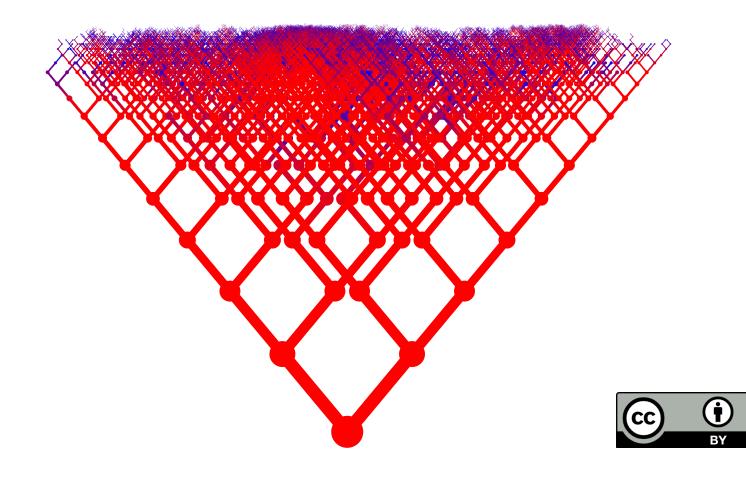
# Binary Search and Merge Sort



#### Announcements

#### Today:

Lab 6

Programming Assignment5 (

Tomorrow: Problem Set 5

Exam on Thursday: Units 1 – 5 (inclusive)

# Today

#### Recursion for search:

- Binary Search
- Merge Sort
- Logarithmic worst-case complexity

# Binary Search

## Thinking linearly...







## Thinking linearly...





## Thinking linearly...





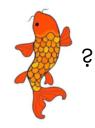
#### Linear Search

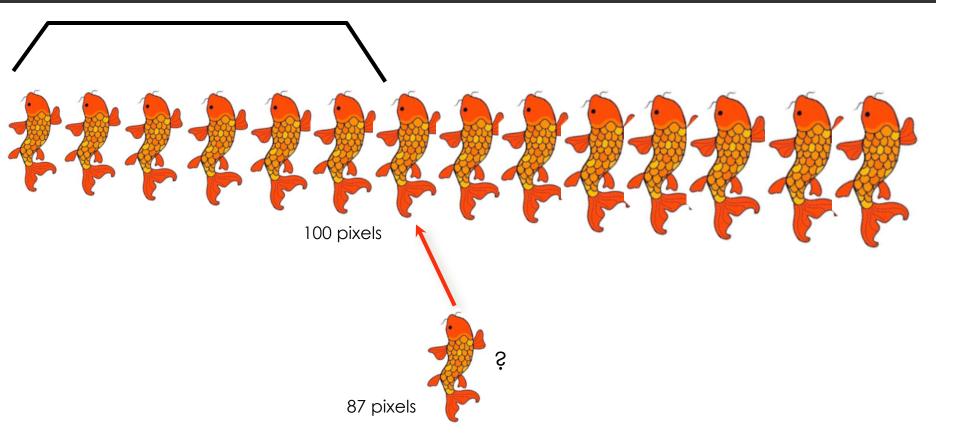
def contains(items, key):

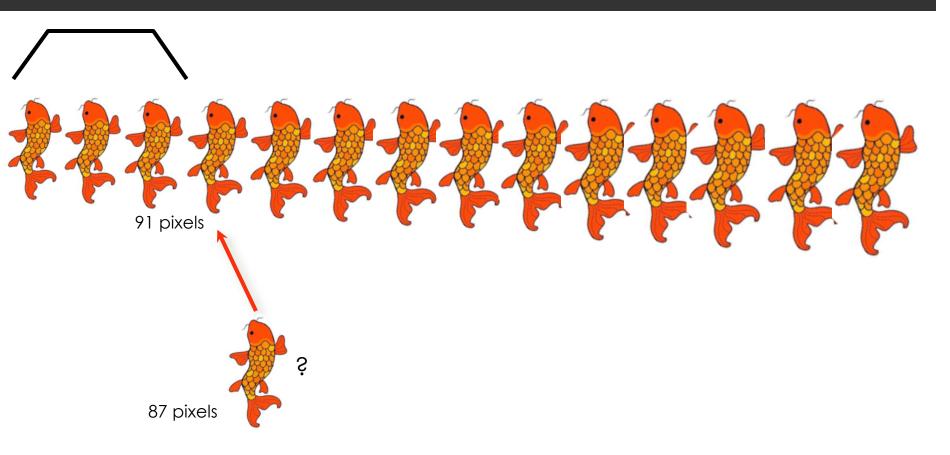
#### Number guessing

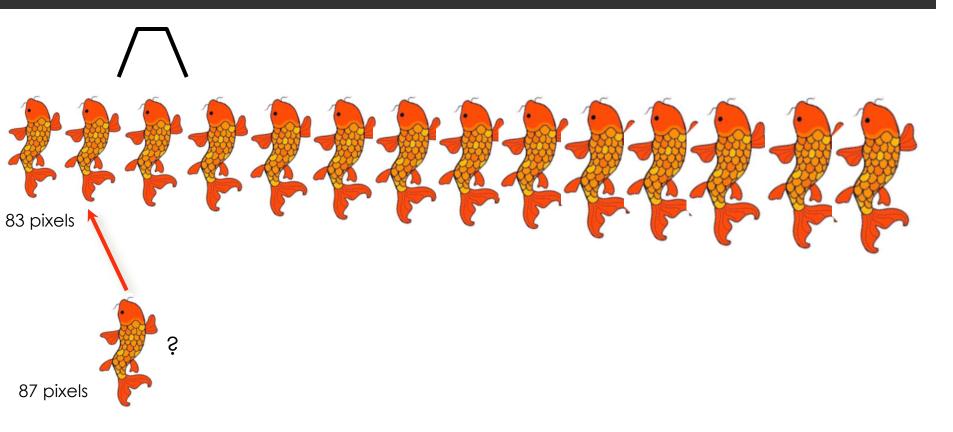
- I'm thinking of a number between 1 and 16
- You get to ask me yes/no & is it greater than some number you choose
- How many questions do you need to ask?
- Which questions will you ask to get the answer quickest?

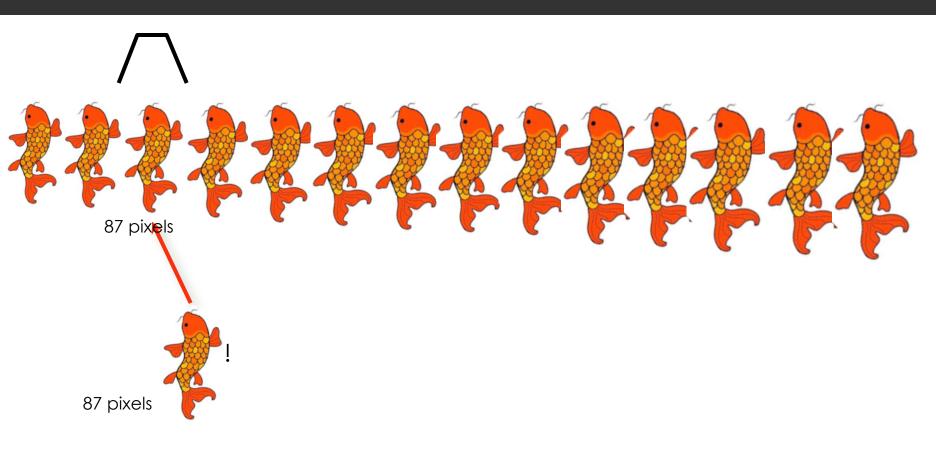












# From idea to algorithm

### Specification: the Search Problem

- Input: A list of n unique elements and a key to search for
  - The elements are <u>sorted</u> in increasing order.
- Result: The index of an element matching the key, or None if the key is not found.

# **Recursive Algorithm**

#### BinarySearch(list, key):

- 1. Return None if the list is empty.
- 2. Compare the key to the middle element of the list
- 3. Return the index of the middle element if they match
- If the key is less than the middle element then return BinarySearch(first half of list,key) Otherwise, return BinarySearch(second half of list,key).

#### Example 1: Search for 73

| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 12 | 25 | 32 | 37 | 41 | 48 | 58 | 60 | 66 | 73 | 74 | 79 | 83 | 91 | 95 |
| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 12 | 25 | 32 | 37 | 41 | 48 | 58 | 60 | 66 | 73 | 74 | 79 | 83 | 91 | 95 |
| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 12 | 25 | 32 | 37 | 41 | 48 | 58 | 60 | 66 | 73 | 74 | 79 | 83 | 91 | 95 |

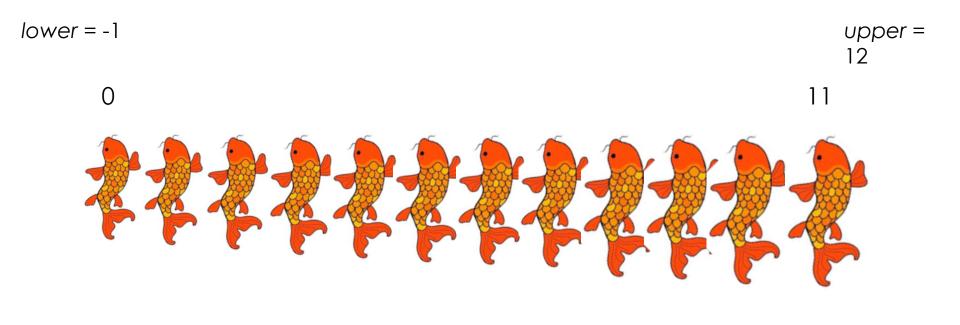
Found: return 9

### Example 2: Search for 42

| 0                      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 12                     | 25 | 32 | 37 | 41 | 48 | 58 | 60 | 66 | 73 | 74 | 79 | 83 | 91 | 95 |
| 0                      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 12                     | 25 | 32 | 37 | 41 | 48 | 58 | 60 | 66 | 73 | 74 | 79 | 83 | 91 | 95 |
| 0                      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 12                     | 25 | 32 | 37 | 41 | 48 | 58 | 60 | 66 | 73 | 74 | 79 | 83 | 91 | 95 |
| 0                      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 12                     | 25 | 32 | 37 | 41 | 48 | 58 | 60 | 66 | 73 | 74 | 79 | 83 | 91 | 95 |
| 0                      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 12                     | 25 | 32 | 37 | 41 | 48 | 58 | 60 | 66 | 73 | 74 | 79 | 83 | 91 | 95 |
| Not found: return None |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

#### Controlling the range of the search

- Maintain three numbers: lower, upper, mid
- Initially lower is -1, upper is length of the list

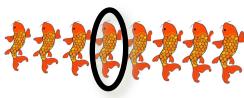


# Controlling the range of the search

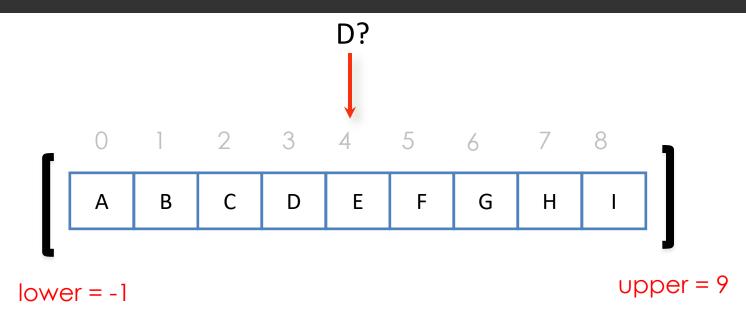
• mid is the midpoint of the range:

mid = (lower + upper) // 2 (integer division) Example: lower = -1, upper = 9 (range has 9 elements) mid = 4

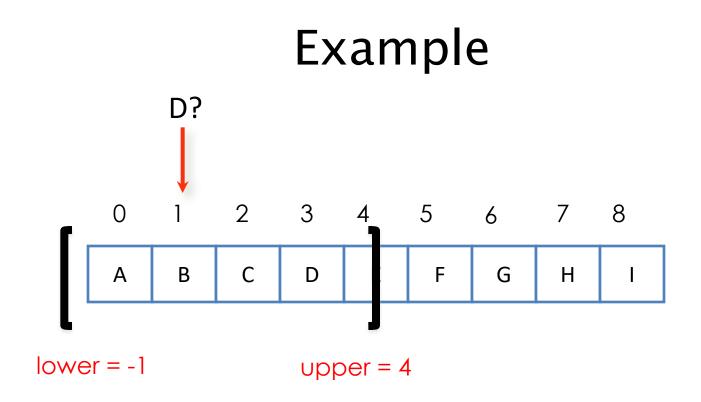
What happens if the range has an even number of elements?
 Example: lower = -1, upper = 8
 mid = 3



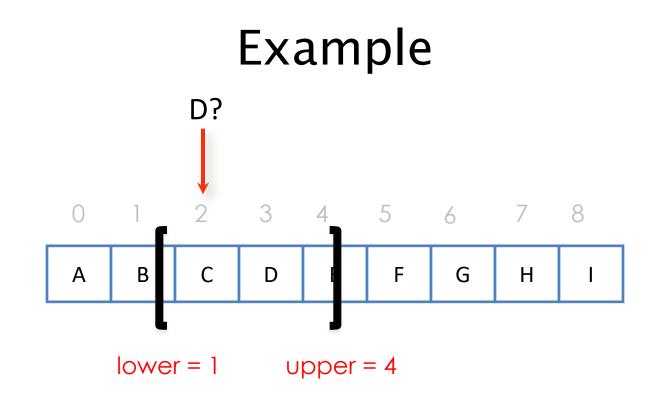
# Example



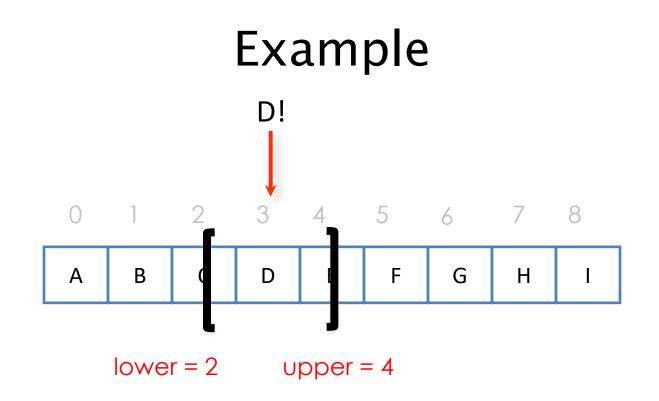
List sorted in ascending order. Suppose we are searching for D.



Each time we look at a smaller portion of the list within the window and ignore all the elements outside of the window



Each time we look at a smaller portion of the array within the window and ignore all the elements outside of the window



Each time we look at a smaller portion of the array within the window and ignore all the elements outside of the window

# Designing the recursion

towards a Python program:

#### Base case: range empty

How do we determine if the range is empty?
Iower + 1 == upper

What should we return then?
None

#### Base case: key found

The key is compared to the element at mid:
 Iist[mid] == key

What should we return then?
 *mid*

#### Recursive Case

- Non-empty range: what subproblem(s) should we solve?
  - search left half or search right half
- What should we return then?
  - result of searching left or right half
- New value for *lower*? value for *upper*?
  - left half: lower, mid
  - right half: mid, upper

#### Parameters for recursion

- Inputs: key and list of items
- But we also need lower and upper bounds
  - since they change throughout the search, they have to be parameters of the search function
- Design: main function and recursive helper function

# Recursive Binary Search in Python

```
first value for upper
                      first value for lower
# main function
def bsearch(items, key):
    return bs helper(items, key, -1, len(items))
# recursive helper function
def bs helper(items, key, lower, upper):
    if lower + 1 == upper: # Base case: empty
        return None
    mid = (lower + upper) // 2 # Recursive case
        return mid same value for lower
    if key == items[mid]:
    if key < items[mid]: # Go left</pre>
        return bs_helper(items, key, lower, mid)
    else:
                         # Go right
        return bs helper(items, key, mid, upper)
                       new value for lower same value for upper
```

#### Caveat: specification

• The algorithm and the code was developed on the assumption that the input list is sorted.

• If the function is called with an unsorted list it has no obligation to behave correctly.

#### measurement and analysis

reflections

#### Trace: Search for 73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 25 32 37 41 48 58 60 66 73 74 79 83 91 95 key lower upper bs helper(items, 73, -1, 15) mid = 7 and 73 > items[7]bs\_helper(items, 73, 7, 15) mid = 11 and 73 < items[11]bs\_helper(items, 73, 7, 11) mid = 9 and 73 = items[9]---> return 9

#### Trace: Search for 42

#### 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#### 12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

#### key lower upper

bs helper(items, 42, -1, 15)

mid = 7 and 42 < items[7]

bs\_helper(items, 42, -1, 7)

mid = 3 and 42 > items[3]

bs helper(items, 42, 3, 7)

mid = 5 and 42 < items[5]

bs\_helper(items, 42, 3, 5)

mid = 4 and 42 > items[4]

bs\_helper(items, 73, 4, 5)

lower + 1 == upper

---> Return None.

## Instrumenting Binary Search Code

count = 0 # count of comparisons

```
def bsearch(list, key):
    global count
    count = 0
    print("Searching list of length ", len(list))
    result = bs helper(list, key, -1, len(list))
    print("Number of comparisons:", count)
    return result
def bs helper(list, key, lower, upper):
    global count
    if lower + 1 == upper:
        print("Not found")
        return None
   mid = (lower + upper) // 2
    print("mid:", mid, "lower:", lower, "upper", upper)
    count = count + 1
    if key == list[mid]:
        return mid
    if key < list[mid]:
        return bs helper(list, key, lower, mid)
    else:
        return bs helper(list, key, mid, upper)
```

## Instrumented Output

>>> bsearch(list(range(1,500,2)), 21) Searching list of length 250 mid: 124 lower: -1 upper 250 mid: 61 lower: -1 upper 124 mid: 30 lower: -1 upper 61 mid: 14 lower: -1 upper 30 mid: 6 lower: -1 upper 14 mid: 10 lower: 6 upper 14 10 Number of comparisons: 6 >>> bsearch(list(range(1,500,2)), 256) Searching list of length 250 mid: 124 lower: -1 upper 250 mid: 187 lower: 124 upper 250 mid: 155 lower: 124 upper 187 mid: 139 lower: 124 upper 155 mid: 131 lower: 124 upper 139 mid: 127 lower: 124 upper 131 mid: 129 lower: 127 upper 131 mid: 128 lower: 127 upper 129 Not found Number of comparisons: 8

>>> bsearch(list(range(1,500000,2)), 256)
Searching list of length 250000
mid: 124999 lower: -1 upper 250000
...
mid: 127 lower: 126 upper 128
Not found
Number of comparisons: 18
>>> bsearch(list(range(1,500000,2)), 256)

Searching list of length 2500000,2)), 238) mid: 1249999 lower: -1 upper 2500000 ... mid: 128 lower: 127 upper 129 Not found

Number of comparisons: 21

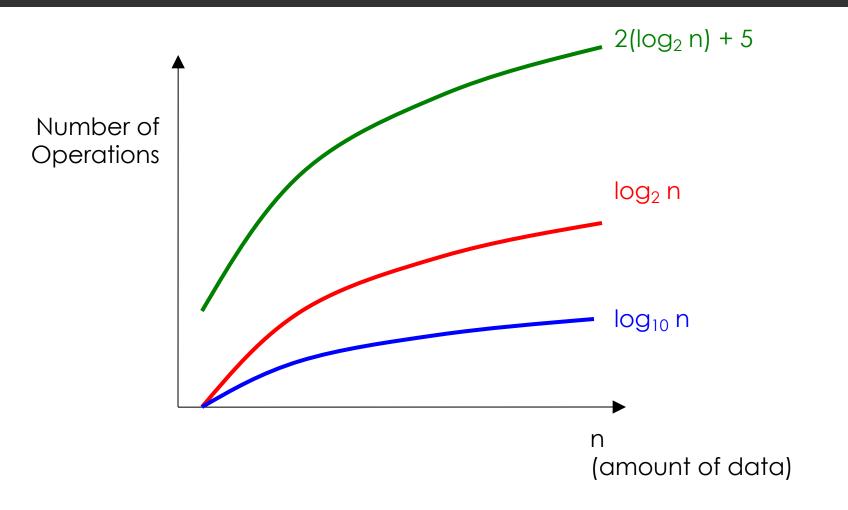
#### Analyzing Binary Search

- Suppose we search for a key larger than anything in the list.
- Example sequences of range sizes: 8, 4, 2, 1
   (4 key comparisons) 16, 8, 4, 2, 1
   (5 key comparisons) 17, 8, 4, 2, 1
   (5 key comparisons) 18, 9, 4, 2, 1
   (5 key comparisons) ...
   31, 15, 7, 3, 1
   (still 5 key comparisons) 32, 16, 8, 4, 2, 1
   (at last, 6 key comparisons)
   (at last, 6 key comparisons)
- **D** Notice:  $8 = 2^3$ ,  $16 = 2^4$ ,  $32 = 2^5$
- **Therefore:**  $\log 8 = 3$ ,  $\log 16 = 4$ ,  $\log 32 = 5$

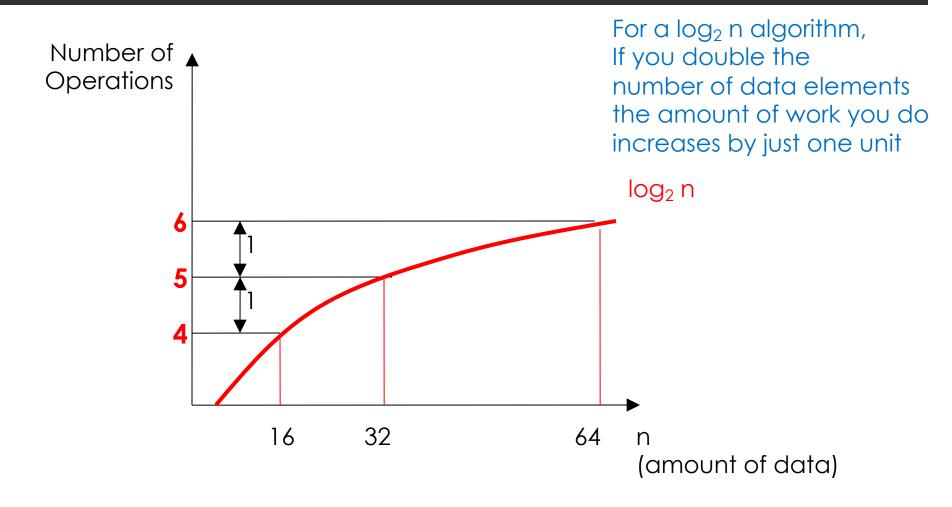


- Some notation: LxJ means round x down, so L2.5J=2
- Binary search of *n* elements will do at most  $1 + \lfloor \log_2 n \rfloor$  comparisons  $1 + \lfloor \log_2 8 \rfloor = 1 + \lfloor \log_2 9 \rfloor = \dots 1 + \lfloor \log_2 15 \rfloor = 4$  $1 + \lfloor \log_2 16 \rfloor = 1 + \lfloor \log_2 17 \rfloor = \dots 1 + \lfloor \log_2 31 \rfloor = 5$
- Why? We can split search region in half  $1 + \log_2 n$  times before it becomes empty.
- "Big O" notation: we ignore the "1 +" and the floor function. We say Binary Search has complexity O(log n).

## O(log n) ("logarithmic time")



## O(log n)



## Binary Search (Worst Case)

| Number of elements | Number of Comparisons |
|--------------------|-----------------------|
| 15                 | 4                     |
| 31                 | 5                     |
| 63                 | 6                     |
| 127                | 7                     |
| 255                | 8                     |
| 511                | 9                     |
| 1023               | 10                    |
| 1 million          | 20                    |

#### Binary Search Pays Off

• Finding an element in an list with a million elements requires only 20 comparisons!

• BUT....

- The list must be sorted.
- What if we sort the list first using insertion sort?
  - Insertion sort O(n<sup>2</sup>) (worst case)
  - Binary search O(log n) (worst case)
  - Total time:  $O(n^2) + O(\log n) = O(n^2)$

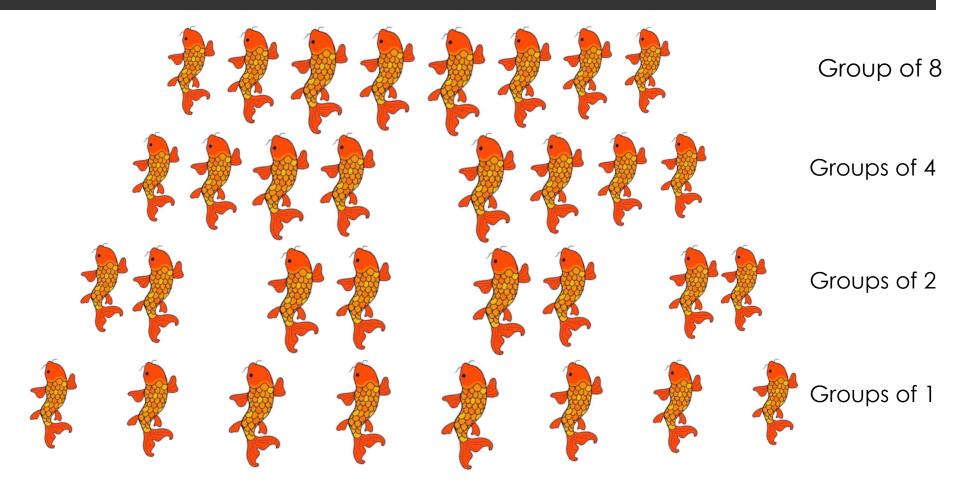
Luckily there are faster ways to sort in the worst case...

## Merge Sort

#### Divide and Conquer

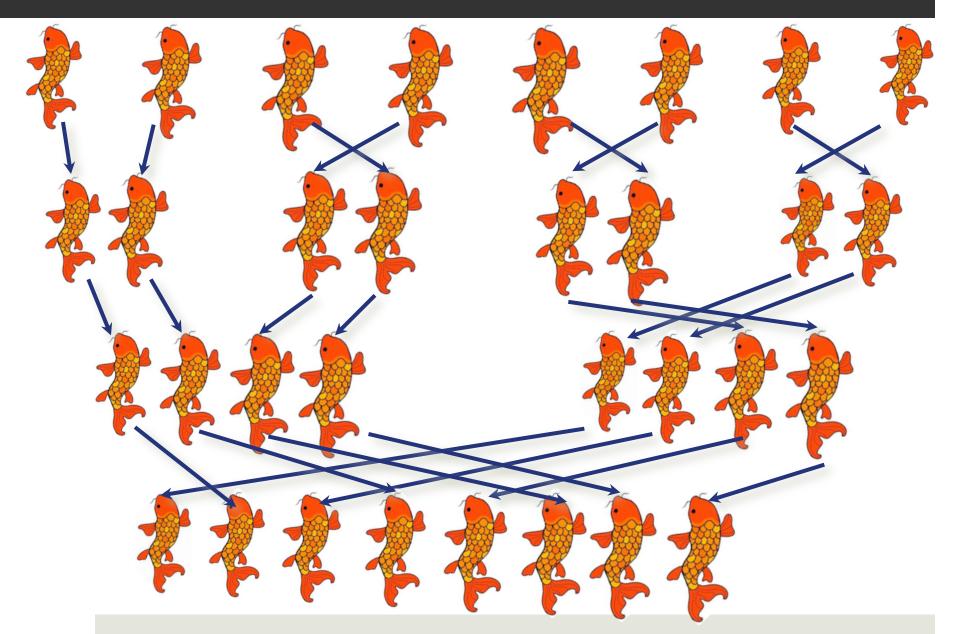
- In computation:
  - Divide the problem into "simpler" versions of itself.
  - Conquer each problem using the same process (usually <u>recursively</u>).
  - Combine the results of the "simpler" versions to form your final solution.
- Examples: Towers of Hanoi, fractals, Binary Search, Merge Sort, Quicksort, and many, many more

#### Divide

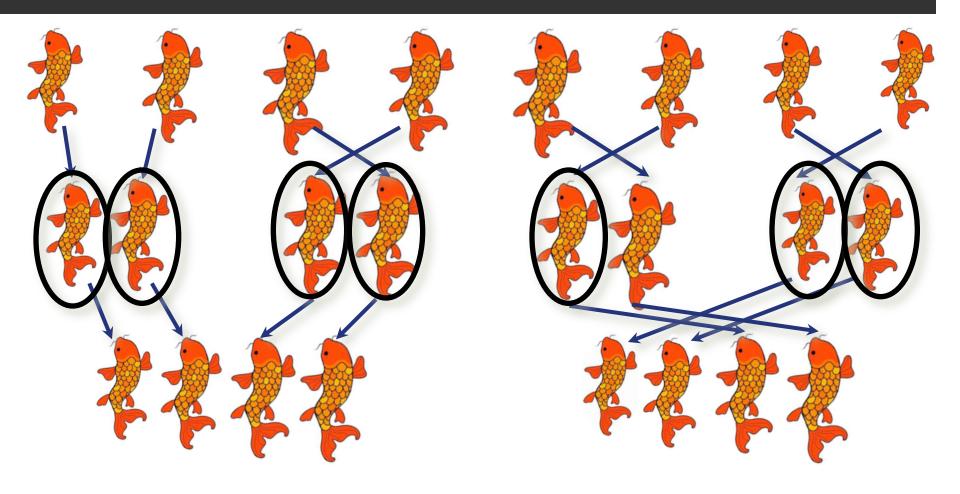


Now each "group" is (trivially) sorted!

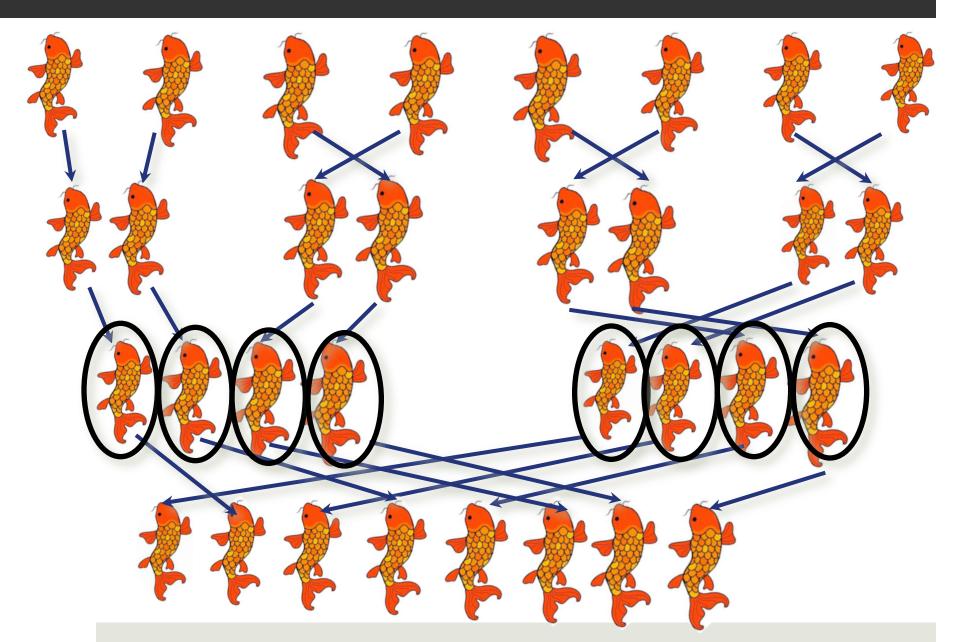
## Conquer (merge sorted lists)



## Conquer (merge sorted lists)



## Conquer (merge sorted lists)



## Merge Sort

- Input: List a of n elements.
- Output: Returns **a new list** containing the same elements in sorted order.
- Algorithm:
   1. If less than two elements, return a copy of the list (base case!)
  - 2. Sort the first half using merge sort. (recursive!)
  - 3. Sort the second half using merge sort. (recursive!)
  - 4. Merge the two sorted halves to obtain the

final sorted array.

#### Merge Sort in Python

```
def msort(list):
    if len(list) == 0 or len(list) == 1: # base case
        return list[:len(list)] # copy the input
```

#### # recursive case

```
halfway = len(list) // 2
list1 = list[0:halfway]
list2 = list[halfway:len(list)]
newlist1 = msort(list1) # recursively sort left half
newlist2 = msort(list2) # recursively sort right half
newlist = merge(newlist1, newlist2)
return newlist
```

## Merge Outline

- Input: Two lists a and b, already sorted
- Output: A new list containing the elements of a and b merged together in sorted order.
- Algorithm:
  - 1. Create an empty list c, set index\_a and index\_b to 0
  - 2. While index\_a < length of a and index\_b < length of b
    - a. Add the smaller of a [index\_a] and b [index\_b] to the end of c, and increment the index of the list with the smaller element
  - 3. If any elements are left over in a or b, add them to the end of c, in order
  - 4. Return c

## Filling in the details of Merge

"Add the smaller of a[index\_a] and b[index\_b] to the end of c, and increment the index of the list with the smaller element":

a.If  $a[index_a] \le b[index_b]$ , then do the following:

- i. append a[index\_a] to the end of c
- ii. add 1 to index\_a

b.Otherwise, do the following:

- i. append b[index\_b] to the end of c
- ii. add 1 to index\_b

## Filling in the details of Merge

"If any elements are left over in a or b, add them to the end of c, in order":

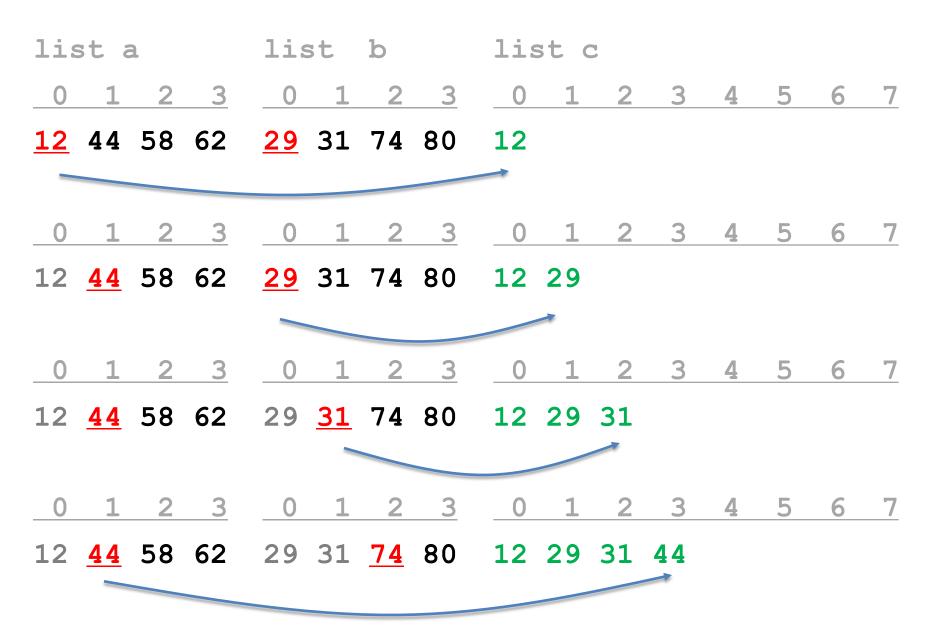
a.lf index\_a < the length of list a, then:

- i. append all remaining elements of list a to the end of list c, in order
- b.Otherwise:
  - i. append all remaining elements of list *b* (if any) to the end of list *c*, in order

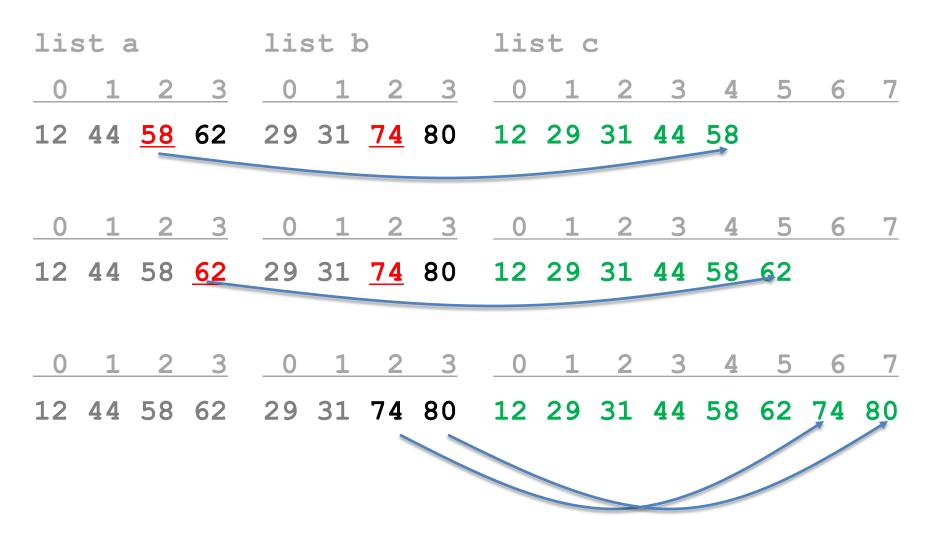
#### Merge in Python

```
def merge(a, b):
    index a = 0
    index b = 0
    c = []
    while index a < len(a) and index b < len(b):
        if a[index a] <= b[index b]:</pre>
            c.append(a[index a])
            index a = index_a + 1
        else:
            c.append(b[index b])
            index b = index b + 1
    # when we exit the loop
    # we are at the end of at least one of the lists
    c.extend(a[index_a:]) c.extend(b[index_b:])
    return c
```

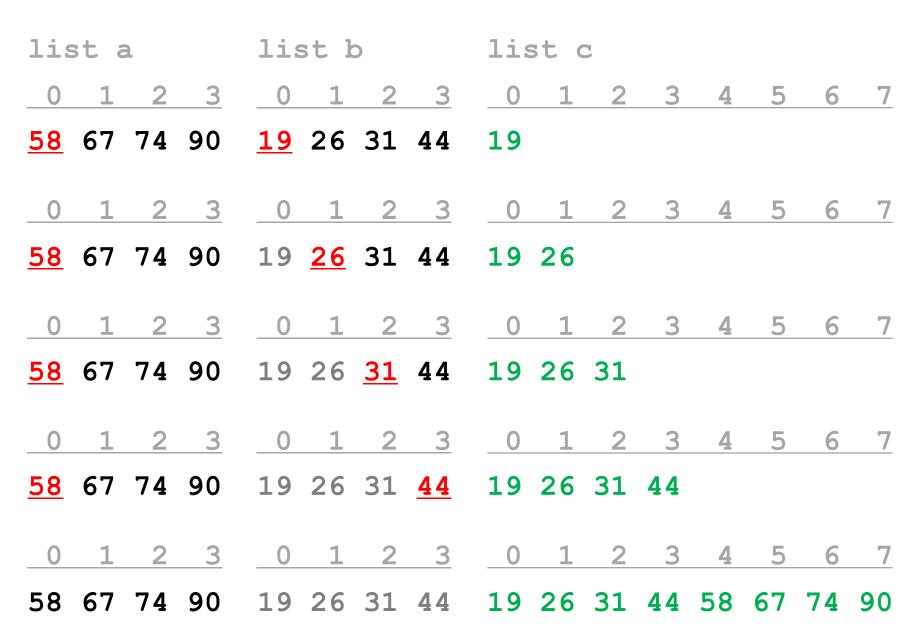
## Example 1: Merge



#### Example 1: Merge (cont'd)



#### Example 2: Merge



## Analyzing Efficiency

- Constant time operations: comparing values and appending elements to the output.
- If you merge two lists of size i/2 into one new list of size i, what is the maximum number of appends that you must do? maximum number of comparisons?
  - Example: say we are merging two pairs of 2-element lists:



8 appends for 8 elements

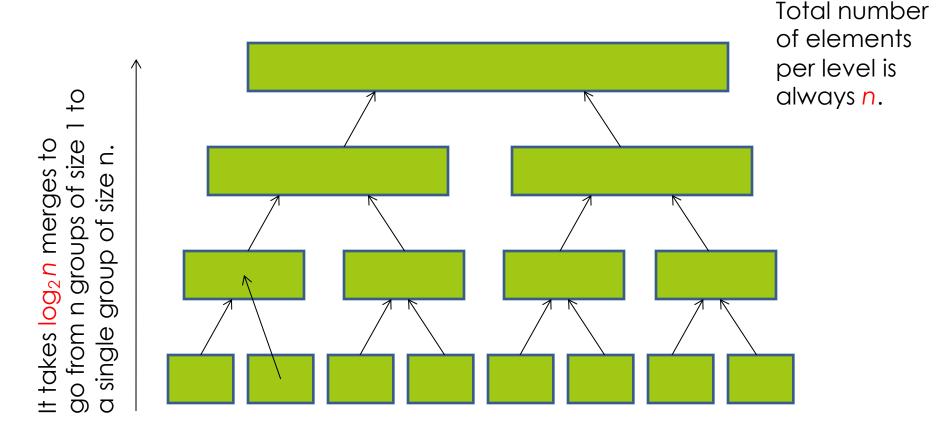
- If you have a group of lists to be merged pairwise, and the total number of elements in the whole group is n, the total number of appends will be n.
- Worse case number comparisons? n/2 or less, but still O(n)

#### How many merges?

- We saw that each group of merges of *n* elements takes O(*n*) operations.
- How many times do we have to merge n elements to go from n groups of size 1 to 1 group of size n?
- Example: Merge sort on 32 elements.
  - Break down to groups of size 1 (base case).
  - Merge 32 lists of size 1 into 16 lists of size 2.
  - Merge 16 lists of size 2 into 8 lists of size 4.
  - Merge 8 lists of size 4 into 4 lists of size 8.
  - Merge 4 lists of size 8 into 2 lists of size 16.
  - Merge 2 lists of size 16 into 1 list of size 32.
- In general:  $\log_2 n$  merges of *n* elements.

5 = log<sub>2</sub>32

## Putting it all together



It takes *n* appends to merge all pairs to the next higher level. **Multiply the number of levels by the number of appends per level.** 

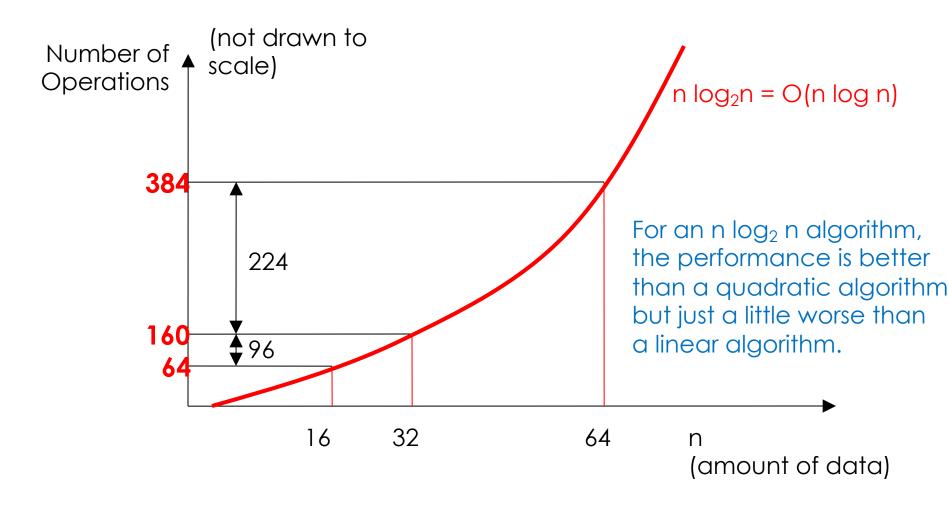
# Big O

In the worst case, merge sort requires
 O(n log<sub>2</sub>n) time to sort an array with n elements.

#### Number of operations

 $n \log_2 n$ (n + n/2)  $\log_2 n$  $4n \log_{10} n$  $n \log_2 n + 2n$  Order of Complexity O(n log n) O(n log n) O(n log n) O(n log n) O(n log n)

## O(N log N)



#### Merge vs. Insertion Sort

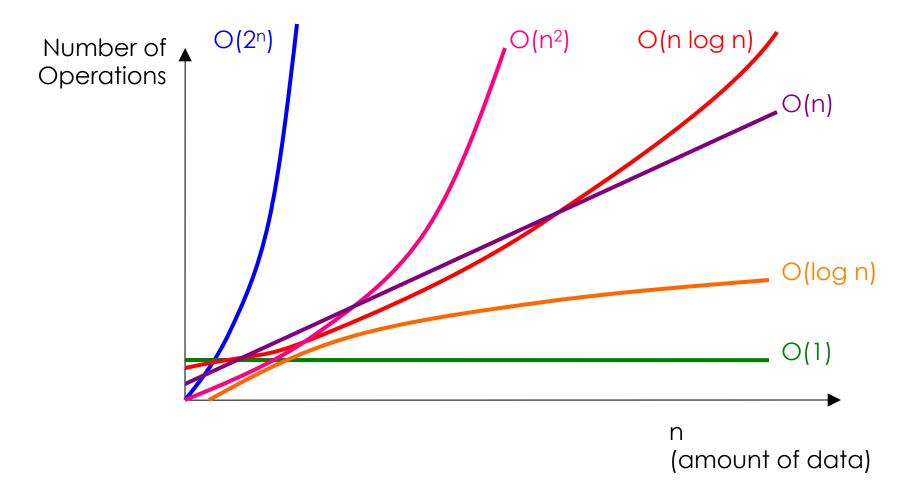
| n                      | isort (n(n+1)/2)   | msort (n log <sub>2</sub> n) | Ratio   |
|------------------------|--------------------|------------------------------|---------|
| 8                      | 36                 | 24                           | 0.67    |
| 16                     | 136                | 64                           | 0.47    |
| 32                     | 528                | 160                          | 0.3     |
| <b>2</b> <sup>10</sup> | 524, 800           | 10,240                       | 0.02    |
| 2 <sup>20</sup>        | 549, 756, 338, 176 | 20,971,520                   | 0.00004 |

### Sorting and Searching

- Recall that if we wanted to use binary search, the list must be sorted.
- What if we sort the list first using merge sort?
  - Merge sort
  - Binary search
  - Total time: (worst case)

- O(n log n) (worst case)
- O(log n) (worst case)
- $O(n \log n) + O(\log n) = O(n \log n)$

## Comparing Big O Functions



#### Merge Sort: Iteratively (optional)

- If you are interested, Explorations of Computing discusses an iterative version of merge sort which you can read on your own.
- This version uses an alternate version of the merge function that is not shown in the textbook but is given in PythonLabs.

## Built-in Sort in Python

- Why we study sorting algorithms
  - Practice in algorithmic thinking
  - Practice in complexity analysis
- You will rarely need to implement your own sort function
  - Python method list.sort takes a lists and modifies it while it sorts
  - Python function sorted takes a list and returns a new sorted list
  - Python uses *timsort* by Tim Peters (fancy!)

#### Quicksort

- Conceptually similar to merge sort
- Uses the technique of divide-and-conquer
  - 1. Pick a pivot
  - 2. Divide the array into two subarrays, those that are smaller and those that are greater
  - 3. Put the pivot in the middle, between the two sorted arrays
- Worst case  $O(n^2)$
- "Expected" O(n log n)