
Concurrency 



Announcements 

¤  Last week of classes! 

¤  Due this week: 
¤  Mon: PS10, August 5th at 9AM (now!) 

¤  Mon: Lab 2 today 

¤  Tue: PA10 due tomorrow, August 10 at 11:59PM 

¤  Wed: Lab12, August 7 

¤  Wed: OLI Computability due August 7th at 11:59PM 

¤  Thu: PS 11 August 8th at 9:00AM 



Announcements 

¤  Exam 
¤  Written 

¤  Friday, August 9th 

¤  12PM-3PM (should take similar time to the other written 
exams) 

¤  DH A302 

¤  Units: 11,12,13,14 

¤  Please let us know if you have any conflicts with any other 
final 



Concurrency 



Concurrency in Real Life 

¤ Concurrency is the simultaneous occurrence of 
events. 

 

¤ Most complex tasks that occur in the physical 
world can be broken down into a set of simpler 
activities 
¤  Building a house: bricklaying, carpentry, plumbing, 

electrical installation, roofing 
¤  Some of them can overlap and take place 

concurrently 



Concurrency in Computing 

¤ Computing on the Internet: independent, autonomous  
agents trying to achieve individual and shared goals. 

 

¤  Even on our local machines, we take it for granted that  
we can do more than one thing at a time.  
¤  We continue to work in a word processor, while other applications 

download files, manage the print queue, and stream audio.  

¤  Even a single application is often expected to do more than one 
thing at a time.  



Concurrent Programming 

¤ The activity described by a computer program can 
also be divided into simpler activities (subprograms) 

 
¤  Sequential programs: Subprograms do not overlap in 

time, they are executed one after another 
¤  In 15-110 we have been writing sequential programs. 

¤ Concurrent programs: Subprograms may overlap in 
time, their executions proceed concurrently 
¤  In 15-110 we will not write concurrent programs but we 

will learn about what makes them tricky. 



Why Do We Need It? 

¤  Everything happens at once in the world. Inevitably, computers must 
deal with that world. 
¤  For example, traffic control, airline seat reservation, process control, 

banking 

¤  Performance gain from multiprocessing hardware 
¤  For example, Google, Yahoo, divide each query into thousands of little 

queries and use thousands of small computers. 

¤  For example, a supercomputer with thousands of processors can compute 
a weather prediction much faster than a single processor. 

¤  Increased application throughput for applications sharing 
computational resources.  
¤  Throughput = amount of work that a computer can do in a given time 

period.  

¤  When one application is waiting for I/O another can continue its 
execution. 



Caution 

¤  The advantages of concurrency may be offset by the 
increased complexity of concurrent programs. 
¤  We will be giving some examples of what may go wrong in 

concurrent programming. 

 

¤  Notorious cases of erroneous concurrent software: 
¤  Therac-25 computerized radiation therapy machine 

¤  Mars Rover “Spirit” 

 



DIFFERENT FLAVORS OF 
CONCURRENCY 



A Useful Abstraction: Process  

¤  Process: A program in execution 
¤  Program along with its data in memory, open files, open 

communication channels etc. 

 

¤  Concurrency involves multiple processes running 
simultaneously on multiple processors or on a single 
processor time-sharing the processor. 



Sharing a Processor 
 

If only one processor (CPU) is available, the only way to run 
multiple processes is by switching between them.  

  

 

 

 

 

 

 

Only one process  is using the CPU at a given time even though 
they look like they are running in parallel to an observer. 

Process 1: 

Process 2: 

run run run 

run run 

time 



Scheduling 

The order in which the steps are run is determined by a 
scheduler. There are many possibilities. 

Process 1: 

Process 2: 

run run run 

run run 

time 

Process 1: 

Process 2: 

run run run 

run run 



Multiple Processors 

If you have multiple CPUs, you may execute multiple 
processes in parallel (simultaneously). Really! 

 

Process 1: 

Process 2: 

run run run 

run run run 

on processor 1 

on processor 2 

time 



Sharing Memory 

•  Processes may share 
resources such as 
memory 

 
•  For example, only one 

processor at a time 
may execute an 
instruction that touches 
the shared memory.  
 

•  The memory hardware 
makes the others wait. 

Process 1  

Private 
memory1 

Process 2 

Shared Memory 
 
 
 
 

Program1  

Private 
memory2 

Program2  

15	

Shared memory  
can be used for  
communication  
between processes 



Distributed Computing 

Processes may run on distributed systems 
¤ For example, a cluster of workstations, 

communicating via sockets 

run Process 1: 

Process 2: 

run 

run run run 

communication  
by message passing 

Some steps are executed simultaneously but  
some are dependent on another 



CONCURRENT PROGRAMMING 



“Thinking Parallel” 

¤  Hardware supports parallelism.  Nowadays, we have multiple processors 
in most computing environments such as multicore machines, clusters. 

¤  Programmers do not always support parallelism.  Algorithms do not fully 
utilize parallelism provided by hardware.  

¤  Many programming languages offer “multithreading” libraries to support 
concurrent programming:  
¤  Structuring programs where there are logically separate, naturally 

independent control flows.  

¤  What is really needed is development of new languages that will enable 
programmers to express parallel algorithm designs. 

¤  We will  not focus on parallel algorithms. We will focus on issues that arise 
from concurrent execution of sequential processes that cooperate to 
achieve a common goal. 



Threads 

¤  What most programmers think of when they hear about 
concurrent programming today.  

¤  We will use Python threads to illustrate some challenges 
with concurrent programming. 

¤  Thread: a (somewhat) independent computation running 
inside a program 

¤  Shares resources with the main program (memory, files, 
network connections etc.) 

 



>>> python3 -i example.py                                                        

            statement 

                           

            statement  

             

                          statement   

Thread Basics 

Python launches the “main” thread 
of the program. Control flows from 
one statement to another. 



Thread Basics 

>>> python3 -i example.py                                                        

             statement 

                          

             statement

             create thread(foo) 

def foo():
    statement  
    statement 
    … 
 

Assume that  foo is a 
function that has already 
been defined. 



>>> python3 -i example.py                                                        

            statement                              

            statement

            create thread(foo)        statement  

        

            statement                 statement  

            statement ...             statement 

             ...                       ...

                                   

Thread Basics 

Concurrent execution of the “main” 
thread and the function foo() 

Statements from 
the function foo 



>>> python3 -i example.py                                                        

            statement                              

            statement

            create thread(foo)        statement  

            statement                 statement  

            statement             statement 

            ...                       ...

                                                      return/exit

Thread Basics 

Thread is like a “process” that runs  
independently inside a program 

  



Functions as Threads 

The Python module threading allows you to create 
Thread objects or use functions as threads.  

Below is a function that is used as a thread. 

import threading

def countdown(count):
    while count != 0:
        count = count-1
         return  

t1= threading.Thread(target=countdown, args=(10,))
t1.start()
# do your own thing 
t1.join() 



Joining a Thread 

¤  Once you start a thread it runs independently. 

¤  Use t.join() to wait for a thread t to exit 

 t.start() # launch a thread t

# do other work
...
   
# wait for thread t to finish and exit
t.join() 



Access to Shared Data 

¤ Threads share all of the data in your program. 

¤ We cannot assume anything about scheduling 
(the order of steps in an execution). 

¤ Operations that we think of as a single step are 
often non-atomic (take several steps and might 
be interrupted). 

 



Thread Scheduling 

Thread 1: 

Thread 2: 

run run run 

run run 

time 

Thread 1: 

Thread 2: 

run run run 

run run 

Thread 1 and Thread 2 are separate threads.  

We cannot  
assume anything 
about when these 
switches will occur. 

The dashed lines 
indicate the 
points in time at 
which a  switch 
occurs. 



Threads Sharing Data 

¤ Consider a shared resource (variable x in 
this example) 

            

            x = 0

  Thread 1                              Thread 2      

        ...              ...                            

  x = x + 1         x = x - 1

   ...              ...         



Example 
import threading
x = 0
def inc():
    global x
    for i in range(1000000):
         x = x + 1

def dec():
    global x
    for i in range(1000000):
         x = x - 1

t1 = threading.Thread(target = inc)
t2 = threading.Thread(target = dec)
t1.start()
t2.start()
t1.join()
t2.join()
print(x)



Example 
import threading
x = 0
def inc():
    global x
    for i in range(1000000):
         x = x + 1

def dec():
    global x
    for i in range(1000000):
         x = x - 1

t1 = threading.Thread(target = inc)
t2 = threading.Thread(target = dec)
t1.start()
t2.start()
t1.join()
t2.join()
print(x)

Caution:  Global variables should 
be used sparingly. They can be 
modified and read in a variety of 
places in the code. They make it 
hard to read, test and debug 
code. 



Example 
import threading
x = 0
def inc():
    global x
    for i in range(1000000):
         x = x + 1

def dec():
    global x
    for i in range(1000000):
         x = x - 1

t1 = threading.Thread(target = inc)
t2 = threading.Thread(target = dec)
t1.start()
t2.start()
t1.join()
t2.join()
print(x)

Run it several times. It may produce  
a different number each time.  
Why? 



Low-level Atomic Steps 

   Thread 1        Thread 2     

          ...               ...

   x = x + 1        x = x - 1

    ...               ...                                        

Low-level interpreter execution:

Thread  1               Thread 2   

Load_global x           Load_global x

Load_const 1            Load_const  1

Add                     Subtract

Store_global x          Store_global x    

                                               

We thought of addition and  
subtraction as one indivisible  
step but Python divided  
their execution into smaller steps 



Thread 1        Thread 2     

 x = x + 1     x = x - 1

Thread  1           Thread 2   

Load_global x                        

Load_const  1                                                      

            switch    Load_global x                                                 

                     Load_const 1

                     Subtract

                     Store_global x 

 Add        switch 

 Store_global x    

                                                      

A Possible Interleaving of  Steps 

One of several possible 
interleavings of steps actually  
Took place 
 
Think of starting  execution at  
a state with x = 0. Can you see 
why the final value would be 1, 
not 0?  



Thread 1        Thread 2     

 x = x + 1     x = x - 1

Thread  1           Thread 2   

Load_global x                        

Load_const  1                                                      

            switch    Load_global x                                                 

                     Load_const 1

                     Subtract

                     Store_global x 

 Add        switch 

 Store_global x    

                                                      

Not what the programmer intended 

Operations performed on a stale value of x (i.e. 0)  
after x has been updated to -1 by Thread 1  



¤  Knock, Knock 

¤  Race Condition! 

¤  Who’s There? 



Thread 1        Thread 2     

 x = x + 1     x = x - 1

Thread  1           Thread 2   

Load_global x                        

Load_const  1                                                      

            switch    Load_global x                                                 

                     Load_const 1

                     Subtract

                     Store_global x 

 Add        switch 

 Store_global x    

                                                      

Race Condition 

Race condition: two or more 
threads operating on the same 
data object without proper 
synchronization 
 
 
The output is  dependent on the 
timing of uncontrollable events 
such as  scheduling decisions of 
the underlying system 



Concurrent programming is hard. 

¤  Only a tiny percentage of practicing programmers can do it. 

¤  It requires art and mathematics. 

¤  It’s like digital hardware design. 

¤  It needs proofs. 

¤  Conventional debugging doesn’t work. 

¤  If you stop the program to observe, you change the 
behavior. 

¤  Testing is futile because the number of possible execution 
sequences for the same input explodes. 

37	



Summary 

¤ Sequential vs. concurrent programming paradigms 
¤  Advantages of using concurrency:  

¤  utilizing resources more efficiently, dealing with concurrent events 
in the computational environment 

¤  Challenges in concurrent programming 
¤  Synchronization between different tasks and access to shared 

data is a major source of complexity 
¤  Need to consider all possible executions 
¤  Difficulty of replicating errors 

¤ We will NOT do any programming with threads. We 
looked at it only to illustrate the concepts of process 
scheduling, interleaving of actions, and race 
conditions.  

 



Concurrency is hard… 



Recap 

¤  Process: program in execution. Unit of sequential 
execution.  

¤ We can structure programs so that they can be 
executed as a set of concurrent processes 
¤  On a single processor  

¤  On multiple processors 

¤  Processes may coordinate their actions using 
¤  Shared memory 

¤  Message passing 

¤ A race condition is a situation in which multiple 
processes read and write a shared data item and the 
final result depends on the order of execution.  

40	



There	are	many	ways	to	execute	two	
processes	concurrently.	

41	

S1 
S2 
S3 

S1 
S2 
S3 

S1 
S2 
S3 

S1 
S2 
S3 

S1 
S2 

S1 
S3 

S2 
S3 

S1 
S1 

S2 
S3 

S2 
S3 

S1 
S1 

S2 
S2 

S3 
S3 

S1 
S2 

S1 
S2 
S3 

S3 

S1 
S2 

S1 
S2 

S3 
S3 

S1 
S1 
S2 

S2 
S3 

S3 

S1 
S1 
S2 

S2 
S3 

S3 

S1 
S1 
S2 
S3 

S2 
S3 

S1 
S1 
S2 
S3 

S2 
S3 

S1 
S1 
S2 

S2 
S3 

S3 

S1 
S2 
S3 

S1 
S2 
S3 

S1 
S1 

S2 
S2 
S3 

S3 

S1 
S1 
S2 

S2 
S3 

S3 

S1 
S1 

S2 
S2 
S3 

S3 

S1 
S1 

S2 
S2 

S3 
S3 

S1 
S1 

S2 
S3 

S2 
S3 

S1 
S2 

S1 
S2 
S3 

S3 

S1 
S2 

S1 
S2 

S3 
S3 

S1 
S2 

S1 
S3 

S2 
S3 

Several possible  
interleavings  of steps. 

The green process executes steps  
S1 S2 S3 in the given order.  
The blue process executes steps  
S1 S2 S3 in the given order. 



Assumption  

¤  In the rest of the lecture we will use some programs to 
illustrate concepts such as race conditions, interference, 
and deadlock.  

¤  For the purposes of this lecture  we  assume that a single 
line of program is executed atomically:  
¤  you can think of one line of code as corresponding to one 

step in the previous slide whose execution cannot be broken 
down into smaller steps. 



Critical Sections 

¤  Often, a process really needs exclusive access to some 
data. 

¤  A critical section is a sequence of steps that have exclusive 
access to the shared resource 

¤  If multiple processes are sharing a resource only one should be 
executing its critical region 

¤  Real Life Examples where critical sections are needed 
¤  Crossing a traffic intersection  

¤  A bank with many ATMs 

 

43	



Critical Section Example 

¤ Consider a bank with multiple ATM’s.  

¤ At one, Mr. J requests a withdrawal of $10. 

¤ At another, Ms. J requests a withdrawal of 
$10 from the same account. 

¤ The bank’s computer executes: 
1.  For Mr. J, verify that the balance is big enough. 
2.  For Ms. J, verify that the balance is big enough. 
3.  Subtract 10 from the balance for Mr. J. 
4.  Subtract 10 from the balance for Ms. J. 

¤  The balance went negative if it was less than $20! 

 
44	



Vocabulary Reminder 

•  Race condition: A behavior in concurrent processing 
where proper functioning depends on the timing of other 
uncontrollable events 

 

•  A critical section is a piece of code that accesses a 
shared resource that must not be concurrently accessed 
by more than one process 

 

45	



Critical Sections in a Program 

What can we do to prevent one processor from entering 
the critical section while another is in it?  

Critical Section 

Locate the J’s account data 
containing the balance  

if balance < 10: 
   error 
else: 
   balance = balance – 10 

Dispense $10 from ATM  

46	

Process  
executed  
for each  
concurrent  
request 



Idea 1: Careful Driver Method 



Careful Driver Method: 
Don’t enter the 
intersection unless it’s 
empty.	

free = True   #initially unlocked In shared memory: 

# Process 1 
while True : 
  Non-Critical_Section 
  while not free: 
    pass 
  free = False 
  Critical_Section 
  free = True 
 

48	

# Process 2 
while True : 
  Non-Critical_Section 
  while not free: 
   pass 
  free = False 
  Critical_Section 
  free = True 
 

code that does  
not touch  
shared memory 

code that  
touches  
shared  
memory 



Careful Driver Method: 
Don’t enter the 
intersection unless it’s 
empty.	

free = True   #initially unlocked In shared memory: 

# Process 1 
while True : 
  Non-Critical_Section 
  while not free: 
    pass 
  free = False 
  Critical_Section 
  free = True 
 

49	

# Process 2 
while True : 
  Non-Critical_Section 
  while not free: 
   pass 
  free = False 
  Critical_Section 
  free = True 
 

Interference is possible! 

code that does  
not touch  
shared memory 

code that  
touches  
shared  
memory 



free = True   #initially unlocked In shared memory: 

# Process 1 
while True : 
  Non-Critical_Section 
  while not free : 
    pass 
  free = False 
  Critical_Section 
  free = True 
 

50	

# Process 2 
while True : 
  Non-Critical_Section 
  while not free : 
      pass 
  free = False 
  Critical_Section 
  free = True 
 

If	these	two	processes	leave	their	non-critical	sections	
at	precisely	the	same	time,	then	strictly	alternate	lines,	
they	will	both	end	up	in	the	Critical_Section.		

Careful Driver Method: 
Don’t enter the 
intersection unless it’s 
empty.	



Computers vs. Real Life 

¤  The careful driver method works in real life because 
¤  The number of times in your life you cross the intersection is low. 

Twice a day for forty years is about 29,000. 
¤  The chance of two drivers arriving at the intersection 

simultaneously is low. 
¤  Cars move slowly enough that if you don’t see anyone coming, 

you’ll get across before anyone comes. 

51	



Idea 2: Stop Sign method 



The Stop Sign Method                                                                                                                   

1.	Signal your intention (by stopping). 
2. Wait until cross road has no one waiting or 
crossing. 
3. Cross intersection. 
4. Renounce intention (by leaving intersection).  

53	



# Process 0 
while True : 
   Non-Critical_Section 
   free0 = False 
   while not free1 : 
       pass 
   Critical_Section 
   free0 = True 
 

# Shared Memory 
 free0 = True   # P0 is not stopped at sign 
 free1 = True   # P1 is not stopped at sign 
 

The	Stop	and	Look	Method	

# Process 1 
while True : 
   Non-Critical_Section 
   free1 = False 
   while not free0: 
       pass  
   Critical_Section 
   free1 = True 
 

54	

This	version	of	the	code	does	not	suffer	from	interference.	Does	it	now	
guarantee	safe	execution	of	the	critical	section?	



# Process 0 
while True : 
   Non-Critical_Section 
   free0 = False 
   while not free1: 
       pass 
   Critical_Section 
   free0 = True 
 

# Shared Memory 
 free0 = True   # P0 is not stopped at sign 
 free1 = True   # P1 is not stopped at sign 
 

The	Stop	and	Look	Method	

# Process 1 
while True : 
   Non-Critical_Section 
   free1 = False 
   while not free0: 
       pass  
   Critical_Section 
   free1 = True 
 

55	

Once	again,	if	the	two	processes	exit	the	non-critical	section	at	the	
same	time	and	strictly	alternate		lines	they	will	end	up	stuck	in	their	
while	loops.	This	is	called	Deadlock. 



Deadlock 

¤  Deadlock is the condition when:  
¤  two or more processes are all waiting for some shared resource,  

¤  but no process actually has it to release,  

¤  so all processes to wait forever without proceeding. 

¤  It’s like gridlock in real traffic. 

		

56	



Idea 3: Stop Sign Method  
             with Tie Breaking   



The Stop Sign Method with Tie Breaking             																																																																																																																				

1.  Signal your intention (by stopping). 
2.  Wait until cross road has no one else waiting or crossing. 
3.  If two of you are both waiting, yield to the car to your 

right. 
4.  Cross intersection. 
5.  Renounce intention (by leaving intersection).  

58	



Peterson’s algorithm avoids all 
bugs! 

59	

free0 = True 
free1 = True 
priority = 0    

# Process 0 
  while True : 
    Non-Critical_Section0 
    free0 = False 
    priority = 1 
    while not free1 and 
          priority==1: 
       pass 
    Critical_Section0 
    free0 = True 
  

#  Process 1 
  while True : 
    Non-Critical_Section1 
    free1 = False 
    priority = 0 
    while not free0 and    
          priority==0: 
        pass 
    Critical_Section1 
    free1 = True 



Peterson’s algorithm avoids all 
bugs! 

60	

free0 = True 
free1 = True 
priority = 0    

# Process 0 
  while True : 
    Non-Critical_Section0 
    free0 = False 
    priority = 1 
    while not free1 and 
          priority==1 : 
       pass 
    Critical_Section0 
    free0 = True 
  

#  Process 1 
  while True : 
    Non-Critical_Section1 
    free1 = False 
    priority = 0 
    while not free0 and    
          priority==0 : 
        pass 
    Critical_Section1 
    free1 = True 

Entrance to the critical section is granted for process P0  
•  if P1 does not want to enter  its critical section (free1 == True) 
•  or if P1 has given priority to P0 by setting priority to 0 (priority == 0). 



Idea 4: A probabilistic approach  



A Probabilistic Approach 

¤  There is a conceptually easier way to solve 
synchronization problem by embracing probable 
thinking.  

¤  We just use the stop sign approach but wait for a random 
amount of time when a conflict occurs.  



Types of HeisenBugs* 

In decreasing order of seriousness: 
1.  Interference: multiple process in critical section. 

2.  Deadlock: two processes idle forever, neither entering their 
critical or non-critical sections. 

3.  Starvation: one process needlessly idles forever while the other 
stays in its non-critical section. 

4.  Unfairness: a process has lower priority for no reason.  

63	

Note: We did not discuss 3 and 4 in detail. You can learn  
more about them in the future.  

* In computer programming jargon, a heisenbug is a software bug that 
seems to  disappear or alter its behavior when one attempts to study it. 
Source: Wikipedia 



The Dining Philosopher’s Problem 



Dining Philosophers’ Problem 

65	

Aristotle Plato 

Socrates 

Me 



The Dining Philosophers 

•  Each philosopher thinks for a while, then picks up 
his left fork, then picks up his right fork, then eats, 
then puts down his left fork, then puts down his 
right fork, thinks for a while... 
–  We assume here that each philosopher thinks and 

eats for random times, and a philosopher cannot 
be interrupted while he picks up or puts down a 
single fork. 

66	



The Dining Philosophers 

•  Each philosopher thinks for a while, then picks up 
his left fork, then picks up his right fork, then eats, 
then puts down his left fork, then puts down his 
right fork, thinks for a while... 
–  We assume here that each philosopher thinks and 

eats for random times, and a philosopher cannot 
be interrupted while he picks up or puts down a 
single fork. 

•  Each fork models a "resource" on a computer 
controlled by an OS. 

•  Original problem was proposed by Edsgar Dijkstra. 

67	



Dining Philosophers’ Problem (with Deadlock) 

•  There are N philosophers. 

•  Philosopher i does the following: 
1. THINK 
2. Pick up fork i. 
3. Pick up fork (i+1) modulo N. 
4. EAT 
5. Put down fork i. 
6. Put down fork (i+1) modulo N. 
7. Go to step 1. 

68	

Fork 0 Fork 1 

Fork 2 Fork 3 

0 
1 

2 
3 

NOTE:  (i+1) modulo N = i+1 ,  if 0 < i < N-1 
 (i+1) modulo N = 0,  if i = N-1 

N=4 



Dining Philosophers’ Problem (with Deadlock) 

•  There are N philosophers. 

•  Philosopher i does the following: 
1. THINK 
2. Pick up fork i. 

3. Pick up fork (i+1) modulo N. 
4. EAT 
5. Put down fork i. 

6. Put down fork (i+1) modulo N. 
7. Go to step 1. 

69	

Fork 0 Fork 1 

Fork 2 Fork 3 

0 
1 

2 
3 

How can deadlock occur here? 

N=4 



Dining Philosophers’ Problem (with Deadlock) 

•  There are N philosophers. 

•  Philosopher i does the following: 
1. THINK 
2. Pick up fork i. 

3. Pick up fork (i+1) modulo N. 
4. EAT 
5. Put down fork i. 

6. Put down fork (i+1) modulo N. 
7. Go to step 1. 

70	

Fork 0 Fork 1 

Fork 2 Fork 3 

0 
1 

2 
3 

Deadlock occurs!! 

N=4 



Removing the Deadlock 

71	

¤  Philosopher i does the following: 

1. THINK 

2. If i is not equal to N-1: 

        a. Pick up fork i 

        b. Pick up fork i + 1 

3. If i is equal to N-1: 

        a. Pick up fork 0 

        b. Pick up fork N - 1 

4. EAT 

5. If i is not equal to N-1: 

        a. Put down fork i 

        b. Put down fork i + 1 

6. If i is equal to N-1: 

      a. Put down fork 0 

      b. Put down fork N – 1 

7. Go to step 1 

 

 

This	philosopher	picks	up	the	right	fork	first	

This	philosopher	picks	up	the	right	fork	first	



Dining Philosophers’ Problem (without Deadlock) 

72	

Fork 0 Fork 1 

Fork 2 Fork 3 

0 
1 

2 
3 

Deadlock solved!! 



Dining Philosophers’ Problem (without Deadlock) 

73	

Fork 0 Fork 1 

Fork 2 Fork 3 

0 
1 

2 
3 

Deadlock solved!! 


