
15110 PRINCIPLES OF COMPUTING – LAB EXAM 1 – Fall 2013 A

Name ___________________________ Section _____ Andrew ID ___________________ Machine_____

Directions:

1. In your home directory, create a folder named labexam1.
2. Write a function in Python for each of the following problems using gedit and store these

functions in the labexam1 folder. Test your functions by calling them with python3 -i.
Although we give you example/test runs, your function should work on all legal inputs based
on the specifications given, and your output should match the examples as closely as
possible for full credit. Remember that we will run your code on additional test cases that
are not shown on the exam.

3. These problems can be done using for loops, while loops, or recursion: your choice (unless
otherwise specified).

4. Once you are finished, compress the labexam1 folder into a zip file and submit it to AutoLab
(http://autolab.cs.cmu.edu) by the end of lab. Do not delete the labexam1 folder from your
home directory.

Below is Python3 syntax reminder for for and while loops. If we call the functions below with
an argument that is a list of numbers they both print the odd items such that each item is
printed on a separate line. Note that the print function can be called with the keyword
arguments sep and end, defining respectively, the string to be placed between every two
printed values and the string to be printed at the end of the print function. For example, using
print(list[i], end=’’) in the examples below would print the values on the same
line.

def example1(list): def example2(list):

for i in range(0,len(list)): i = 0
 if list[i]%2 != 0 : while i < len(list):
 print(list[i]) if list[i]%2 != 0:
 print(list[i])
 i = i + 1

1. (25 pts) Write a Python function f1(x,y) (in the file f1.py in your labexam1 folder) that
returns the count of numbers that are a multiple of 3 between integers x and y, inclusive. You can
assume that x is less than y.

Sample usage:

>>> f1(4, 19)
5

>>> f1(10, 25)
5

2. (25 pts) Write a function f2(list) (in the file f2.py in your labexam1 folder) that takes a
list of integers and returns the value of the smallest integer in the list. You may assume that
list has at least one element. You may not use the min function in your solution.

Sample usage:

>>> f2([4, 2, 5])
2

>>> f2([6, -4])
-4

3. (25 pts) Write a function f3(list) (in the file f3.py in your labexam1 folder) that takes a list
of positive integers and prints a bar graph of X’s where the number of X’s on each line is given by each
integer in the list. At the end of each bar graph, print the length of the bar separated by one space from
the bar). You may assume the list has at least one integer. Your function must use nested loops.

Sample usage:

>>> f3([3, 2, 5, 8, 4])
XXX 3
XX 2
XXXXX 5
XXXXXXXX 8
XXXX 4

4. (25 pts) Write a function f4(list) (in the file f4.py in your labexam 1 folder) that stores the
steps of a cumulative sum of a list into a new list and returns the list.

You may assume list contains at least 1 element. Follow this algorithm:

1. Create a new list cumulative_sum.
2. Append list[0] to cumulative_sum.
3. For each remaining index i of list do the following:

a. Add each element at index i in list to the element at index-1 in cumulative_sum and
append the sum to cumulative_sum.

4. Return the cumulative_sum list.

Hint: If a is a list then a.append(x) appends the element x to the list a.

Sample usage:

>>> f4([1, 2, 4, 7, 11, 16, 22, 29])
[1, 3, 7, 14, 25, 41, 63, 92]

>>> f4([1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92])
[1, 3, 7, 14, 25, 41, 63, 92, 129, 175, 231, 298, 377, 469]

>>> f4([1])
[1]

