
Audit Games with Multiple Defender Resources∗

Jeremiah Blocki1, Nicolas Christin1, Anupam Datta1, Ariel D. Procaccia1, Arunesh Sinha2

1Carnegie Mellon University, USA; {arielpro@cs., jblocki@cs., danupam@, nicolasc@}cmu.edu
2University of Southern California, USA; aruneshs@usc.edu

Abstract

Modern organizations (e.g., hospitals, social networks, gov-
ernment agencies) rely heavily on audit to detect and punish
insiders who inappropriately access and disclose confidential
information. Recent work on audit games models the strate-
gic interaction between an auditor with a single audit resource
and auditees as a Stackelberg game, augmenting associated
well-studied security games with a configurable punishment
parameter. We significantly generalize this audit game model
to account for multiple audit resources where each resource is
restricted to audit a subset of all potential violations, thus en-
abling application to practical auditing scenarios. We provide
an FPTAS that computes an approximately optimal solution
to the resulting non-convex optimization problem. The main
technical novelty is in the design and correctness proof of
an optimization transformation that enables the construction
of this FPTAS. In addition, we experimentally demonstrate
that this transformation significantly speeds up computation
of solutions for a class of audit games and security games.

1 Introduction
Modern organizations (e.g., hospitals, banks, social net-
works, search engines) that hold large volumes of personal
information rely heavily on auditing for privacy protection.
These audit mechanisms combine automated methods with
human input to detect and punish violators. Since human
audit resources are limited, and often not sufficient to in-
vestigate all potential violations, current state-of-the-art au-
dit tools provide heuristics to guide human effort (Fairwarn-
ing 2011). However, numerous reports of privacy breaches
caused by malicious insiders bring to question the effective-
ness of these audit mechanisms (Ponemon Institute 2011;
2012).

∗This work was partially supported by the AFOSR MURI on
Science of Cybersecurity, the National Science Foundation (NSF)
grants CNS 1064688,and CCF 0424422, and the HHS/ONC grant
HHS90TR0003/01. Jeremiah Blocki was also partially supported
by a NSF Graduate Fellowship. The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution, the U.S. government or any
other entity.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recent work on audit games by Blocki et al. (2013) ap-
proaches a piece of this problem using game-theoretic tech-
niques. Their thesis is that effective human audit resource al-
location and punishment levels can be efficiently computed
by modeling the audit process as a game between an au-
ditor and auditees. At a technical level, their audit game
model augments a well-studied Stackelberg security games
model (Tambe 2011) with a configurable punishment param-
eter. The auditor (henceforth called the defender) can audit
one of n potential violations (referred to as targets). The de-
fender’s optimal strategy is a randomized auditing policy—a
distribution over targets such that when the attacker best re-
sponds the defender’s utility is maximized. The novel ingre-
dient of the audit games model is a punishment level, chosen
by the defender, which specifies how severely the adversary
will be punished if he is caught. The defender may try to
set a high punishment level in order to deter the adversary.
However, punishment is not free. The defender incurs a cost
for punishing, e.g. punishments such as suspension or fir-
ing of violators require maintaining resources for hiring and
training of replacements. Blocki et al. (2013) provide an ef-
ficient algorithm for computing an optimal strategy for the
defender to commit to.

While this work distills the essence of the defender’s
dilemma in auditing situations, it is too restricted to inform
real-world audit strategies. In typical audit settings, the de-
fender has multiple resources using which she can audit a
subset of the targets (not just one target). Furthermore, each
resource may be restricted in the targets that it can audit.
For example, some organizations follow hierarchical audit
strategies in which a manager is only required to audit po-
tential violations committed by her direct reports. Similarly,
specialized audits are common, for example, employing dis-
joint audit resources to detect finance-related and privacy-
related violations.
Our Contributions. We present a generalized Stackelberg
audit game model that accounts for multiple audit resources
where each resource is restricted to audit a subset of all po-
tential violations, thus enabling application to the practical
auditing scenarios described above. Our main theoretical
result is a fully polynomial time approximation scheme (FP-
TAS) to compute an approximate solution to the resulting
non-convex optimization problem.

To arrive at this FPTAS, we begin with a simple fixed

parameter tractable (FPT) algorithm that reduces the non-
convex optimization problem to a linear programming prob-
lem by fixing the punishment parameter at a discrete value.
Since we perform a linear search over all possible discrete
values of the punishment parameter over a fixed range in in-
creasing intervals of size ε, we get an FPT algorithm once
the bit precision is fixed.

Next we present an optimization transformation that re-
duces the number of variables in the optimization problem
at the cost of generating additional constraints. We also pro-
vide sufficient conditions that guarantee that the number of
constraints is polynomial in size. Significantly, these condi-
tions are satisfied in important practical auditing scenarios,
including the hierarchical and specialized audit settings dis-
cussed earlier. The design and correctness proof of this opti-
mization transformation constitutes the central novel techni-
cal contribution of this paper. Finally, we present an FPTAS
to compute the defender’s strategy leveraging the output of
the optimization transformation when it generates a polyno-
mial number of constraints.

In addition to its role in enabling the design of an FPTAS,
a practical motivation for designing the optimization trans-
formation is its promise of speeding up computing game so-
lutions using the FPT algorithm. We experimentally demon-
strate that the transformation produces speedups of up to 3×
for audit game instances and over 100× for associated secu-
rity game instances. In general, the speedups are higher as
the problem size increases.

As an additional contribution, we consider audit scenarios
where the defender can set a different punishment level for
each target instead of setting a single, universal punishment
level. We provide an FPT algorithm for this problem by
designing a novel reduction of this setting to a second order
cone program (SOCP).
Related Work. Our work is most closely related to the pa-
per of Blocki et al (2013). We elaborate on the technical
connections in the exposition and analysis of our results.

Our work is also closely related to work on security
games (Tambe 2011). The basic approach to solving secu-
rity games, and Stackelberg games more generally (where a
leader chooses an optimal strategy, i.e., one that maximizes
its utility assuming that the follower best responds) was in-
troduced by Conitzer and Sandholm (2006); it does not scale
well when the number of defender strategies is exponentially
large, as is the case in most security games. Typical algo-
rithms rely on formulating a mixed integer linear program,
and employing heuristics; these algorithms do not provide
provable running-time guarantees (see, e.g., Paruchuri et
al. (2009); Kiekintveld et al. (2009)). Often the problem is
solved just for the coverage probabilities or marginals (prob-
ability of defending a target) with the hope that it would be
implementable (i.e., decomposable into a valid distribution
over allocations). In contrast, Korzhyk et al. (2010) give a
polynomial time algorithm for security games where the at-
tacker has multiple resources, each of which can only protect
one target at a time (this restriction is known as singleton
schedules). Their main tool is the Birkhoff-Von Neumann
Theorem, which we also apply.

All our algorithms have theoretical results about their ef-

ficiency. Our optimization transformation transforms the
problem to one with only coverage probabilities as variables
and adds additional constraints for the coverage probabili-
ties that restricts feasible coverage probabilities to be im-
plementable. Thus, in contrast with Korzhyk et al. (2010)
our problem has much fewer variables at the cost of addi-
tional constraints. Also, the punishment parameter makes
our problem non-convex, and so our algorithms must lever-
age a suite of additional techniques.

2 The Audit Games Model
An audit game features two players: the defender (D), and
the adversary (A). The defender wants to audit n targets
t1, . . . , tn, but has limited resources which allow for au-
diting only some of the n targets. Concretely, these re-
sources could include time spent by human auditors, com-
putational resources used for audit (e.g., automated log anal-
ysis), hardware (e.g., cameras) placed in strategic locations,
among many other examples. The exact nature of these re-
sources will depend on the specific audit problem consid-
ered. Rather than focusing on a specific type of audit, we
denote resources available to the defender for audit as in-
spection resources. The defender has k inspection resources
{s1, . . . , sk} at her disposal, with k < n. Each inspection
resource can be used to audit at most one target. Inspection
resources are further constrained by the set of targets that
they can audit: for instance, a human auditor may not have
the expertise or authority to audit certain targets. We define
a set of tuples R such that a tuple (j, i) ∈ R indicates that
inspection resource sj cannot be used to audit target ti.

A pure action of the defender chooses the allocation of
inspection resources to targets. A randomized strategy is
given by a probability distribution over pure actions. We
use a compact form to represent a randomized strategy as
a matrix of probabilities, with pji the probability of inspec-
tion resource sj auditing target ti subject to the following
constraints

pi =
∑k
j=1 p

j
i ≤ 1,

∑n
i=1 p

j
i ≤ 1 for all i, j and

pji = 0 for all (j, i) ∈ R and ∀(j, i). pji ≥ 0 ,

where pi denotes the probability that target ti is inspected.
These constraints can be represented as grid constraints as
follows:

t1 . . . tn
s1 p1

1 p1
n

∑
i p

1
i ≤ 1

...

...
sk pk1 pkn

∑
i p
k
i ≤ 1∑

j p
j
1 ≤ 1 . . .

∑
j p

j
n ≤ 1

Such a matrix can be decomposed into pure actions effi-
ciently. (See the full version for the Birkhoff-von Neu-
mann (1946) result presented in Korzhyk et al. (2010),
which enables the decomposition.) Furthermore, for every
distribution over pure actions we can define an “equivalent”
strategy using our compact representation: the distributions
will be equivalent in the sense that for every target ti the
probability pi that that target is inspected is the same.

Similarly to the basic audit games model of Blocki et
al. (2013), the defender also chooses a punishment “rate”
x ∈ [0, 1] such that if auditing detects an attack (i.e., vi-
olation), the attacker is fined an amount x. The adversary
attacks one target such that given the defender’s strategy the
adversary’s choice of attack is the best response.

We follow the notations of earlier papers on security
games: let the utility of the defender be UaD(ti) when au-
dited target ti was found to be attacked, and UuD(ti) when
unaudited target ti was found to be attacked. We assume
that the attacks on unaudited targets are discovered by an
external source. Similarly, define the utility of the attacker
as UaA(ti) when the attacked target ti is audited, and UuA(ti)
when attacked target ti is not audited, excluding any pun-
ishment imposed by the defender. Attacks discovered exter-
nally are costly for the defender, thus, UaD(ti) ≥ UuD(ti).
Similarly, attacks not discovered by internal audits are more
beneficial to the attacker, thus, UuA(ti) ≥ UaA(ti).

We can now define the full utility functions. The prob-
abilities p1, . . . , pn of each target being audited are given
by pi =

∑k
j=1 p

j
i . Then, the utility of the defender when

target t∗ is attacked is p∗UaD(t∗) + (1 − p∗)UuD(t∗) − ax.
The defender pays a fixed cost ax regardless of the out-
come, where a is a constant. The losses captured by the
−ax term includes loss due to creation of a fearful work
environment and cost incurred in maintaining a surplus of
employees in anticipation of suspension. In the same sce-
nario, the utility of the attacker when target t∗ is attacked
is p∗(UaA(t∗) − x) + (1 − p∗)UuA(t∗). The attacker suffers
punishment x only when attacking an audited target.

We state an extension to the model that captures imme-
diate losses that the defender suffers by imposing a pun-
ishment, e.g., firing or suspending an employee requires
time and effort to find a replacement. Mathematically,
we can account for such losses by including an additional
term withing the scope of p∗ in the payoff of the defender:
p∗(U

a
D(t∗) − a1x) + (1 − p∗)UuD(t∗) − ax, where a1 is a

constant. All our results (FPT and FPTAS algorithms) can
be readily extended to handle this model extension, which
we present in the full version.
Equilibrium. Under the Stackelberg equilibrium solution,
the defender commits to a (randomized) strategy, followed
by a best response by the adversary; the defender’s strategy
should maximize her utility. The mathematical problem in-
volves solving multiple optimization problems, one each for
the case when attacking t∗ is in fact the best response of the
adversary. Thus, assuming t∗ is the best response of the ad-
versary, the ∗th optimization problem P∗ in our audit games
setting is

max
pij ,x

p∗U
a
D(t∗) + (1− p∗)UuD(t∗)− ax ,

subject to ∀i 6= ∗. pi(UaA(ti)− x) + (1− pi)UuA(ti)
≤ p∗(UaA(t∗)− x) + (1− p∗)UuA(t∗) ,

∀j. 0 ≤
∑n
i=1 p

j
i ≤ 1 ,

∀i. 0 ≤ pi =
∑k
j=1 p

j
i ≤ 1 ,∀(j, i). pji ≥ 0 ,

∀(j, i) ∈ R. pji = 0 , 0 ≤ x ≤ 1 .

The first constraint verifies that attacking t∗ is indeed a best
response for the adversary.

The auditor solves the n problems P1, . . . , Pn (which cor-
respond to the cases where the best response is t1, . . . , tn,
respectively), and chooses the best among all these solutions
to obtain the final strategy to be used for auditing. This is a
generalization of the multiple LPs approach of Conitzer and
Sandholm (2006).

For ease of notation, let ∆D,i = UaD(ti)− UuD(ti), ∆i =
UuA(ti)−UaA(ti) and δi,j = UuA(ti)−UuA(tj). Then, ∆D,i ≥
0, ∆i ≥ 0, and the objective can be written as pn∆D,∗−ax,
subject to the quadratic constraint

pi(−x−∆i) + pn(x+ ∆∗) + δi,∗ ≤ 0 .

Without loss of generality we will focus on the n’th pro-
gram Pn, that is, we let ∗ be n.
Inputs. The inputs to the above problem are specified in K
bit precision. Thus, the total length of all inputs is O(nK).

3 Fixed-Parameter Tractable Algorithms
In this section, we present our FPT algorithm for optimiza-
tion problem Pn, followed by the optimization transforma-
tion that improves the FPT algorithm and enables the FPTAS
in the next section. Finally, we briefly describe an extension
of our algorithmic results to target-specific punishments.

We start with the FPT for Pn. Our algorithm is based on
the following straightforward observation: if we fix the pun-
ishment level x then the Pn becomes a linear program that
can be solved in polynomial time. We therefore solve the op-
timization problem Pn for discrete values of x (with interval
size ε) and take the solution that maximizes the defender’s
utility. This approach provides the following guarantee:
Theorem 1. The above approach of solving for discrete val-
ues of x is a FPT Θ(ε)-additive approximation algorithm
for the problem Pn if either the optimal value of x is greater
than a small constant or ∆n 6= 0; the bit precision is the
fixed parameter.

Proof Sketch. The proof proceeds by arguing how much the
objective changes when the value of x is changed by less
than ε. The exact algebraic steps are in the full version.

We emphasize that fixing the bit precision is reasonable,
because inputs to the game model are never known with
certainty, and therefore high-precision inputs are not used
in practice (see, e.g., Nguyen et al. (2014), Kiekintveld et
al. (2013), Blum et al. (2014)).

A naı̈ve approach to improving our FPT algorithm is to
conduct a binary search on the punishment rate x. This ap-
proach may fail, though, as the solution quality is not single-
peaked in x. We demonstrate this in the full version using
an explicit example. Instead, we describe a transformation
of the optimization problem, which will enable a FPTAS for
our problem under certain restrictions.

3.1 Extracting constraints for pi’s
The transformation eliminates variables pji ’s and instead ex-
tracts inequalities (constraints) for the variables pi’s from
the constraints below (referred to as grid constraints)

∀i. 0 ≤ pi =
∑k
j=1 p

j
i ≤ 1 ,∀j. 0 ≤

∑n
i=1 p

j
i ≤ 1 ,

∀(j, i). pji ≥ 0 ,∀(j, i) ∈ R. pji = 0 .

Consider any subset of inspection resources Lwith the re-
sources in L indexed by s1, . . . , s|L| (|L| ≤ k). We let M =
OnlyAuditedBy(L) ⊂ {t1,. . . , tn} denote the subset of
targets that can only be audited by a resource in L (e.g., for
every target ti ∈M and every resource sj /∈ L the resource
sj cannot inspect the target ti) . For notational convenience
we assume that M is indexed by t1, . . . , t|M |. Then, in case
|L| < |M |, we obtain a constraint pt1 +. . .+pt|M| ≤ |L| be-
cause there are only |L| resources that could be used to audit
these |M | targets. We call such a constraint cM,L. Consider
the set of all such constraints C defined as

{cM,L | L ∈ 2S ,M = OnlyAuditedBy(L), |L| < |M |}

where S = {s1, . . . , sk} and T = {t1, . . . , tn}.
Lemma 1. The optimization problem P∗ is equivalent to the
optimization problem obtained by replacing the grid con-
straints by C ∪ {0 ≤ pi ≤ 1} in P∗.

Proof Sketch. We present a sketch of the proof with the de-
tails in the full version. As the optimization objective de-
pends on variables pi’s only, and quadratic constraints are
identical in both problems we just need to show that the re-
gions spanned by the variables pi’s, as specified by the linear
constraints, are the same in both problems. As one direction
of the inclusion is easy, we show the harder case below.

Let C+ denote the convex polytope C ∪ {0 ≤ pi ≤ 1}.
Given a point (p1, ..., pn) ∈ C+ we want to argue that we
can find values pji ’s satisfying all of the grid constraints. We
first note that it suffices to argue that we can find feasible
pji ’s for any extreme point in C+ because any point in C+

can be written as a convex combination of its extreme points
(Gallier 2008). Thus, we could find feasible pji ’s for any
point in C+ using this convex combination.

In the full version we prove that each extreme point inC+

sets the variables p1, ..., pn to 0 or 1. Let k′ denote the num-
ber of ones in an extreme point. Note that k′ ≤ k because
of the inequalities is p1 + ... + pn ≤ k. Consider the undi-
rected bipartite graph linking the inspection nodes to the tar-
get nodes, with a link indicating that the inspection can audit
the linked target. This graph is known from our knowledge
of R, and each link in the graph can be labeled by one of
the pji variables. Let S′ be the set of targets picked by the
ones in any extreme points. We claim that there is a per-
fect matching from S′ to the the set of inspection resources
(which we prove in next paragraph). Given such a perfect
matching, assigning pji = 1 for every edge in the matching
yields a feasible solution, which completes the proof.

We prove the claim about perfect matching by contra-
diction. Assume there is no perfect matching, then there
must be a set S′′ ⊆ S′, such that |N(S′′)| < |S′′| (N
is the neighbors function — this result follows from Hall’s
theorem). As S′′ ⊆ S′ it must hold that pi = 1 for all
i ∈ index(S′′) (function index gives the indices of the set
of targets). Also, the set of targets S′′ is audited only by
inspection resources in N(S′′) and, by definition of C, we
must have a constraint

∑
i∈index(S′′) pi ≤ |N(S′′)| . Us-

ing |N(S′′)| < |S′′|, we get
∑
i∈index(S′′) pi < |S′′| . But,

since |index(S′′)| = |S′′|, we conclude that all pi for targets
in S′′ cannot be one, which is a contradiction.

Observe that obtaining pji ’s from the pi’s involves solving
a linear feasibility problem, which can be done efficiently.

Importantly, the definition of C is constructive and pro-
vides an algorithm to compute it. However, the algorithm
has a worst-case running time exponential in k. Indeed,
consider k resources s1, . . . , sk and 2k targets t1, . . . , t2k.
Each resource si can inspect targets t1, t2, t2i−1, t2i. For
each set of k/2 resources L ⊆ {s2,. . . , sk} we have M =

OnlyAuditedBy(L) = {t1, t2} ∪
(⋃

sj∈L{t2j−1, t2j}
)

.
Observe that |M | = k + 2 > k/2 = |L| so for each
L ⊆ {s2,. . . , sk} we get a new constraint cM,L. Thus, we
get
(
k−1
k/2

)
constraints.

3.2 Conditions for Poly. Number of Constraints
Motivated by the above observation, we wish to explore an
alternative method for computing C. We will also provide
sufficient conditions under which |C| is polynomial.

The intuition behind our alternative algorithm is that in-
stead of iterating over sets of inspection resources, we could
iterate over sets of targets. As a first step, we identify equiv-
alent targets and merge them. Intuitively, targets that can be
audited by the exact same set of inspections are equivalent.
Formally, ti and tk are equivalent if F (ti) = F (tk) where
F (t`) = {sj (j, `) /∈ R}.

The algorithm is formally given as Algorithm 1. It builds
an intersection graph from the merged targets: every merged
set of targets is a node, and two nodes are linked if the two
sets of inspection resources corresponding to the nodes in-
tersect. The algorithm iterates through every connected in-
duced sub-graph and builds constraints from the targets as-
sociated with the nodes in the sub-graphs and the set of in-
spection resources associated with them. The next lemma
proves the correctness of the Algorithm 1.

Algorithm 1: CONSTRAINT FIND(T,R)

Compute F , the map from T to 2{s1,...,sk} using R.
Merge targets with same F (t) to get set T ′ and a map
W , where W (t′) = #merged targets that yielded t′
Let PV (t′) be the set of prob. variables associated with
t′, one each from the merged targets that yielded t′
Form an intersection graph G with nodes t′ ∈ T ′ and
edge set E = {{t′i, t′k} F (t′i) ∩ F (t′k) 6= ∅}
L← CONNECTEDSUBGRAPHS(G)
C ← φ
for l ∈ L do

Let V be all the vertices in l
P ←

⋃
v∈V PV (v)

k ←
∑
v∈V W (t′)

if |P | > k then
C ← C ∪ {

∑
p∈P p ≤ k}

return C

Lemma 2. CONSTRAINT FIND outputs constraints that
define the same convex polytope in p1, . . . , pn as the con-
straints output by the naı̈ve algorithm (iterating over all sub-
sets of resources).

The proof appears in the full version. The algorithm is
clearly not polynomial time in general, because it iterates
over all connected subgraphs. The next lemma provides suf-
ficient conditions for polynomial running time.
Lemma 3. CONSTRAINT FIND runs in polynomial time
if at least one of the following conditions holds:
• The intersection graph has O(log n) nodes.
• The intersection graph has constant maximum degree and

a constant number of nodes with degree at least 3.

Proof Sketch. The detailed proof is in the full version. It is
not hard to observe that we need sufficient conditions for any
graph to have polynomially many induced connected sub-
graphs. The first case above is obvious as the number of
induced connected sub-graphs in the worst case (fully con-
nected graph) is 2N , where N is number of nodes. The sec-
ond case can be proved by an induction on the number of
nodes in the graphs with degree greater than 3. Removing
any such vertex results in a constant number of disconnected
components (due to constant max degree). Then, we can ar-
gue that the number of connected sub-graphs of the given
graph will scale polynomially with the max number of con-
nected sub-graphs of each component. The base case in-
volves graphs of degree less than two, which is a graph with
paths and cycles and such a graph has polynomially many
connected sub-graphs.

Why Are These Conditions Realistic? The conditions
specified in Lemma 3 capture a wide range of practical audit
scenarios.

First, many similar targets can often be grouped together
by type. In a hospital case, for instance, rather than consid-
ering each individual health record as a unique target wor-
thy of specific audit strategies, it might make more sense to
have identical audit policies for a small set of patient types
(e.g., celebrities, regular folks...). Likewise, in the context
of tax audits, one could envisage that individuals are pooled
according to their types (e.g., high income earners, expatri-
ates, ...). In practice, we expect to see only a few different
types. Each type corresponds to a single node in the intersec-
tion graph, so that a constant number of types corresponds
to a constant number of nodes. That is, both of the lemma
conditions are satisfied, even though only one is required.

Second, auditing is often localized. For instance, when
considering audits performed by corporate managers, one
would expect these managers to primarily inspect the activi-
ties of their direct subordinates. This means that the inspec-
tion resources (inspection actions of a manager) auditing a
node (activities of its subordinates) are disjoint from the in-
spection resources auditing any other node. Thus, our inter-
section graph has no edges, and the second lemma condition
is satisfied. Slightly more complex situations, where, for
instance, employees’ activities are audited by two different
managers, still satisfy the second condition.

3.3 Target-Specific Punishments
We present a brief overview of target-specific punishments
with the details in the full version. We extend our model to
target-specific punishments by augmenting the program Pn:
we use individual punishment levels x1, . . . , xn, instead of
using the same punishment x for each target. The new op-
timization problem PXn differs from Pn only in (1) objec-
tive: maxpi,x pn∆D,n−

∑
j∈{1,...,n} ajxj and (2) quadratic

constraints: pi(−xi −∆i) + pn(xn + ∆n) + δi,n ≤ 0.
The naı̈ve way of discretizing each of the variables

x1, . . . , xn and solving the resulting sub-problems is not
polynomial time. Nevertheless, we show that it is possible to
design an FPT approximation algorithm by discretizing only
pn, and casting the resulting sub-problems as second-order
cone programs (SOCP), which can be solved in polynomial
time (Boyd and Vandenberghe 2004). We first present the
following intuitive result:

Lemma 4. At the optimal point for PXn, xn is always 0.
Further, discretizing values of pn with interval size ε and
solving resulting sub-problems yields a Θ(ε) approximation.

The proof is in the full version. Next, we show that for
fixed values of xn and pn, PXn reduces to an SOCP. We
first describe a general SOCP problem (with variable y ∈
Rn) that maximizes a linear objective fT y subject to linear
constraints Fy = g and m quadratic constraints of the form

∀i ∈ {1, . . . ,m}. ||Aiy + bi||2 ≤ cTi y + di

In particular, the constraint k2/4 ≤ yi(yj + k′) is the same
as ||[k (yi−yj−k′)]T ||2 ≤ yi+yj+k, which is an instance
of the quadratic constraint above for appropriate A, b, c, d.

Our problem can be cast as an SOCP by rewriting the
quadratic constraints as

pn(xn + ∆n) + δi,n ≤ pi(xi + ∆i)

Using our approach (discretizing pn, xn = 0) the LHS of
the above inequality is a constant. If the constant is negative
we can simply throw out the constraint — it is a tautology
since the RHS is always positive. If the constant is positive,
we rewrite the constraint as a second-order constraint as de-
scribed above (e.g., set k = 2

√
pn(xn + ∆n) + δi,n and set

k′ = ∆i). The rest of the constraints are linear. Thus, the
problem for each fixed value of pn, xn is an SOCP. Putting
everything together, we have proved the following result.

Theorem 2. The method described above is an FPT additive
Θ(ε)-approximate algorithm for solving PXn.

4 Fully Polynomial Time Approximation
Our goal in this section is to develop an FPTAS for prob-
lem Pn, under the condition that the set C returned by
CONSTRAINT FIND has polynomially many constraints.
Our algorithm builds on an earlier algorithm (Blocki et al.
2013) for the restricted auditing scenario with just one de-
fender resource. Since we solve the defender’s problem af-
ter extracting the constraints C, the variables in our problem

are just the pi’s and x.

max
pi,x

pn∆D,n − ax ,
subject to ∀i 6= n.

pi(−x−∆i) + pn(x+ ∆n) + δi,n ≤ 0 ,
c ∈ C, ∀i. 0 ≤ pi ≤ 1 , 0 ≤ x ≤ 1 .

Property of optimal points. We state the following property
of some optimal points p∗i ’s and x∗ of the optimization:
Lemma 5. There exists optimal points p∗i ’s and x∗ such that
if p∗n(x∗ + ∆n) + δj,n ≥ 0 then p∗n(x∗ + ∆n) + δj,n =
p∗j (x

∗ + ∆j) (i.e., quadratic constraint is tight) else when
p∗n(x∗ + ∆n) + δj,n < 0 then p∗j = 0.

Proof Sketch. The quadratic constraint can be written as
pn(x+∆n)+δj,n

x+∆i
≤ pi At the optimal point if p∗n(x∗ + ∆n) +

δj,n ≥ 0 then if we have p∗n(x∗+∆n)+δj,n
x+∆i

< p∗i , we can al-
ways reduce p∗i without affecting the objective value till we
get an equality. Also, for the case p∗n(x∗ + ∆n) + δj,n < 0
we can reduce p∗i to 0.

We focus on finding one of the optimal points with the
property stated above. Next, we sort δi,n’s to get a sorted
array δ(i),n in ascending order. Then, we split the optimiza-
tion problem Pn into sub-problems EQ(j), where in each
problem EQ(j) it is assumed that pn, x lies between the hy-
perbolas pn(x+ ∆n) + δ(j),n (open boundary) and pn(x+
∆n) + δ(j+1),n (closed boundary) in the plane spanned by
pn, x. Thus, in EQ(j), pn(x+ ∆n) + δ(j),n is non-negative
for all (k) > (j) and negative otherwise. Using the prop-
erty of the optimal point above, for the non-negative case
we obtain equalities for the quadratic constraints and for the
negative case we claim that for all (k) ≤ (j) we can set
p(k) = 0. The optimal value for Pn can be found by solv-
ing each EQ(j) and taking the best solution from these sub-
problems.

The optimization problem for EQ(j) is as follows:

max
pi,x

pn∆D,n − ax ,

subject to ∀(i) > (j). 0 ≤ pn(x+∆n)+δ(i),n
x+∆(i)

= p(i) ≤ 1

pn(x+ ∆n) + δ(j),n < 0
pn(x+ ∆n) + δ(j+1),n ≥ 0
c ∈ C, ∀(i) ≤ (j). p(i) = 0 , 0 ≤ x ≤ 1 .

As no pi (except pn) appears in the objective, and due to the
equality constraints on particular pi’s, we can replace those
pi’s by a function of pn, x. Other pi’s are zero. Next, by
a series of simple algebraic manipulations we obtain a two-
variable optimization problem:

max
pi,x

pn∆D,n − ax ,
subject to ∀b ∈ {1, . . . , B}. pn ≤ fb(x)

0 ≤ pn ≤ 1 , 0 ≤ x ≤ 1 ,

where B is the total number of constraints, which is of the
same order as |C|. The details of the algebraic steps are in
the full version.

Solving the sub-problem. Our two final lemmas are not hard
to prove. Their proofs appear in the full version.

Lemma 6. Problem EQ(j) can be solved efficiently for a
fixed value x or fixed value of pn.

Lemma 7. The optimal point forEQj cannot be an interior
point of the region defined by the constraints, i.e., at least
one of the inequalities is tight for the optimal point.

Proof Sketch. It is easy to see that if all constraints are non-
tight at the optimal point, then pn can be increased by a small
amount without violating any constraint and also increasing
the objective value. Thus, some constraint must be tight.

Algorithm 2: APX SOLVE(l, EQ(j))

Solve the problem for pn = 0, 1 and x = 0, 1
Collect solutions (pn, x) from the above in M
for b← 1 to B do

Replace pn = fb(x) in the objective to get
F (x) = fb(x)∆D,n − ax
Take the derivative to get F ′(x) = ∂F (x)

∂x

R← ROOTS(F ′(x), 2−l, (0, 1))
R′ ← MAKEFEASIBLE(R)
From R′ obtain set M ′ of potential solutions (pn, x)
M ←M ∪M ′

for (b, b′) ∈ {(b, b′) | b ∈ B, b ∈ B, b′ > b} do
Equate fb(x) = fb′(x) to get F (x) = 0

R← ROOTS(F (x), 2−l, (0, 1))
R′ ← MAKEFEASIBLE(R)
From R obtain set M ′ of potential solutions (pn, x)
M ←M ∪M ′

(p∗n, x
∗)← arg maxM{pn∆D,n − ax}

return (p∗n, x
∗)

We are now ready to present the FPTAS, given as Algo-
rithm 2. The algorithm first searches potential optimal points
on the boundaries (in the first loop) and then searches poten-
tial optimal points at the intersection of two boundaries (sec-
ond loop). The roots are found to an additive approximation
factor of 2−l in time polynomial in the size of the problem
representation and l (Schönhage 1982). As shown in Blocki
et al. (2013), the case of roots lying outside the feasible re-
gion (due to approximation) is taken care of by the function
MAKEFEASIBLE. The first loop iterates a maximum of n
times, and the second loop iterates a maximum of

(
n
2

)
times.

Thus, we have the following result.

Theorem 3. The optimization problem Pn can be solved
with an additive approximation factor of Θ(2−l) in time
polynomial in the input size and l, i.e., our algorithm to solve
Pn is an FPTAS.

5 Experimental Results
In this section, we empirically demonstrate the speedup
gains from our optimization transformation for both audit
games and security games. We obtained speedups of up to
3× for audit game instances and over 100× for associated
security game instances.

#Resource Time (min)

Game #Target (GroupSize) T NT

Audit 100 10 (2) 12 15
Audit 200 100 (10) 81 234
Security 3,000 500 (10) 28 8,5001

Security 5,000 1,000 (20) 119 110,0001

Table 1: FPT algorithm running times (in min) with our op-
timization transformation (T) and no transformation (NT).

Our experiments were run on a desktop with quad core 3.2
GHz processor and 6GB RAM. Code was written in Mat-
lab using the built-in large scale interior point method im-
plementation of linear programming. We implemented two
FPT algorithms—with and without the optimization trans-
formation. For both the algorithms, we used the same prob-
lem inputs in which utilities were generated randomly from
the range [0, 1], a was fixed to 0.01, x was discretized with
interval size of 0.005.

We ran experiments for audit games and security games
with varying number of targets and resources. The resources
were divided into equal sized groups such that the targets
any group of resources could inspect was disjoint from the
target set for any other group. Table 1 shows our results
with the varying number of targets, resources and size of the
group of targets. The results are an average over 5 runs of the
optimization with random utilities in each run. Audit games
take more time to solve than corresponding security games
with a similar number of targets as we run the correspond-
ing LP optimization 200 times (the discrete interval for x is
0.005). Hence we solve for larger security game instances.

Our implementations did not optimize for speed using
heuristics because our goal was to only test the speedup gain
from our optimization transformation. Thus, we do not scale
up to the number of targets that heuristic approaches such
as ORIGAMI (Kiekintveld et al. 2009) achieve (1,000,000
targets). ORIGAMI works by iteratively building the op-
timal attack set, i.e., the set of targets that the adver-
sary finds most attractive at the optimal solution point.
However, ORIGAMI considers only coverage probabilities
(marginals). Thus, its output may not be implementable with
scheduling constraints on resources. In contrast, our ap-
proach guarantees that the coverage probabilities output are
implementable. Wedding the two approaches to obtain scal-
able and provably implementable audit and security game
solutions remains an interesting direction for future work.

1These data points are extrapolations from runs that were al-
lowed to run 12 hours. The extrapolation was based on the number
of optimization problems solved vs the total number of optimiza-
tion problems (3000/5000 total problems for 3000/5000 targets).

References
Birkhoff, G. 1946. Three observations on linear algebra.
Univ. Nac. Tucumán. Revista A. 5:147–151.
Blocki, J.; Christin, N.; Datta, A.; Procaccia, A. D.; and
Sinha, A. 2013. Audit games. In Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJ-
CAI), 41–47.
Blum, A.; Haghtalab, N.; and Procaccia, A. D. 2014. Learn-
ing optimal commitment to overcome insecurity. In Pro-
ceedings of the 28th Annual Conference on Neural Informa-
tion Processing Systems (NIPS). Forthcoming.
Boyd, S. P., and Vandenberghe, L. 2004. Convex optimiza-
tion. Cambridge University Press.
Conitzer, V., and Sandholm, T. 2006. Computing the opti-
mal strategy to commit to. In Proceedings of the 7th ACM
Conference on Electronic Commerce, 82–90.
Fairwarning. 2011. Industry Best Practices for Patient Pri-
vacy in Electronic Health Records.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In Proceedings of
the 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 689–696.
Kiekintveld, C.; Islam, T.; and Kreinovich, V. 2013. Secu-
rity games with interval uncertainty. In Proceedings of the
12th International Conference on Autonomous Agents and
Multi-agent Systems (AAMAS), 231–238.
Korzhyk, D.; Conitzer, V.; and Parr, R. 2010. Complexity
of computing optimal Stackelberg strategies in security re-
source allocation games. In Proceedings of the 24th AAAI
conference on Artificial Intelligence (AAAI), 805–810.
Nguyen, T. H.; Jiang, A. X.; and Tambe, M. 2014. Stop the
compartmentalization: Unified robust algorithms for han-
dling uncertainties in security games. In Proceedings of the
13th International Conference on Autonomous Agents and
Multi-agent Systems (AAMAS), 317–324.
Paruchuri, P.; Pearce, J. P.; Marecki, J.; Tambe, M.;
Ordónez, F.; and Kraus, S. 2009. Coordinating randomized
policies for increasing security of agent systems. Informa-
tion Technology and Management 10(1):67–79.
Ponemon Institute. 2011. Second Annual Benchmark Study
on Patient Privacy and Data Security.
Ponemon Institute. 2012. 2011 Cost of Data Breach Study:
United States.
Schönhage, A. 1982. The fundamental theorem of alge-
bra in terms of computational complexity. Technical report,
University of Tübingen.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.

