical defender
who has perfect knowledge of how many violations of each
type occurred in each round, but must select one fixed
action (or expert) to play in every round. Our main theorem
establishes exact bounds on the defender’s regret.

Let T denote the total number of rounds played, I(t)
be a time selection function whose output is either 0 or 1,
Lt(~s) = Lt (〈~at, ~vt〉, ~s) be the loss function at time t after
the adversary has played 〈~at, ~vt〉, and pt~s be the probability
of choosing the action ~s in round t while following RMA.
We define the total loss of RMA as follows:

Loss (RMA, I) =
T∑
t=1

∑
~s

I(t)pt~sL
t(~s) .

Similarly for each fixed expert ~s we set the following loss
function

Loss (~s, I) =

T∑
t=1

I(t)Lt(~s) .

We use Regret (RMA, ~s) to denote our regret in hindsight
of not playing the fixed action ~s when it was available.
Formally,

Regret (RMA, ~s) = Loss (RMA, I~s)− Loss (~s, I~s) .

Here, I~s(t) is the time selection function that selects only
the times t that action ~s is available.

As before, we use N to denote the total number of fixed
actions available to the defender. If T is known in advance
we can obtain the bound in Theorem 1 below by setting γ
to be 1−

√
2 lnN
T . Otherwise, if T is not known in advance

we can dynamically tune γ to obtain similar bounds. See
Remark 7 for more details on dynamic tuning.

Theorem 1. For all ε > 0,

Pr

 ∃~s, Regret(RMA,~s)
T ≥ 2

√
2 lnN

T +

2

√
2 ln(4N

ε)
T + 2

T lnN

 ≤ ε .
Remark 1. To prove this theorem we need to make several
reasonable assumptions about the accuracy of our loss
function estimator est. We discuss these assumptions in
section V. We also assume that losses have been scaled so
that Lt(x) ∈ [0, 1].

Remark 2. This bound is a worst case regret bound. The
guarantee holds against any attacker. Regret may typically
be lower than this, e.g. when hospital employees do not
behave adversarially.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Time

Av
er

ag
e

R
eg

re
t

N=5 ε=0.01
N=100 ε=0.01
N=5 ε=0.10
N=100 ε=0.10

Figure 2. Worst case Average Regret vs Time for different values of N
and ε

In order to understand what this bound means, consider
the following example scenario. Suppose that an employee
at a hospital can access two types of medical records—
celebrity or regular. The defender can choose to inspect
accesses of a certain type lightly, moderately, or heavily. In
this case, the defender has N = 9 possible pairs of actions
in each round. If the hospital performs daily audits (which
some hospitals currently do for celebrity record accesses)
over a 5 year period, then T = 365 × 5 = 1825. For
simplicity, assume that each action ~s is available every
day. In this case, the theorem guarantees that except with
probability ε = 1

100 , the average regret of RMA does not
exceed 29%:

Regret (RMA, ~s)

T
< 0.29 .

Note that there are several existing algorithms for regret
minimization in games with imperfect information [9], [12]–
[14]. These algorithms do guarantee that as T → ∞ the
average regret will tend to 0, but the convergence rate is
unacceptably slow for our audit model (see Section VII-B
for a more detailed comparison). The convergence rate of
RMA is significantly faster. Also, in contrast to prior work,
we focus on exact (not asymptotic) regret bounds for our
algorithm. This is important because in practice we care
about the value of the bound for a fixed value of T (as in
the example above), not merely that it tends to 0 as T →∞.

IV. DISCUSSION

A few characteristics of the model and algorithms de-
scribed above may not necessarily be evident from the
technical presentation given above, and warrant further dis-
cussion.

Figure 2 shows the variation of average regret with time
for different values of N and ε. As can be seen, the RMA
algorithm produces smaller average regret bounds for higher
values of time T and lower values of N . In other words,
and quite intuitively, a high audit frequency ensures low
regret. Some medical centers carry out audits every week;

RMA is particularly appropriate for such high frequency
audits. Lower values of N means that RMA’s performance
is compared to fewer fixed strategies and hence yields lower
regret. One situation in which N could be low is when
the fixed strategies correspond to discrete levels of audits
coverage used by the organization. Also, higher values of ε
yield smaller average regret bounds. Indeed, ε is a measure
of uncertainty on the stated bound. Thus, when higher values
of ε are tolerable, we obtain tighter regret bounds, but at the
expense of greater uncertainty on whether those bounds are
met.

We have already noted that all actions may not be avail-
able at all times. The result in Theorem 1 bounds the average
regret taken over all rounds of the game. It is easy to modify
the proof of Theorem 1 to obtain average regret bounds for
each expert such that the average is taken over the time
for which that expert is awake. The bound thus obtained
is of the same order as the bound in Theorem 1, but all
instance of T in Theorem 1 are replaced by T~s, where T~s is
the time for which expert ~s is awake. Similar result for the
traditional sleeping experts setting can be found in Blum
et al. [11]. The modified bound equation exhibits the fact
that the average regret bound for a given inspection vector
(average taken over the time for which that inspection was
available) depends on how often this inspection vector is
available to the defender. If a given inspection vector is
only available for a few audit cycles, the average regret
bound may be relatively high. The situation is analogous to
whitewashing attacks [15], where the adversary behaves in
a compliant manner for many rounds to build up reputation,
attacks only once, and immediately leaves the game after
the attack. For instance, a spy infiltrates an organization,
becomes a trusted member by behaving as expected, and
then suddenly steals sensitive data. However, we argue that,
rather than being an auditing issue, whitewashing attacks
can be handled by a different class of mechanisms, e.g., that
prevent the adversary from vanishing once she has attacked.

Furthermore, RMA guarantees low average regret com-
pared to playing a fixed action (i.e., inspection vector) in
the audit cycle in which that action was available; it does
not guarantee violations will not happen. In particular, if a
certain type k of violation results in catastrophic losses for
the organization (e.g., losses that threaten the viability of the
organization itself), tasks of type k should always be fully
inspected.

While the discussion surrounding the RMA algorithm
focused only on one kind of experts (which recommend
how many tasks of each type to inspect in any round), RMA
applies more generally to any set of experts. For example, we
could include an expert who recommends a low inspection
probability when observed violations are below a certain
threshold and a higher inspection probability when observed
violations are above that threshold. Over time, the RMA
algorithm will perform as well as any such expert. Note.

however, that if we make the size (N) of the set of experts
too large, the regret bounds from Theorem 1 will be worse.
Thus, in any particular application, the RMA algorithm will
be effective if appropriate experts are chosen without making
the set of experts too large.

Finally, we note that non-compliance with external privacy
regulations may not only cause a loss of reputation for
the organization, but can also result in fines being levied
against the organization. For instance, a hospital found in
violation of HIPAA provisions [4] in the United States will
likely face financial penalties in addition to damaging its
reputation. We can readily extend our model to account
for such cases, by forcing the defender (organization) to
perform some minimum level of audit (inspections) to meet
the requirements stipulated in the external regulations. For
example, we can constrain the action space available to the
defender by removing strategies such as “never inspect.” As
long as the budgetary constraints allow the organization to
perform inspections in addition to the minimal level of audit
required by law, the guarantees provided by RMA still hold.
Indeed, Theorem 1 holds as long as there is at least one
awake expert in each round.

V. ESTIMATING LOSSES

RMA uses a function est
(
~Ot, ~st

)
to estimate the loss

function L̃t. In this section, we formally define two
properties—accuracy and independence; the regret bound
in Theorem 1 holds for any estimator function that satisfies
these two properties. We also provide an example of a loss
function estimator algorithm that provably satisfies these
properties, thus demonstrating that such estimator functions
can in fact be implemented. The use of an estimator function
and the characterization of its properties is a novel contri-
bution of this paper that allows us to achieve significantly
better bounds than prior work in the regret minimization
literature for repeated games of imperfect information (see
Section VII for a detailed comparison).

Estimator Properties: The function L̃t = est
(
~Ot, ~st

)
should be efficiently computable for practical applications.
Note that the loss estimation at time t depends on the
outcome ~Ot (violations of each type detected internally and
externally) and the defender’s action ~st at time t. Intuitively,
the function outputs an estimate of the loss function by
estimating the number of violations of each type based on
the detected violations of that type and the probability of
inspecting each action of that type following the defender’s
action.

For each defender action (expert) ~s, we define the random
variable

Xt
~s = L̃t(~s)− Lt(~s).

Intuitively, Xt
~s is a random variable representing our esti-

mation error at time t after the actions 〈~vt,~at〉 and ~st have
been fixed by the adversary and the defender respectively.

Because we have assumed that our loss functions are
scaled so that L̃t(~s),Lt(~s) ∈ [0, 1] we have Xt

~s ∈ [−1, 1].
This property of Xt

~s is useful in bounding the regret as we
discuss later.

Formally, we assume the following properties about est:

1) Accuracy: E
[
Xj
~s

]
= 0 for 0 ≤ j ≤ T .

2) Independence: ∀~s, X1
~s, . . . ,X

T
~s are all independent

random variables.
Any estimation scheme est that satisfies both properties

can be plugged into RMA yielding the regret bound in
Theorem 1. Informally, accuracy captures the idea that the
estimate is accurate in an expected sense while independence
captures the idea that the error in the estimate in each round
is independent of the error in all other rounds. We motivate
these properties by way of an example.

Remark 3. In fact if our estimation scheme only satisfied δ-
accuracy, i.e.,

∣∣∣E [Xj
~s

]∣∣∣ < δ, then we could still guarantee
that the average regret bounds from Theorem 1 still hold with
an extra additive term δ. Formally, the following property
holds: for all ε ∈ (0, 1)

Pr

 ∃~s, Regret(RMA,~s)
T ≥ δ + 2

√
2 lnN

T +

2

√
2 ln(4N

ε)
T + 2

T lnN

 ≤ ε .
Example Loss Function: We return to our running

example of the hospital. We use the example reputation
(loss) function from the previous section:

Lt(~s) = R−
(
~Ot
int · ~Rint + ~Ot

ext · ~Rext + ~C · ~s
)
.

To simplify our presentation we assume that there is only
one type of violation. It is easy to generalize the loss function
that we present in this example to include multiple types of
violations.

Lt(s) = R−
(
Ot
int ×Rint +Ot

ext ×Rext + C × s
)
.

Here Ot
int represents the number of violations caught in-

ternally after the actions 〈vt, at〉 and st are played by the
adversary and the defender respectively, Rint (resp. Rext)
captures the damage to the hospital’s reputation when a
violation is caught internally (resp. externally), and C is
the cost of performing one inspection. Notice that

E
[
Ot
ext ×Rext

]
= p

(
vt − E

[
Ot
int

])
×Rext ,

where p is the probability that an undetected violation gets
caught externally. Therefore,

E
[
Lt(s)

]
= R−

(
E
[
Ot
int

]
(Rint − p×Rext)

+p× vt ×Rext + C × s
)
.

We can set R′ = (Rint − p×Rext) and then

E
[
Lt(s)

]
= R−

(
E
[
Ot
int

]
×R′ + p× vt ×Rext + C × s

)
.

In our loss model, we allow the defender to use any recom-
mendation algorithm REC that sorts all at actions at time t
and probabilistically recommends st actions to inspect. We
let pd ≤ 1 denote the probability that the dth inspection
results in a detected violation, where this probability is
over the coin flips of the recommendation algorithm REC.
Because this probability is taken over the coin flips of REC
the outcome Ot

int is independent of previous outcomes once
〈~at, ~vt〉, ~st have been fixed.

For example, a naive recommendation algorithm REC
might just select a few actions uniformly at random and
recommend that the defender inspect these actions. In this
case pj = vt

at for each j. (Remember that in this example
we consider only one type of violation, so vt and at are
scalars). If REC is more clever, then we will have p1 > vt

at .
In this case the pj’s will also satisfy diminishing returns
(pj > pj+1).

We assume that inspection is perfect, i.e., if we inspect a
violation it will be caught with probability 1. Thus, if we
inspect all at actions we would catch all vt violations, i.e.,

at∑
j=1

pj = vt.

Set pj = vt
(

1−β
1−βat

)
βj−1, where the parameter β could be

any value in (0, 1). Notice that
a∑
j=1

pj = vt
(

1− β
1− βat

) at−1∑
j=0

βj = vt ,

and pj > pj+1 so our model does satisfy diminishing
returns. Furthermore, if β = max{1− 1

at ,
1
2} then we have

pj ≤ 1 for each j. We can express E [Oint] =
∑st

i=1 pj .

E
[
Lt(s)

]
= R−

R′ st∑
i=1

pj + p× vt ×Rext + C × s

 .

Example Loss Estimator: Our loss function estimator
est (Ot

int, s
t) is given in Algorithm 2.

Algorithm 2 Example: est (Ot
int, s

t)

• Input: Ot
int, s

t.

• Estimate vt: Set ṽt := 1−βa
t

1−βst O
t
int.

• Compute L̃: Set

L̃(x) := R−

(
R′ × ṽt ×

∑x
j=1

(
1−β
1−βa β

j−1
)

+p× ṽt ×Rext + C × x

)
.

• Output: L̃t.

Assuming that the defender understands the accuracy of
his recommendation algorithm REC1 β is a known quantity

1If the algorithm recommends actions uniformly at random, then the
accuracy is certainly understood.

so that this computation is feasible and can be performed
quickly. Independence of the random variables Xt

s follows
from the independence of Ot

int. Now we verify that our
estimator satisfies our accuracy condition.

Claim 1. When L̃t = est (Ot
int, s

t) from Algorithm 2
E [Xt

s] = 0.

The proof can be found in Appendix A. The main insight
here is that because of the way the probabilities pj’s are
scaled, the expectation of the estimated number of violations
is equal to the number of actual violations, i.e. E [ṽt] = vt.
Consequently, the expected value of the error turns out to
be 0, thus satisfying the accuracy property.

Remark 4. If there are multiple types of actions then we
can estimate ṽtk, the number of violations of type k at time
t, separately for each k. To do this est should substitute
~Ot
int[k] and ~st[k] for Ot

int and vt and set

ṽtk :=

(
1− βat

1− βst

)
Ot
int .

Then we have

L̃t(x) = R−

(
~R′ · 〈ṽtk〉k ×

1−βx[k]
1−βa

+p× 〈ṽtk〉k · ~Rext + ~C · ~x

)
.

VI. PROOF OUTLINE

In this section, we present the outline of the proof of
our main theorem (Theorem 1) which establishes high
probability regret bounds for RMA. The complete proof is
in the appendices. The proof proceeds in two steps:

1) We first prove that RMA achieves low regret with
respect to the estimated loss function using standard
results from the literature on regret minimization [5],
[11].

2) We then prove that with high probability the difference
between regret with respect to the actual loss function
and regret with respect to the estimated loss function
is small. This step makes use of the two properties—
accuracy and independence—of the estimated loss
function est presented in the previous section and is
the novel part of the proof. The key technique used in
this step are the Hoeffding inequalities [16].

Let T denote the total number of rounds played, T~s denote
the total number of rounds that the action ~s was awake and
I as before is a time selector function. We define

L̃oss (RMA, I) =
T∑
t=1

∑
~s

I(t)pt~sL̃
t(~s) ,

to be our total estimated loss. Notice that L̃oss is the same
as Loss except that we replaced the actual loss function Lt

with the estimated loss function L̃t. We define L̃oss (~s, I)

and R̃egret (RMA, ~s) in a similar manner by using the
estimated loss function.

Lemma 1 and Lemma 2 below bound the regret with
respect to the estimated loss function. They are based on
standard results from the literature on regret minimiza-
tion [5], [11]. We provide full proofs of these results in
Appendix C.

Lemma 1. For each expert ~s we have

R̃egret(RMA, ~s) ≤ 1

L− 1
T + 2L lnN ,

where N is the total number of experts and γ, our learning
parameter has been set to γ = 1− 1

L

Remark 5. We would like to bound our average regret:

R̃egret(RMA, ~s)

T~s
.

There is a trade-off here in the choice of L. If L is too large,
then L lnN will be large. If L is too small, then 1

L−1T will
be large. If we know T in advance, then we can tune our
learning parameter γ to obtain the best bound by setting

L =

√
T

2 lnN
+ 1 .

After substituting this value for L in Lemma 1, we
immediately obtain the following result:

Lemma 2. For each expert ~s we have

R̃egret(RMA, ~s) ≤ 2
√
2T lnN + 2 lnN ,

where N is the total number of experts and learning
parameter γ = 1−

√
2 lnN
T .

Remark 6. This shows that RMA can achieve low regret
with respect to the estimated loss functions L̃t. This com-
pletes step 1 of the proof. We now move on to step 2.

Notice that we can write our actual loss function
(Loss (RMA, I)) in terms of our estimated loss function(
L̃oss (RMA, I)

)
and Xt

~s.

Fact 1.

Loss (RMA, I) = L̃oss (RMA, I) +
T∑
t=1

I(t)Xt
~s .

We know that E [Xt
~s] = 0 (from the accuracy property

of the loss estimation function) and that X1
~s, . . .X

T
~s are

independent (from the independence property), so we can
apply the Hoeffding inequalities to bound

∑
tX

t
~s obtaining

Lemma 3. Appendix B contains a description of the inequal-
ities and the full proof of the following lemma.

Lemma 3.

Pr
[
∃~s,Regret (RMA, ~s)− R̃egret (RMA, ~s) ≥ 2K

]
≤ ε ,

where K =
√

2T ln
(
4N
ε

)
.

After straightforward algebraic substitution we can obtain
our main result in Theorem 1 by combining Lemma 3 with
Lemma 2 (see Appendix D).

Observe that the optimal value of γ is dependent on T .
But, it is conceivable that the time T for which the game
is played is not known in advance. The following remark
shows that we can overcome this problem by choosing a
dynamic value for γ. This makes RMA usable in the real
world.

Remark 7. Even if we don’t know T in advance we can
tune γ dynamically using a technique from [17]. We set

γt =
1

1− αt
,

where

αt =

√
2

lnN

Lt − 1
.

where Lt is the minimum loss of any expert till time t
(calculated using the estimated loss). Before playing round t
we recompute the weights wt~s, pretending that our learning
parameter γ had been set to γt from the beginning i.e.

wt~s = γ
∑t
i=1 I~s(t)(L̃

t(~s)−γtL̃t(RMA))
t .

In this case our final guarantee (similar to Theorem 1) would
be that:

Pr

 ∃~s,
Regret(RMA,~s)

T ≥ 2
√

2 lnN
T +

2

√
2 ln(4N

ε)
T + 10

T lnN+
4
T (lnN) (ln(1 + T))

 ≤ ε .
VII. RELATED WORK

A. Auditing in Computer Security

A line of work in computer security uses evidence
recorded in audit logs to understand why access was granted
and to revise access control policies if unintended accesses
are detected [6], [18], [19]. In contrast, we use audits to
detect violations of policies, such as those restricting infor-
mation use to specified purposes, that cannot be enforced
using access control mechanisms.

Cederquist et al. [20] present logical methods for enforc-
ing a class of policies, which cannot be enforced using
preventive access control mechanisms, based on evidence
recorded on audit logs. The evidence demonstrating policy
compliance is presented to the auditor in the form of a proof
in a logic and can be checked mechanically. In contrast, our
focus is on policies that cannot be mechanically enforced in
their entirety, but require involvement of human auditors. In
addition, the new challenges in our setting arises from the
imperfect and repeated nature of audits.

Zhao et al. [21] recognize that rigid access control can
cause loss in productivity in certain types of organizations.
They propose an access control regime that allows all access
requests, but marks accesses not permitted by the policy for

posthoc audit coupled with punishments for violating policy.
They assume that the utility function for the organization
and the employees are known and use a single shot game to
analyze the optimal behavior of the players. Our approach
of using a permissive access control policy coupled with
audits is a similar idea. However, we consider a worst-case
adversary (employee) because we believe that it is difficult
to identify the exact incentives of the employee. We further
recognize that the repeated nature of interaction in audits is
naturally modeled as a repeated game rather than a one-shot
game. Finally, we restrict the amount of audit inspections
because of budgetary constraints. Thus, our game model
is significantly more realistic than the model of Zhao et
al. [21].

Cheng et al. [22], [23] also start from the observation that
rigid access control is not desirable in many contexts. They
propose a risk-based access control approach. Specifically,
they allocate a risk budget to each agent, estimate the
risk of allowing an access request, and permit an agent
to access a resource if she can pay for the estimated risk
of access from her budget. Further, they use metaheuristics
such as genetic programming to dynamically change the
security policy, i.e. change the risk associated with accesses
dynamically. We believe that the above mechanism mitigates
the problem of rigid access control in settings such as IT
security risk management, but is not directly applicable
for privacy protection in settings such as hospitals where
denying access based on privacy risks could have negative
consequences on the quality of care. Our approach to the
problem is fundamentally different: we use a form of risk-
based auditing instead of risk-based access control. Also,
genetic programming is a metaheuristic, which is known
to perform well empirically, but does not have theoretical
guarantees [24]. In contrast, we provide mechanisms with
provable guarantees. Indeed an interesting topic for future
work is to investigate the use of learning-theoretic techniques
to dynamically adjust the risk associated with accesses in a
principled manner.

Guts et al. [25] consider an orthogonal problem in this
space. They provide a characterization of auditable proper-
ties and describe how to type-check protocols to guarantee
that they log sufficient evidence to convince a judge that an
auditable property was satisfied on a protocol run.

Garg et al. [26] present an algorithm that mechanically en-
forces objective parts of privacy policies like HIPAA based
on evidence recorded in audit logs and outputs subjective
predicates (such as beliefs) that have to be checked by
human auditors. Combining the their algorithm with ours
provides an end-to-end enforcement mechanism for policies
of this form.

B. Regret Minimization

A regret minimization algorithm ALG is a randomized
algorithm for playing in a repeated game. Our algorithm

RMA is based on the weighted majority algorithm [10]
for regret minimization. The weighted majority maintains
weights w~s for each of the N fixed actions of the defender.
wt~s is the weight of the expert before round t has been
played. The weights determine a probability distribution over
actions, pt~s denotes the probability of playing ~s at time
t. In any given round the algorithm attempts to learn the
optimal distribution over actions by increasing the weights
of experts that performed better than its current distribution
and decreasing the weights of experts that performed worse.

1) Sleeping Experts: In the setting of [10] all of the
actions are available all of the time. However, we are
working in the sleeping experts model where actions may
not be available every round due to budget constraints.
Informally, in the sleeping experts setting the regret of RMA
with respect to a fixed action ~s in hindsight is the expected
decrease in our total loss had we played ~s in each of the T~s
rounds when ~s was available.

There are variations of the weighted majority algorithm
that achieve low regret in the sleeping experts setting [5],
[11]. These algorithms achieve average regret bounds:

∀~s, Regret (Alg, s̃)

T~s
= O

(√
T logN

T~s

)
.

In fact RMA is very similar to these algorithms. However,
we are interested in finding exact (not asymptotic) bounds.
We also have to deal with the imperfect information in our
game.

2) Imperfect Information: In order to update its weight
after round t, the weighted majority algorithm needs to know
the loss of ever available defender action ~s . Formally, the
algorithm needs to know Lt(~s) for each ~s ∈ AWAKEt.
However, we only observe an outcome ~Ot, which allows
us to compute

Lt(~st) = R(~Ot)− ~C · ~st,

the loss for the particular action ~st played by the defender
at time t. There are several existing algorithms for regret
minimization in games with imperfect information [9], [12]–
[14]. For example, [9] provides an average regret bound of

∀~s, Regret(Alg, ~s)

T
= O

(
N1/3 logN

3
√
T

)
.

It is acceptable to have logN in the numerator, but the N1/3

term will make the algorithm impractical in our setting. The
average regret still does tend to 0 as T →∞, but the rate of
convergence is much slower compared to the case when only
logN in present in the numerator. Other algorithms [12]–
[14] improve this bound slightly, but we still have the N1/3

term in the numerator. Furthermore, [9] assumes that each
action ~s is available in every round. There are algorithms that
deal with sleeping experts in repeated games with imperfect
information, but the convergence bounds get even worse.

Regret minimization techniques have previously been
applied in computer security by Barth et al. [27]. However,
that paper addresses a different problem. They show that
reactive security is not worse than proactive security in
the long run. They propose a regret minimizing algorithm
(reactive security) for allocation of budget in each round so
that the attacker’s “return on attack” does not differ much
from the case when a fixed allocation (proactive security)
is chosen. Their algorithm is not suitable for our audit
setting due to imperfect information and sleeping experts.
In their work, the defender learns the attack path played
by the adversary after each round, and by extension has
perfect knowledge of the loss function for that round. By
contrast, RMA must work in the imperfect information
setting (see section VII-B2). Also, their model considers
unknown attack paths that get discovered over time. This
is a special subcase of the sleeping experts setting, where
an expert is awake in every round after she wakes up.
They extend the multiplicative weight update algorithm [10]
to handle the special case. In our setting experts may be
available in one round and unavailable in next. RMA was
designed to work in this more general setting.

VIII. CONCLUSION AND FUTURE WORK

We presented a principled approach to audits in organi-
zations, such as hospitals, with permissive access control
regimes. We modeled the interaction between the defender
(e.g., hospital auditors) and the adversary (e.g., hospital
employees) as a repeated game. The model takes pragmatic
considerations into account, and considers a powerful worst-
case adversary. We formulate a desirable property of the
audit mechanism in this model based on the concept of
regret in learning theory and present an efficient audit mech-
anism that provably minimizes regret for the defender. This
mechanism learns from experience to guide the defender’s
auditing efforts. The regret bound is significantly better than
prior results in the learning literature. The stronger bound
is important from a practical standpoint because it implies
that the recommendations from the mechanism will converge
faster to the best fixed auditing strategy for the defender.

There are several directions for future work. We plan to
develop similar results with a weaker (but still realistic)
adversary model. Specifically, the regret bounds guaranteed
by our algorithm hold even if an adversary controls the
actions of all the employees in a hospital. It is reasonable to
believe that not all employees behave adversarially. We plan
to consider an alternative model in which some employees
are adversarial, some are selfish and others are well-behaved
(cf. [28]). Such a model could enable us to develop audit
mechanisms that provide better bounds on the organization’s
regret. We also plan to implement such an audit mechanism
and evaluate its performance over real hospital audit logs.

REFERENCES

[1] G. Hulme, “Steady Bleed: State of HealthCare Data
Breaches,” September 2010, InformationWeek.

[2] HIPPA Enforcement, 2010 (accessed November 19,2010).
[Online]. Available: http://www.hhs.gov/ocr/privacy/hipaa/
enforcement/index.html

[3] H. DeYoung, D. Garg, L. Jia, D. Kaynar, and A. Datta,
“Experiences in the logical specification of the HIPAA and
GLBA privacy laws,” in Proceedings of the 9th annual ACM
Workshop on Privacy in the Electronic Society (WPES), 2010.

[4] US Congress, “Health Insurance Portability and Account-
ability Act of 1996, Privacy Rule,” 45 CFR 164, 2002,
available at http://www.access.gpo.gov/nara/cfr/waisidx 07/
45cfr164 07.html.

[5] A. Blum and Y. Mansour, “Learning, regret minimization, and
equilibria,” Algorithmic Game Theory, pp. 79–102, 2007.

[6] B. W. Lampson, “Computer security in the real world,” IEEE
Computer, vol. 37, no. 6, pp. 37–46, 2004.

[7] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum,
J. A. Hendler, and G. J. Sussman, “Information accountabil-
ity,” Commun. ACM, vol. 51, no. 6, pp. 82–87, 2008.

[8] D. Fudenberg and J. Tirole, Game theory. MIT Press, 1991.

[9] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The
nonstochastic multiarmed bandit problem,” SIAM Journal on
Computing, vol. 32, no. 1, pp. 48–77, 2003.

[10] N. Littlestone and M. K. Warmuth, “The weighted majority
algorithm,” Inf. Comput., vol. 108, no. 2, pp. 212–261, 1994.

[11] A. Blum and Y. Mansour, “From external to internal regret,”
in COLT, 2005, pp. 621–636.

[12] V. Dani and T. Hayes, “Robbing the bandit: Less regret in
online geometric optimization against an adaptive adversary,”
in Proceedings of the seventeenth annual ACM-SIAM sympo-
sium on Discrete algorithm. ACM, 2006, p. 943.

[13] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione,
“Regret minimization in games with incomplete information,”
Advances in Neural Information Processing Systems, vol. 20,
pp. 1729–1736, 2008.

[14] B. Awerbuch and R. Kleinberg, “Online linear optimization
and adaptive routing,” Journal of Computer and System
Sciences, vol. 74, no. 1, pp. 97–114, 2008.

[15] M. Feldman, C. H. Papadimitriou, J. Chuang, and I. Sto-
ica, “Free-riding and whitewashing in peer-to-peer systems,”
IEEE Journal on Selected Areas in Communications, vol. 24,
no. 5, pp. 1010–1019, 2006.

[16] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American Statistical Asso-
ciation, vol. 58, no. 301, pp. 13–30, 1963.

[17] P. Auer, N. Cesa-Bianchi, and C. Gentile, “Adaptive and self-
confident on-line learning algorithms,” Journal of Computer
and System Sciences, vol. 64, no. 1, pp. 48–75, 2002.

[18] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic,
“Evidence-based audit,” in CSF, 2008, pp. 177–191.

[19] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and
resolving policy misconfigurations in access-control systems,”
in SACMAT, 2008, pp. 185–194.

[20] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den
Hartog, and G. Lenzini, “Audit-based compliance control,”
Int. J. Inf. Sec., vol. 6, no. 2-3, pp. 133–151, 2007.

[21] X. Zhao and M. E. Johnson, “Access governance: Flexibility
with escalation and audit,” in HICSS, 2010, pp. 1–13.

[22] P.-C. Cheng and P. Rohatgi, “IT Security as Risk Manage-
ment: A Research Perspective,” IBM Research Report, vol.
RC24529, April 2008.

[23] P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M.
Wagner, and A. S. Reninger, “Fuzzy Multi-Level Security :
An Experiment on Quantified Risk-Adaptive Access Control,”
in Proceedings of the IEEE Symposium on Security and
Privacy, 2007.

[24] M. D. Vose, A. H. Wright, and J. E. Rowe, “Implicit paral-
lelism,” in IN GECCO (2003), 2003, pp. 1505–1517.

[25] N. Guts, C. Fournet, and F. Z. Nardelli, “Reliable evidence:
Auditability by typing,” in ESORICS, 2009, pp. 168–183.

[26] D. Garg, L. Jia, and A. Datta, “Policy Monitoring over
Evolving Audit Logs: A Logical Method for Privacy Policy
Enforcement,” CMU, Tech. Rep. CMU-CyLab-11-002, Jan-
uary 2011.

[27] A. Barth, B. Rubinstein, M. Sundararajan, J. Mitchell,
D. Song, and P. Bartlett, “A Learning-Based Approach to Re-
active Security,” Financial Cryptography and Data Security,
pp. 192–206, 2010.

[28] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P.
Martin, and C. Porth, “Bar fault tolerance for cooperative
services,” SIGOPS Oper. Syst. Rev., vol. 39, pp. 45–58,
October 2005. [Online]. Available: http://doi.acm.org/10.
1145/1095809.1095816

APPENDIX

Our main goal is to prove our main theorem from section
III-B, showing that our audit mechanism (RMA) achieves
low regret with high probability.

First, we prove an orthogonal result in appendix A. We
prove that our example estimator function from section V is
accurate for the example loss function that we provided.

In appendix B we prove that Lemma 3 holds for any
estimator function est satisfies the accuracy and indepen-
dence properties outlined in section V. Therefore, with high
probability the defender’s actual regret will be close to his
estimated regret.

In appendix C we review standard regret bounds from the
literature on regret minimization [5], [11]. We prove that our
algorithm achieves low regret with respect to our estimated
loss function.

Finally, in appendix D we combine our results to prove
our main theorem in section III-B. This theorem shows that,
except with probability ε, RMA will achieve low regret.

A. Estimating Losses

Recall that our regret bounds for algorithm 1 depended on
the accuracy of the loss function estimator est. We prove
that our example estimator (Algorithm 2) from section V is
accurate.

Reminder of Claim 1. When L̃t = est (Ot
int, s

t) from
algorithm 2

E
[
Xt
s

]
= 0 .

Proof: First observe that

E
[
ṽt
]

=
1− βat

1− βst
E
[
Ot
int

]
=

1− βat

1− βst
st∑
i=1

pj

=
1− βat

1− βst
st∑
i=1

vt
1− β
1− βat

βj−1

=
1− β
1− βst

vt
st∑
i=1

βj−1

= vt .

From which it follows that

E
[
Xt
s

]
= E

[
L̃t(~s)

]
− E

[
Lt(~s)

]
= R−R′

x∑
i=1

pj − p× vt ×Rext

−C × s− E
[
Lt(~s)

]
= R−R′

x∑
i=1

pj − p× vt ×Rext − C × s

−R+R′ × E
[
ṽt
]
×

x∑
j=1

(
1− β
1− βa

βj−1
)

+p× E
[
ṽt
]
×Rext + C × s

= R′ × E
[
ṽt
]
×

x∑
j=1

(
1− β
1− βat

βj−1
)
−R′

x∑
i=1

pj

=

R′ × x∑
j=1

(
1− β
1− βat

βj−1v

)−R′ x∑
i=1

pj

=

R′ × x∑
j=1

pj

−R′ x∑
i=1

pj

= 0 .

B. Hoeffding Bounds

Hoeffding Bound [16] bounds the probability of the
deviation of a sum of independent random variables from
the mean of the sum of random variables. The statement
of Hoeffding Bound is as follows: if X1, X2, ..., Xn are
independent real valued random variables and ai ≤ Xi ≤ bi,
then for t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]∣∣∣∣∣ > t

]
≤ 2 exp

(
−2t2∑n

i=1(bi − ai)2

)
.

Claim 2. For every ~s

Pr
[∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)

∣∣∣ ≥ K] ≤ ε

2N
,

where K =
√
2T ln 4N

ε .

Proof: Notice that we can rewrite

Loss (~s, I~s)− L̃oss (~s, I~s) =

T∑
t=1

I~s(t)X
t
~s .

By the independence property of of loss estimator est,
the random variables Xt

~s are independent. By the accuracy
property of our loss function estimator est we have

E

[
T∑
t=1

I~s(t)X
t
~s

]
= 0 .

By definition there are exactly T~s times when I~s(t) = 1 so
the sum contains T~s independent random variables. We also
have −1 ≤ Xt

~s ≤ 1 so we can apply Hoeffding Bounds
directly to obtain.

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)X
t
~s

∣∣∣∣∣ ≥ K
]
≤ 2 exp

(
−2K2

22 × T~s

)
.

Plugging in for K and using the fact that T~s ≤ T ,

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)X
t
~s

∣∣∣∣∣ ≥ K
]
≤ 2 exp

(
−T ln 4N

ε

T~s

)

≤ 2 exp

(
− ln

4N

ε

)
=

ε

2N
.

Claim 3. For every ~s

Pr
[∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)

∣∣∣ ≥ K] ≤ ε

2N
,

where K =
√
2T ln 4N

ε .

Proof: Notice that we can rewrite

Loss (RMA, ~s)− L̃oss (RMA, ~s) =
T∑
t=1

∑
~s

I~s(t)p
t
~sX

t
~s .

Set Yt =
∑
~s p

t
~sX

t
~s, and observe that the random variables

Yt are independent and that Yt ∈ [−1, 1]. Substituting we
get

Loss (RMA, ~s)− L̃oss (RMA, ~s) =
T∑
t=1

I~s(t)Y
t .

Applying Hoeffding Bounds we have

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)Y
t

∣∣∣∣∣ > K

]
≤ 2 exp

(
−2K2

22T~s

)
.

Set K =
√

2T ln 4N
ε . Then,

Pr
[∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)

∣∣∣ > K
]

= Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)Y
t

∣∣∣∣∣ > K

]

≤ 2 exp

(
−2K2

22T~s

)
≤ 2 exp

(
− ln

4N

ε

)
≤ ε

2N
.

Lemma 4. Except with probability ε, for all ~s we have∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)
∣∣∣ < K ,

and ∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)
∣∣∣ < K ,

where K =
√
2T ln 4N

ε .

Proof: There are N fixed actions ~s and thus 2N total
events. Applying the union bound to claims 2 and 3 yields
the desired result immediately.

Claim 4. Suppose that for all ~s we have∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)
∣∣∣ < K ,

and ∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)
∣∣∣ < K ,

where K =
√

2T ln 4N
ε . then for every ~s we have

Regret (RMA, ~s)− R̃egret (RMA, ~s) ≤ 2K .

Proof: We use the definition of Regret (RMA, ~s) and
R̃egret, and then apply Lemma 4.

Regret (RMA, ~s)− R̃egret (RMA, ~s)

= (Loss (RMA, ~s)− Loss (~s, I~s))

−
(
L̃oss (RMA, ~s)− L̃oss (~s, I~s)

)
≤

∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)
∣∣∣

+
∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)

∣∣∣
≤ 2K .

We are now ready to prove Lemma 3 from section VI.

Reminder of Lemma 3.

Pr
[
∃~s,Regret (RMA, ~s)− R̃egret (RMA, ~s) ≥ 2K

]
≤ ε ,

where K =
√

2T ln
(
4N
ε

)
.

Proof: We combine claim 4 and Lemma 4.

C. Standard Regret Bounds

We prove upper bounds on our estimated R̃egret. The
proof techniques used in this section are standard [5], [11].
We include them to be thorough. The following claims will
be useful in our proofs.

Claim 5. ∑
~s∈AWAKEt

wt~sL̃
t(~s) =

∑
~s∈AWAKEt

wt~sL̃
t(RMA) .

Proof: We plug in the definition of L̃t(RMA):∑
~s∈AWAKEt

wt~sL̃
t(RMA) =

∑
~s∈AWAKEt

wt~s
∑
~σ

L̃t (~σ)

=
∑

~s∈AWAKEt

wt~s
∑
~σ

pt~σL̃
t (~σ)

=
∑
~σ

∑
~s∈AWAKEt

wt~sp
t
~σL̃

t (~σ)

=
∑
~σ

L̃t (~σ)

 ∑
~s∈AWAKEt

wt~sp
t
~σ

=

∑
~σ

L̃t (~σ)
(
wt~σ
)

Relabel ~σ
=

∑
~s

L̃t (~s)
(
wt~s
)
.

Claim 6. For all times t,∑
~s

wt~s ≤ N .

Proof: Initially, w0
~s = 1 so initially the claim holds,∑
~s

w0
~s = N .

The sum of weights can only decrease. At time t we only
update the weights for those experts ~s ∈ AWAKEt.∑
~s∈AWAKEt

wt+1
~s =

∑
~s∈AWAKEt

wt~sγ
L̃t(~s)−γL̃t(RMA)

=
∑

~s∈AWAKEt

wt~sγ
L̃t(~s)γ−γL̃

t(RMA)

≤
∑

~s∈AWAKEt

wt~s

(
1− (1− γ) L̃t(~s)

)
(
1 + (1− γ) L̃t(RMA)

)

≤

 ∑
~s∈AWAKEt

wt~s

−(1− γ)

 ∑
~s∈AWAKEt

wt~sL̃
t(~s)

+(1− γ)

 ∑
~s∈AWAKEt

wt~sL̃
t(RMA)

Apply Claim 5

≤
∑

~s∈AWAKEt

wt~s ,

where we used the following two facts

Fact 2.
∀γ, y ∈ [0, 1], γy ≤ 1− (1− γ)y ,

and

Fact 3.

∀γ, y ∈ [0, 1], γ−y ≤ 1 + (1− γ)y
γ
.

Therefore,∑
~s

wt+1
~s =

∑
~s/∈AWAKEt

wt+1
~s +

∑
~s∈AWAKEt

wt+1
~s

=
∑

~s/∈AWAKEt

wt~s +
∑

~s∈AWAKEt

wt+1
~s

≤
∑

~s/∈AWAKEt

wt~s +
∑

~s∈AWAKEt

wt~s

≤ N .

Claim 7. For each expert ~s we have

L̃oss(RMA, I~s) ≤
L̃oss(~s, I~s) +

lnN
ln 1
γ

γ
,

where N is the total number of experts.

Proof: By assumption, L̃t(~s) is independent of ~st so
we can think of L̃t(~s) as being fixed before the defender
selects its action ~st. Notice that for all times j we have

N ≥ wj~s = γ
∑j
t=1 I~s(t)(L̃

t(~s)−γL̃t(RMA)) .

Taking log 1
γ

we obtain:

log 1
γ
N =

lnN

ln 1
γ

≥ −
j∑
t=1

(
I~s(t)L̃

t (~s)− γL̃t (RMA)
)

= −L̃oss (~s, I~s) + γL̃oss (RMA, Is̃) .

Hence,

L̃oss(RMA, I~s) ≤
L̃oss(~s, I~s) +

lnN
ln 1
γ

γ
.

We are now ready to prove Lemma 1.

Reminder of Lemma 1. For each expert ~s we have

R̃egret(RMA, ~s) ≤ 1

L− 1
T + 2L lnN .

where N is the total number of experts and γ, our learning
parameter has been set to γ = 1− 1

L .
Proof: Set γ = 1− 1

L and apply claim 7. We have

L̃oss(RMA, I~s) ≤
L

L− 1
L̃oss(~s, I~s) +

L

L− 1

lnN

ln L
L−1

.

Using the definition of R̃egret(RMA, ~s) we get

R̃egret(RMA, ~s) ≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

lnN

ln L
L−1

.

We will use the following fact

Fact 4.
1

L− 1
< 2 ln

(
L

L− 1

)
,

to get

R̃egret(RMA, ~s) ≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

logN

log L
L−1

≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

logN
1

2L−2

≤ 1

L− 1
L̃oss(~s, I~s) + 2L logN .

Lemma 2 follows immediately from 1.

Reminder of Lemma 2. For each expert ~s we have

R̃egret(RMA, ~s) ≤ 2
√
2T lnN + 2 lnN ,

where N is the total number of experts and where our
learning parameter has been set to

γ = 1−
√

2 lnN

T
.

D. Main Theorem

We are finally ready to prove our main theorem from
section III-B.

Reminder of Theorem 1. For all ε > 0,

Pr

 ∃~s, Regret(RMA,~s)
T ≥ 2

√
2 lnN

T +

2

√
2 ln(4N

ε)
T + 2

T lnN

 ≤ ε .
Proof: Lemma 2 tells us that for each expert ~s we have

R̃egret(RMA, ~s) ≤ 2
√
2T lnN + 2 lnN .

and Lemma 3 tells us that except with probability ε, for all
actions ~s we have

Regret(RMA, ~s)−R̃egret(RMA, ~s) ≤ 2

√
2T ln

(
4N

ε

)
.

Combining Lemma 2 with Lemma 3 we obtain the desired
result.

