
The Limits of Computing



Predicting Running Time of a Program

Suppose you are working on a very important problem and 
wrote a program to make lots of calculations. You expect 
that it may take a while to produce a result.

¤ How long will you wait? 

¤ Should you wait or stop?

¤ You waited for a few days and decided to stop, but 
what if it will end/halt in the next 5 minutes?



Classifying Problems

¤ Can you say if your program will terminate and return a 
result?

¤ Can you say anything about the hardness of the problem 
that you are trying to solve with your program?



Complexity and Computability 
Theories

¤Computer scientists are interested in measuring the 
�hardness� of computational problems in order to 
understand how much time, or some other resource 
such as memory, is needed to solve it.

¤What problems can or cannot be solved by 
mechanical computation? Can we categorize 
problems as �easy�, �hard�, or �impossible�?
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Can we categorize problems?

?

Easy
(tractable)

ImpossibleHard
(intractable)

Princ ip les o f C om p uting , C a rneg ie  M e llon  
Un ive rsity



Easy, Hard, Impossible
¤An �easy (i.e. tractable)� problem is one for which 

there exists a mechanical procedure (i.e. program 
or algorithm) that can solve it in a reasonable 
amount of time.

¤A �hard (i.e. intractable)� problem is one that is 
solveable by a mechanical procedure but every 
algorithm we can find is so slow that it is practically 
useless.

¤An �impossible (i.e. uncomputable)� problem is one 
such that it is provably impossible to solve no matter 
how  much time we are willing to use.



Easy (Tractable)

¤An �easy (i.e. tractable)� problem is one for 
which there exists a mechanical procedure 
(i.e. program or algorithm) that can solve it 
in a reasonable amount of time.

How do we 
measure this?



Hard (Intractable)

¤A �hard (i.e. intractable)� problem is one 
that is solveable by a mechanical 
procedure but every algorithm we can find 
is so slow that it is practically useless.

What does this 
mean?



Impossible

¤An �impossible� problem is one such that it is 
provably impossible to solve no matter how  
much time we are willing to use.

How can we prove 
something like that?



Why Study Impossibility?

¤Practical:  If we know that a problem is 
unsolvable we know that we need to 
simplify or modify the problem. 

¤Cultural: Gain perspective on 
computation.
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Decision Problems
¤ A specific set of computations are classified as 

decision problems.

¤ An algorithm solves a decision problem if its 
output is simply YES or NO, depending on whether 
a certain property holds for its input. Such an 
algorithm is called a decision procedure.

¤ Example:
Given a set of n shapes,
can these shapes be
arranged into a rectangle? 
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The Monkey Puzzle

¤ Given:
¤ A set of n square cards whose sides are imprinted 

with the upper and lower halves of colored 
monkeys.

¤ n is a perfect square number, such that n = m2.  
¤ Cards cannot be rotated.

¤ Problem:
¤ Does there exist an arrangement of the n cards in 

an m x m grid such that each adjacent pair of 
cards display the upper and lower half of a 
monkey of the same color.

12

decision problem



Example
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• Can we always 
compute a YES/NO 
answer to the 
problem?

• If we can, is the 
problem tractable 
(easy to solve) in     
general?



Algorithm
Simple brute-force (exhaustive search) algorithm:

¤ Pick one card for each cell of m x m grid.

¤ Verify if each pair of touching edges make a 
full monkey of the same color.

¤ If not, try another arrangement until a solution 
is found or all possible arrangements are 
checked.

¤ Answer "YES" if a solution is found. Otherwise, 
answer "NO" if all arrangements are analyzed 
and no solution is found. 

14



Analysis
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The total number of unique arrangements
for n = 9 cards is:

9 * 8 * 7 * .... *1  =  9!  (9 factorial)
= 362880

1 2 3

4 5 6

7 8 9

Suppose there are n = 9 cards (m = 3)

9 card choices  for cell 1

8 card choices for cell 2
7 card choices for cell 3 goes on like this



Analysis (cont�d)

For n cards, the number of arrangements to examine is n!

Assume that we can analyze one arrangement in a microsecond (µs), that is, 
analyze 1 million arrangements in one second :

n Time to analyze all arrangements

9 362,880 µs

16 20,922,789,888,000 µs (app. 242 days)

25 15,511,210,043,330,985,984,000,000 µs 

(app. 500 billion years)
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Age of the universe is about 14 billion years



Classifying Problems

¤ The field of computational complexity categorizes 
decidable decision problems by how hard they are to 
solve. �Hard� in this sense, is described in terms of the 
computational resources needed by the most efficient 
algorithm that is known to solve the problem. 
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Reviewing the Big O Notation (1)

¤We use the big O notation to indicate the 
relationship between the size of the input 
and the corresponding amount of work.

¤For the Monkey Puzzle
¤ Input size: Number of tiles (n)
¤Amount of work: Number of operations to check 

if any arrangement solves the problem (n!)

¤For very large n (size of input data), we 
express the number of operations as the 
(time) order of complexity.
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Growth of Some Functions

19

Big O notation:  
gives an asymptotic upper bound  
ignores constants  

Any function f(n) such that f(n) ≤ c n2 for large n has O(n2 ) complexity



Quiz on Big O
¤What is the order of complexity in big O for the 

following descriptions
¤ The amount of computation does not depend on the size 

of input data

¤ If we double the input size the work is doubles, if we triple it 
the work is 3 times as much

¤ If we  double the input size the work is 4 times as much, if 
we triple it the work is 9 times as much

¤ If we double the input size, the work has 1 additional 
operation 
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O(1)

O(n)

O(n2)

O(log n)



Classifications�

¤ Algorithms that are O(nk) for some 
fixed k are polynomial-time* algorithms.
¤ O(1), O(log n), O(n), O(n log n), O(n2)
¤ reasonable, tractable

¤ All other algorithms are 
super-polynomial-time algorithms.
¤ O(2n), O(nn), O(n!)

¤ unreasonable, intractable
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*A polynomial is an expression consisting of variables and coefficients that involves only 
the operations of addition, subtraction, multiplication, and non-negative integer exponents.



A Famous Hard Problem



Traveling Salesperson

¤ Given: a weighted graph of nodes representing cities and 
edges representing flight paths (weights represent cost)

¤ Is there a route that takes the salesperson through every city 
and back to the starting city with cost no more than k?
¤ The salesperson can visit a city only once (except for the start 

and end of the trip).
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An Instance of the Problem
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Is there a route that takes the salesperson through 
every city and back to the starting city with cost 
no more than 52?



Traveling Salesperson

25

A

B

D

C

G
E

F

12

6
4

5
9

8
10

7 11

3

7
7

Is there a route with cost at most 52? YES (Route above costs 50.)

If I am given a potential solution I can verify that to say yes or no, but otherwise 
I have to search for it. By a brute-force approach, I enumerate all possible routes 
visiting every city once and check for the cost.



Analysis

¤ If there are n cities, what is the maximum number of routes 
that we might need to compute?

¤ Worst-case: There is a flight available between every pair of 
cities.

¤ Compute cost of every possible route.
¤ Pick a starting city
¤ Pick the next city (n-1 choices remaining)
¤ Pick the next city (n-2 choices remaining)
¤ ...

¤ Maximum number of routes: __________
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Number of Paths to Consider
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Number of all possible routes = Number of all possible permutations of n nodes = n!

Number of all possible unique route = 

Observe ABCGFDE is equivalent to BCGFDEA (starting from a point and 
returning to  it going through the same nodes)

n! / n = n – 1!

Observe also that ABCGFDE has the same cost as EDFGCBA

Number of all possible paths to consider = (n – 1)! / 2 Still O(n!) 



Analysis

¤ If there are n cities, what is the maximum number of routes 
that we might need to compute?

¤ Worst-case: There is a flight available between every pair of 
cities.

¤ Compute cost of every possible route.
¤ Pick a starting city
¤ Pick the next city (n-1 choices remaining)
¤ Pick the next city (n-2 choices remaining)
¤ ...

¤ Worst-case complexity: __________
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O(n!)
Note: n! > 2 n
for every n > 3.

Exponential complexity (super-polynomial time)



Polynomial vs. Exponential Growth

Running 
Time

n

n2

n3

n5

n! 

Assumption: Computer can perform one billion operations for second

0.00000004  sec.

0.00000160 sec.

0.00006400  sec.

0.10240000  sec.

Size n = 10

0.00000001

Size n = 20 Size n = 30 Size n = 40

0.00000002 0.00000003

0.00000010 0.00000040 0.00000090

0.00000100 0.00000800 0.00002700

0.00010000

0.0036

0.00320000 0.02430000

77.1 years 8400 
trillion
years

2.5 * 1031 

Years�

Source:  http://www.cs.hmc.edu/csforall



Polynomial vs. Exponential Growth

n! 0.0036 77.1 years 8400 
trillion
years

2.5 * 1031 

Years�

Source:  http://www.cs.hmc.edu/csforall



The Big Picture

¤Intractable problems are solvable if the 
amount of data (n) that we are processing is 
small.

¤But if n is not small, then the amount of 
computation grows exponentially and the 
solutions quickly become out of our reach.

¤Computers can solve these problems if n is 
not small, but it will take far too long for the 
result to be generated.
¤We would be long dead 

before the result is computed.
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Thursday

¤Exam tomorrow

¤Calculating Grades over weekend due 
by Tuesday

¤Extra Credit: Honest attempt at Post-Test 
in OLI



Summary

¤For many interesting problems naïve 
algorithms rely on exhaustive search 
¤Check all possible answers
¤ Exponential running time (intractable)

¤We need smarter algorithms for them to 
be practical (avoid exhaustive search)

33



Dealing with Intractability

¤Restrict the problem, exploiting 
properties of specific instances of the 
problem.

¤Trade correctness with tractability. 
¤ Go for approximate solutions.
¤ Get correct result with some 

probability.
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Satisfiability

¤ Given a Boolean formula with n variables 
using the operators AND, OR and NOT:
¤ Is there an assignment of Boolean values for the 

variables so that the formula is true (satisfied)? 
Example: (X AND Y) OR (NOT Z AND (X OR Y))

¤ Truth assignment: X = True, Y = True, Z = False.

¤ How many assignments do we need to check 
for n variables? 
¤ Each symbol has 2 possibilities  ___ assignments

35
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Verifiability

¤No known tractable algorithm to 
decide, however it is easy to verify a 
solution.
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Decision Problems
¤We have seen 3 examples of decision 

problems with simple brute-force algorithms 
that are intractable.

¤ The Monkey Puzzle O(n!)

¤ Traveling Salesperson O(n!)
¤ Satisfiability O(2n)

37

We can avoid brute-force in many problems and obtain polynomial 
time solutions, but not always.  For example, satisfiability of Boolean 
expressions of certain forms have polynomial time solutions. 



Special Cases of a Problem May 
be Tractable 

¤ General Boolean satisfiability we just talked about (let us 
call it SAT) is not tractable but 2-satisfiability is. 
¤ 2-satisfiability (2-SAT): determining whether a conjunction of 

disjunctions (and of ors), where each disjunction (or 
operation) has two arguments that may either be variables 
or the negations of variables, is satisfiable

Example: (X OR Y) AND (Z OR (NOT Y))

Formulas are of a special form



Are These Problems Tractable?
¤ For any one of the intractable problems we saw, is 

there a single tractable (polynomial) algorithm to 
solve any instance of the problem?

Haven’t been found so far.

¤ Possible reasons:
¤ These problems have undiscovered polynomial-time 

solutions.
¤ These problems are intrinsically difficult – we cannot hope 

to find polynomial solutions.

¤ Important  discovery: Complexities of some  of 
these problems are linked. If we can solve one, we 
can solve the other problems in that class. 
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Modeling Computing
¤ A rigorous discussion on these questions requires a model that 

can model every possible mechanical procedure. One such 
model is that of a Turing Machine. 

¤ A Turing machine can do what any other computer can do. If 
it cannot do something then real machines would not be able 
to either.

¤ If we can reason about the number of steps it would take a 
Turing Machine to solve a problem, we could make general 
claims about the number of steps it would take any computer 
to solve a problem.



Turing Machines

41

Rules determine how configurations evolve:
given an input an input  symbol and a state, 
they yield an output symbol, direction for the 
tape head, and the new machine.

Current state, head location,
and tape contents determine 
a configuration of the machine

Remark: You don’t need to memorize these. 
The next slide shows what you need to remember.



Turing Machines (cont�d)

¤ A Turing machine M computes a function f if:
¤ M halts on all inputs.

¤ On input x, it writes f(x) on the tape and halts.
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P and NP

The class P consists of all those decision problems 
that can be solved on a deterministic sequential 
machine in an amount of time that is polynomial in 
the size of the input

The class NP consists of all those decision problems 
whose positive solutions can be verified in 
polynomial time given the right information, or 
equivalently, whose solution can be found in 
polynomial time on a non-deterministic machine.
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Decidability vs. Verifiability

P = the class of problems that can be 
decided (solved) quickly

NP = the class of problems for which 
solutions can be verified quickly
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Example

¤ If a problem is in P, it must also be in NP.

¤ If a problem is in NP, is it also in P?

Verifiable in
Polynomial
Time

Solvable in
Polynomial
Time

Given an integer list, is 10 in the list?

Satisfiability problem

Traveling Salesperson

YES YES 

YES ?

YES ?

PNP

Princ ip les o f C om p uting , C a rneg ie  M e llon  
Un ive rsity



Two Possibilities

If P ≠ NP, then 
some decision problems can’t be
solved in polynomial time.

The Clay Mathematics Institute is offering a $1M prize for
the first person to prove P = NP or P ≠ NP. 

(http://www.claymath.org/millennium/P_vs_NP/)

If P = NP, then 
all polynomially verifiable problems 
can be solved in polynomial time.

Princ ip les o f C om p uting , C a rneg ie  M e llon  
Un ive rsity

http://www.claymath.org/millennium/P_vs_NP/


Watch out, Homer!

In the 1995 Halloween 
episode of The Simpsons, 
Homer Simpson finds a portal 
to the mysterious Third 
Dimension behind a 
bookcase, and desperate to 
escape his in-laws, he 
plunges through. He finds 
himself wandering across a 
dark surface etched with 
green gridlines and strewn 
with geometric shapes, 
above which hover strange 
equations. One of these is 
the deceptively simple 
assertion that P = NP.

Princ ip les o f C om p uting , C a rneg ie  M e llon  
Un ive rsity



NP-Complete Problems

¤ An important advance in the P vs. NP question was the 
discovery of a class of problems in NP whose complexity 
is related to the whole class [Cook and Levin, �70]: if one 
of these problems is in P then NP = P.
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Reducability

¤A reduction is a way of converting one problem to 
another problem in such a way that a solution to 
the second problem can be used to solving the first 
problem.
¤ Real life examples: You can reduce the problem of finding 

your way around a city to the problem of obtaining a map 
of that city, reduce the problem of traveling to NY from Pgh 
to buying a ticket 

¤ Math example: Finding the area of a square reduces to the 
problem of finding its length 
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Reductions for solving decision 
problems

¤ Consider 2 problems A and B: Suppose we are trying to solve 
A and have a decision algorithm for B. 

¤ Reduction algorithm should be polynomial time and the 
reduction should be such that A and B give the same result in 
all cases

50

no

reduction
algorithm

decision algorithm for B

yes

no

yes
instance of
problem A instance of

problem B



NP-completeness

¤A problem A is NP-complete if 
¤ A is in NP
¤ Every other problem in NP is polynomial time reducible 

to  A  (there is an efficient way to transform each 
problem in NP to A).
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Some Remarks on NP-Completeness

¤ The class NP-Complete consists of all those problems in 
NP that are least likely to be in P.
¤ Monkey puzzle, Traveling salesperson, and Satisfiability

are all in NP-Complete.

¤ Every problem in NP-Complete can be transformed to 
another problem in NP-Complete.
¤ If there were some way to solve one of these problems 

in polynomial time, we should be able to solve all of 
these problems in polynomial time.
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Informally, NP-complete problems are the hardest 
problems in NP.

N P-
com p lete



Why is NP-completeness of 
Interest?
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Theorem: If any NP-complete problem is in P then all are and P = NP.

Most believe P ≠ NP.  So, in practice NP-completeness of a problem 
prevents wasting time from trying to find a polynomial time solution for it.

NP-
complete



NP-completeness in Practice

¤ Since the discovery that SAT is NP-complete, thousands 
of problems have been proved NP-complete.
¤ NP-completeness is mentioned as a keyword in 6,000 

scientific papers per year. "Captures vast domains of 
computational, scientific, mathematical endeavors, and 
seems to roughly delimit what mathematicians and scientists 
had been aspiring to compute feasibly." [Papadimitriou]

¤ If you have a problem that is in NP, and you don’t know a 
polynomial time algorithm for it, it may be reasonable to 
assume that it is NP-complete until proved otherwise.
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Examples of NP-complete Problems

¤ Bin Packing. You have n items and m bins. Item i weighs w[i] pounds. 
Each bin can hold at most W pounds. Can you pack all n items into the 
m bins without violating the given weight limit?

¤ Machine Scheduling. Your goal is to process n jobs on m machines. For 
simplicity, assume each machine can process any one job in 1 time 
unit. Also, there can be precedence constraints: perhaps job j must 
finish before job k can start. Can you schedule all of the jobs to finish in L 
time units?

¤ Crossword puzzle. Given an integer N, and a list of valid words, is it 
possible to assign letters to the cells of an N-by-N grid so that all 
horizontal and vertical words are valid? 

Source: http://algs4.cs.princeton.edu/66intractability/



Decision Problems Vs. 
Optimization Problems 

¤We can usually cast a given optimization 
problem as a related decision problem by 
imposing a bound on the value to be optimized
¤ Optimization version of Traveling Salesperson: What is 

the shortest route that goes through every city?

¤ We can show an optimization problem to be hard by 
using its relationship to the decision problem, because 
a decision problem is “no harder” than the 
optimization problem.



Coping with Intractability

¤ Designing algorithms that run quickly on some instances, 
but take a prohibitive amount of time on others. For 
example, SAT solvers.

¤ Sacrifice the guarantee on an optimal solution and 
design approximation algorithms.
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What’s Next?

¤ Are all computational problems solvable by computer?
¤ NO! 

There are some that we can’t solve no matter how much 
time we give the computer, no matter how powerful the 
computer is.
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Computability

¤ A problem is computable (i.e. decidable, solveable) if 
there is a mechanical procedure that
1. Always terminates.
2. Always gives the correct answer.
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Program Termination
¤ Can we determine if a program will 

terminate given a valid input?

¤ Example:

def mystery1(x):

while (x != 1):

x = x - 2

¤ Does this algorithm terminate when x = 15?
¤ Does this algorithm terminate when x = 110?
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Another Example
def mystery2(x):

while (x != 1):

if x % 2 == 0: 

x = x // 2

else:

x = (3 * x) + 1
¤ Does this algorithm terminate when x = 15?
¤ Does this algorithm terminate when x = 110?
¤ Does this algorithm terminate for any positive x?
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If you test this program, it  seems to 
terminate even though it sometimes 
reaches unpredictable values for x. In 
the absence of a proof of why
it works this way, we cannot be sure  

whether there is any x for which it
won’t terminate.



Halting Problem
• Alan Turing proved that noncomputable functions exist by 

finding an noncomputable function, known as the Halting 
Problem.

• Halting Problem: Does a universal program H exist that can 
take any program P and any input I for program P and 
determine if P terminates/halts when run with input I?
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Halting Problem Cast in Python

• Input: A string representing a 
Python program and an input to 
that program

• Output:
– True, if evaluating the input 

program would ever finish 
– False, otherwise
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Example
¤ Suppose  we had a function halts that solves the Halting 

Problem

¤ Given the functions below

halts(`add(10,15)’)      halts(`loop()’)

returns True                               returns False
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def add(x, y):
return x + y

def loop(): 
while True:

pass

halts on
all inputs

loops 
indefinitely



Implement a Halt Checker?�

¤How could we implement such a halts 
function? What is wrong with running 
the program given in the input string?  

¤We will show that halts is 
noncomputable -- halts function 
cannot exist.
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Proving Uncomputability
¤To prove the Python function halts does 

not exist, we will show that if it exists it 
leads to a contradiction.

def paradox():

if halts(`paradox()’): 

while True: 

pass

66

Infinite 
loop



Proving Uncomputability
def paradox():

if halts(`paradox()’): 

while True: 

pass

67

If halts(`paradox()’) returns True, 
paradox() never halts

If halts(`paradox()’) returns False, 
paradox() halts.

Contradiction!



Turing-Complete Languagues
¤We proved that a Python function halts cannot 

exist. How can we turn this into a general statement 
about any halts function? 
¤ We can use a Universal Turing Machine in reasoning about 

it rather than a Python interpreter.

¤ In fact, Python is a Turing-complete language: It 
can simulate a Universal Turing Machine. If halts 
cannot be computed by Python it cannot be 
computed by a Universal Turing Machine.
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Telling the Story in a 
Python-independent Way



Proof by Contradiction (first step)
Assume a program Hexists that requires a program Pand an input I.

– H determines if program P will halt when 
P is executed using input I.

We will show that H cannot exist by showing that if it did exist we would get a 
logical contradiction.
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H outputs YES
if P halts when run
with input I

H outputs NO
if P does not halt
when run with 
input I

H
Halt checking

Program

YES

NO

Program P

Program’s 
input I



Proof by contradiction (first step)
• Construct a new Program D that takes as 

input  any program P

• D asks the halt checker H what happens 
if P runs with its own copy as input? 

• If H answers that P will halt if it runs with 
itself as input, then D goes into an infinite 
loop (and does not halt).

• If H answers that P will not halt if it runs 
with itself as input, then D halts.
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New Program D
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H
Halt Checking

Program

YES

NO

Program P

Program P 
as input to 

P 

Program 
P

as input
to D YES

D asks H what happens if we run program P on P.
Loops if it says YES.
Stops and returns YES if it says no. 

Program D



D testing itself
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H
Halt checking

Program

YES

NO

Program D

Program D 
as input to 

D 

Program 
D

as input
to D YES

If H answers yes (D halts), 
then D goes into an infinite loop and does not halt.

Program D



Proof by contradiction (last step)
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H
Halt Checking

Program

YES

NO

Program 
D

Program D 
as input to 

D 

Program 
D

as input
to D OK

Program D

What happens if D tests itself?    
If D does not halt on D, then D halts on D.
If D halts on D, then D does not halt on D.

CONTRADICTION!



Contradiction

¤ No matter what H answers about D, D does the opposite, so 
H can never answer the halting problem for the specific 
program D. 

¤ Therefore, a universal halting checker H cannot exist.

¤ We can never write a computer program that determines if 
ANY program halts with ANY input.

¤ It doesn’t matter how powerful the computer is.

¤ It doesn’t matter how much time we devote to the 
computation.
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Why Is Halting Problem Special?
• One of the first problems to be shown to be noncomputable. 

(i.e. undecidable, unsolveable)

• A problem can be shown to be noncomputable by reducing 
the halting problem into that problem.

• Examples of other nonsolveable problems: Software 
verification, Hilbert’s tenth problem, tiling problem
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Virus Detection (due to Dave 
Evans)

If we could write a function that can always 
determine whether an expressions contains a virus 
that will infect other files, then we could solve the 
halting problem (which we know is impossible to solve)

def halts(p):

return isVirus(p+`infectFiles()�)

Some sequence of steps that infects files

If isVirus existed it would return True when p halts and False otherwise 
(assuming p does not infect files.) But we know halts does not exist 
so isVirus cannot exist either.



Living with Noncomputable Functions

• Noncomputable (undecidable, unsolveable) 
means there is no procedure (algorithm) that
1. Always terminates

2. Always give the correct answer

• We should give up either one of these 
conditions
– We usually prefer to give up 2 (correctness in all cases)
– For example, a virus detection software cannot detect if a 

program is a virus for all possible programs. To be 
computable, they need to give up correctness for some 
cases. 
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What Should You Know?
• The fact that there are limits to what we can compute and 

what we can compute efficiently all using a mechanical 
procedure (algorithm) .
– What do we mean when we call a problem 

tractable/intractable? 
– What do we mean when we call a problem solveable (i.e. 

computable, decidable) vs. unsolveable (noncomputable, 
undecidable)?

• What the question P vs. NP is about.

• Names of Some NP-complete problems and amount of work  
needed to solve them using brute-force algorithms.

• The fact that Halting Problem is unsolveable and that there 
are many others that are unsolveable.
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CONCLUDING REMARKS
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Course Objectives

Programming
skills

Exposure to selected 
topics of current 
interest and classic big 
ideas

Computational 
thinking
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Course Coverage

Program m ing in  
Python

D ebugg ing   sm a ll 
p rogram s

Lim its o f com puting

A rtific ia l in te lligence
C oncurrency

Security

C om putationa l 
com plexity

A lgorithm s and  data  
structures
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Where to Go From Here
¤Done with computer science.  You will be involved 

in computing only as needed in your own 
discipline? 
¤ We believe you are leaving this course with useful skills.

¤Grew an interest in computing. You want to explore 
more? 
¤ 15-112 is taken by many who feel this way. It primarily 

focuses on software construction.

¤Considering adding computer science as a minor 
or major? 
¤ Great!   We are happy to have been instrumental in this 

decision.   
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