
The Limits of Computing

Predicting Running Time of a Program

Suppose you are working on a very important problem and
wrote a program to make lots of calculations. You expect
that it may take a while to produce a result.

¤ How long will you wait?

¤ Should you wait or stop?

¤ You waited for a few days and decided to stop, but
what if it will end/halt in the next 5 minutes?

Classifying Problems

¤ Can you say if your program will terminate and return a
result?

¤ Can you say anything about the hardness of the problem
that you are trying to solve with your program?

Complexity and Computability
Theories

¤Computer scientists are interested in measuring the
�hardness� of computational problems in order to
understand how much time, or some other resource
such as memory, is needed to solve it.

¤What problems can or cannot be solved by
mechanical computation? Can we categorize
problems as �easy�, �hard�, or �impossible�?

4

Can we categorize problems?

?

Easy
(tractable)

ImpossibleHard
(intractable)

Princ ip les o f C om p uting , C a rneg ie M e llon
Un ive rsity

Easy, Hard, Impossible
¤An �easy (i.e. tractable)� problem is one for which

there exists a mechanical procedure (i.e. program
or algorithm) that can solve it in a reasonable
amount of time.

¤A �hard (i.e. intractable)� problem is one that is
solveable by a mechanical procedure but every
algorithm we can find is so slow that it is practically
useless.

¤An �impossible (i.e. uncomputable)� problem is one
such that it is provably impossible to solve no matter
how much time we are willing to use.

Easy (Tractable)

¤An �easy (i.e. tractable)� problem is one for
which there exists a mechanical procedure
(i.e. program or algorithm) that can solve it
in a reasonable amount of time.

How do we
measure this?

Hard (Intractable)

¤A �hard (i.e. intractable)� problem is one
that is solveable by a mechanical
procedure but every algorithm we can find
is so slow that it is practically useless.

What does this
mean?

Impossible

¤An �impossible� problem is one such that it is
provably impossible to solve no matter how
much time we are willing to use.

How can we prove
something like that?

Why Study Impossibility?

¤Practical: If we know that a problem is
unsolvable we know that we need to
simplify or modify the problem.

¤Cultural: Gain perspective on
computation.

10

Decision Problems
¤ A specific set of computations are classified as

decision problems.

¤ An algorithm solves a decision problem if its
output is simply YES or NO, depending on whether
a certain property holds for its input. Such an
algorithm is called a decision procedure.

¤ Example:
Given a set of n shapes,
can these shapes be
arranged into a rectangle?

11

The Monkey Puzzle

¤ Given:
¤ A set of n square cards whose sides are imprinted

with the upper and lower halves of colored
monkeys.

¤ n is a perfect square number, such that n = m2.
¤ Cards cannot be rotated.

¤ Problem:
¤ Does there exist an arrangement of the n cards in

an m x m grid such that each adjacent pair of
cards display the upper and lower half of a
monkey of the same color.

12

decision problem

Example

13

• Can we always
compute a YES/NO
answer to the
problem?

• If we can, is the
problem tractable
(easy to solve) in
general?

Algorithm
Simple brute-force (exhaustive search) algorithm:

¤ Pick one card for each cell of m x m grid.

¤ Verify if each pair of touching edges make a
full monkey of the same color.

¤ If not, try another arrangement until a solution
is found or all possible arrangements are
checked.

¤ Answer "YES" if a solution is found. Otherwise,
answer "NO" if all arrangements are analyzed
and no solution is found.

14

Analysis

15

The total number of unique arrangements
for n = 9 cards is:

9 * 8 * 7 * *1 = 9! (9 factorial)
= 362880

1 2 3

4 5 6

7 8 9

Suppose there are n = 9 cards (m = 3)

9 card choices for cell 1

8 card choices for cell 2
7 card choices for cell 3 goes on like this

Analysis (cont�d)

For n cards, the number of arrangements to examine is n!

Assume that we can analyze one arrangement in a microsecond (µs), that is,
analyze 1 million arrangements in one second :

n Time to analyze all arrangements

9 362,880 µs

16 20,922,789,888,000 µs (app. 242 days)

25 15,511,210,043,330,985,984,000,000 µs

(app. 500 billion years)

16

Age of the universe is about 14 billion years

Classifying Problems

¤ The field of computational complexity categorizes
decidable decision problems by how hard they are to
solve. �Hard� in this sense, is described in terms of the
computational resources needed by the most efficient
algorithm that is known to solve the problem.

17

Reviewing the Big O Notation (1)

¤We use the big O notation to indicate the
relationship between the size of the input
and the corresponding amount of work.

¤For the Monkey Puzzle
¤ Input size: Number of tiles (n)
¤Amount of work: Number of operations to check

if any arrangement solves the problem (n!)

¤For very large n (size of input data), we
express the number of operations as the
(time) order of complexity.

18

Growth of Some Functions

19

Big O notation:
gives an asymptotic upper bound
ignores constants

Any function f(n) such that f(n) ≤ c n2 for large n has O(n2) complexity

Quiz on Big O
¤What is the order of complexity in big O for the

following descriptions
¤ The amount of computation does not depend on the size

of input data

¤ If we double the input size the work is doubles, if we triple it
the work is 3 times as much

¤ If we double the input size the work is 4 times as much, if
we triple it the work is 9 times as much

¤ If we double the input size, the work has 1 additional
operation

20

O(1)

O(n)

O(n2)

O(log n)

Classifications�

¤ Algorithms that are O(nk) for some
fixed k are polynomial-time* algorithms.
¤ O(1), O(log n), O(n), O(n log n), O(n2)
¤ reasonable, tractable

¤ All other algorithms are
super-polynomial-time algorithms.
¤ O(2n), O(nn), O(n!)

¤ unreasonable, intractable

21

*A polynomial is an expression consisting of variables and coefficients that involves only
the operations of addition, subtraction, multiplication, and non-negative integer exponents.

A Famous Hard Problem

Traveling Salesperson

¤ Given: a weighted graph of nodes representing cities and
edges representing flight paths (weights represent cost)

¤ Is there a route that takes the salesperson through every city
and back to the starting city with cost no more than k?
¤ The salesperson can visit a city only once (except for the start

and end of the trip).

23

An Instance of the Problem

A

B

D

C

G
E

F

12

6
4

5
9

8
10

7 11

3

7

7

Is there a route that takes the salesperson through
every city and back to the starting city with cost
no more than 52?

Traveling Salesperson

25

A

B

D

C

G
E

F

12

6
4

5
9

8
10

7 11

3

7
7

Is there a route with cost at most 52? YES (Route above costs 50.)

If I am given a potential solution I can verify that to say yes or no, but otherwise
I have to search for it. By a brute-force approach, I enumerate all possible routes
visiting every city once and check for the cost.

Analysis

¤ If there are n cities, what is the maximum number of routes
that we might need to compute?

¤ Worst-case: There is a flight available between every pair of
cities.

¤ Compute cost of every possible route.
¤ Pick a starting city
¤ Pick the next city (n-1 choices remaining)
¤ Pick the next city (n-2 choices remaining)
¤ ...

¤ Maximum number of routes: __________

26

Number of Paths to Consider

27

A

B

D

C

G
E

F

12

6
4

5
9

8
10

7 11

3

7
7

Number of all possible routes = Number of all possible permutations of n nodes = n!

Number of all possible unique route =

Observe ABCGFDE is equivalent to BCGFDEA (starting from a point and
returning to it going through the same nodes)

n! / n = n – 1!

Observe also that ABCGFDE has the same cost as EDFGCBA

Number of all possible paths to consider = (n – 1)! / 2 Still O(n!)

Analysis

¤ If there are n cities, what is the maximum number of routes
that we might need to compute?

¤ Worst-case: There is a flight available between every pair of
cities.

¤ Compute cost of every possible route.
¤ Pick a starting city
¤ Pick the next city (n-1 choices remaining)
¤ Pick the next city (n-2 choices remaining)
¤ ...

¤ Worst-case complexity: __________

28

O(n!)
Note: n! > 2 n
for every n > 3.

Exponential complexity (super-polynomial time)

Polynomial vs. Exponential Growth

Running
Time

n

n2

n3

n5

n!

Assumption: Computer can perform one billion operations for second

0.00000004 sec.

0.00000160 sec.

0.00006400 sec.

0.10240000 sec.

Size n = 10

0.00000001

Size n = 20 Size n = 30 Size n = 40

0.00000002 0.00000003

0.00000010 0.00000040 0.00000090

0.00000100 0.00000800 0.00002700

0.00010000

0.0036

0.00320000 0.02430000

77.1 years 8400
trillion
years

2.5 * 1031

Years�

Source: http://www.cs.hmc.edu/csforall

Polynomial vs. Exponential Growth

n! 0.0036 77.1 years 8400
trillion
years

2.5 * 1031

Years�

Source: http://www.cs.hmc.edu/csforall

The Big Picture

¤Intractable problems are solvable if the
amount of data (n) that we are processing is
small.

¤But if n is not small, then the amount of
computation grows exponentially and the
solutions quickly become out of our reach.

¤Computers can solve these problems if n is
not small, but it will take far too long for the
result to be generated.
¤We would be long dead

before the result is computed.
31

Thursday

¤Exam tomorrow

¤Calculating Grades over weekend due
by Tuesday

¤Extra Credit: Honest attempt at Post-Test
in OLI

Summary

¤For many interesting problems naïve
algorithms rely on exhaustive search
¤Check all possible answers
¤ Exponential running time (intractable)

¤We need smarter algorithms for them to
be practical (avoid exhaustive search)

33

Dealing with Intractability

¤Restrict the problem, exploiting
properties of specific instances of the
problem.

¤Trade correctness with tractability.
¤ Go for approximate solutions.
¤ Get correct result with some

probability.

34

Satisfiability

¤ Given a Boolean formula with n variables
using the operators AND, OR and NOT:
¤ Is there an assignment of Boolean values for the

variables so that the formula is true (satisfied)?
Example: (X AND Y) OR (NOT Z AND (X OR Y))

¤ Truth assignment: X = True, Y = True, Z = False.

¤ How many assignments do we need to check
for n variables?
¤ Each symbol has 2 possibilities ___ assignments

35

2n

Verifiability

¤No known tractable algorithm to
decide, however it is easy to verify a
solution.

36

Decision Problems
¤We have seen 3 examples of decision

problems with simple brute-force algorithms
that are intractable.

¤ The Monkey Puzzle O(n!)

¤ Traveling Salesperson O(n!)
¤ Satisfiability O(2n)

37

We can avoid brute-force in many problems and obtain polynomial
time solutions, but not always. For example, satisfiability of Boolean
expressions of certain forms have polynomial time solutions.

Special Cases of a Problem May
be Tractable

¤ General Boolean satisfiability we just talked about (let us
call it SAT) is not tractable but 2-satisfiability is.
¤ 2-satisfiability (2-SAT): determining whether a conjunction of

disjunctions (and of ors), where each disjunction (or
operation) has two arguments that may either be variables
or the negations of variables, is satisfiable

Example: (X OR Y) AND (Z OR (NOT Y))

Formulas are of a special form

Are These Problems Tractable?
¤ For any one of the intractable problems we saw, is

there a single tractable (polynomial) algorithm to
solve any instance of the problem?

Haven’t been found so far.

¤ Possible reasons:
¤ These problems have undiscovered polynomial-time

solutions.
¤ These problems are intrinsically difficult – we cannot hope

to find polynomial solutions.

¤ Important discovery: Complexities of some of
these problems are linked. If we can solve one, we
can solve the other problems in that class.

39

Modeling Computing
¤ A rigorous discussion on these questions requires a model that

can model every possible mechanical procedure. One such
model is that of a Turing Machine.

¤ A Turing machine can do what any other computer can do. If
it cannot do something then real machines would not be able
to either.

¤ If we can reason about the number of steps it would take a
Turing Machine to solve a problem, we could make general
claims about the number of steps it would take any computer
to solve a problem.

Turing Machines

41

Rules determine how configurations evolve:
given an input an input symbol and a state,
they yield an output symbol, direction for the
tape head, and the new machine.

Current state, head location,
and tape contents determine
a configuration of the machine

Remark: You don’t need to memorize these.
The next slide shows what you need to remember.

Turing Machines (cont�d)

¤ A Turing machine M computes a function f if:
¤ M halts on all inputs.

¤ On input x, it writes f(x) on the tape and halts.

42

P and NP

The class P consists of all those decision problems
that can be solved on a deterministic sequential
machine in an amount of time that is polynomial in
the size of the input

The class NP consists of all those decision problems
whose positive solutions can be verified in
polynomial time given the right information, or
equivalently, whose solution can be found in
polynomial time on a non-deterministic machine.

43

Po
lyn

om
ia

l

decid
abilit

y

Po
ly

no
m

ia
l

ve
rif

ia
bilit

y

N in NP comes from nondeterministic

Decidability vs. Verifiability

P = the class of problems that can be
decided (solved) quickly

NP = the class of problems for which
solutions can be verified quickly

44

Example

¤ If a problem is in P, it must also be in NP.

¤ If a problem is in NP, is it also in P?

Verifiable in
Polynomial
Time

Solvable in
Polynomial
Time

Given an integer list, is 10 in the list?

Satisfiability problem

Traveling Salesperson

YES YES

YES ?

YES ?

PNP

Princ ip les o f C om p uting , C a rneg ie M e llon
Un ive rsity

Two Possibilities

If P ≠ NP, then
some decision problems can’t be
solved in polynomial time.

The Clay Mathematics Institute is offering a $1M prize for
the first person to prove P = NP or P ≠ NP.

(http://www.claymath.org/millennium/P_vs_NP/)

If P = NP, then
all polynomially verifiable problems
can be solved in polynomial time.

Princ ip les o f C om p uting , C a rneg ie M e llon
Un ive rsity

http://www.claymath.org/millennium/P_vs_NP/

Watch out, Homer!

In the 1995 Halloween
episode of The Simpsons,
Homer Simpson finds a portal
to the mysterious Third
Dimension behind a
bookcase, and desperate to
escape his in-laws, he
plunges through. He finds
himself wandering across a
dark surface etched with
green gridlines and strewn
with geometric shapes,
above which hover strange
equations. One of these is
the deceptively simple
assertion that P = NP.

Princ ip les o f C om p uting , C a rneg ie M e llon
Un ive rsity

NP-Complete Problems

¤ An important advance in the P vs. NP question was the
discovery of a class of problems in NP whose complexity
is related to the whole class [Cook and Levin, �70]: if one
of these problems is in P then NP = P.

48

Reducability

¤A reduction is a way of converting one problem to
another problem in such a way that a solution to
the second problem can be used to solving the first
problem.
¤ Real life examples: You can reduce the problem of finding

your way around a city to the problem of obtaining a map
of that city, reduce the problem of traveling to NY from Pgh
to buying a ticket

¤ Math example: Finding the area of a square reduces to the
problem of finding its length

49

Reductions for solving decision
problems

¤ Consider 2 problems A and B: Suppose we are trying to solve
A and have a decision algorithm for B.

¤ Reduction algorithm should be polynomial time and the
reduction should be such that A and B give the same result in
all cases

50

no

reduction
algorithm

decision algorithm for B

yes

no

yes
instance of
problem A instance of

problem B

NP-completeness

¤A problem A is NP-complete if
¤ A is in NP
¤ Every other problem in NP is polynomial time reducible

to A (there is an efficient way to transform each
problem in NP to A).

51

Some Remarks on NP-Completeness

¤ The class NP-Complete consists of all those problems in
NP that are least likely to be in P.
¤ Monkey puzzle, Traveling salesperson, and Satisfiability

are all in NP-Complete.

¤ Every problem in NP-Complete can be transformed to
another problem in NP-Complete.
¤ If there were some way to solve one of these problems

in polynomial time, we should be able to solve all of
these problems in polynomial time.

52

Informally, NP-complete problems are the hardest
problems in NP.

N P-
com p lete

Why is NP-completeness of
Interest?

53

Theorem: If any NP-complete problem is in P then all are and P = NP.

Most believe P ≠ NP. So, in practice NP-completeness of a problem
prevents wasting time from trying to find a polynomial time solution for it.

NP-
complete

NP-completeness in Practice

¤ Since the discovery that SAT is NP-complete, thousands
of problems have been proved NP-complete.
¤ NP-completeness is mentioned as a keyword in 6,000

scientific papers per year. "Captures vast domains of
computational, scientific, mathematical endeavors, and
seems to roughly delimit what mathematicians and scientists
had been aspiring to compute feasibly." [Papadimitriou]

¤ If you have a problem that is in NP, and you don’t know a
polynomial time algorithm for it, it may be reasonable to
assume that it is NP-complete until proved otherwise.

54

Examples of NP-complete Problems

¤ Bin Packing. You have n items and m bins. Item i weighs w[i] pounds.
Each bin can hold at most W pounds. Can you pack all n items into the
m bins without violating the given weight limit?

¤ Machine Scheduling. Your goal is to process n jobs on m machines. For
simplicity, assume each machine can process any one job in 1 time
unit. Also, there can be precedence constraints: perhaps job j must
finish before job k can start. Can you schedule all of the jobs to finish in L
time units?

¤ Crossword puzzle. Given an integer N, and a list of valid words, is it
possible to assign letters to the cells of an N-by-N grid so that all
horizontal and vertical words are valid?

Source: http://algs4.cs.princeton.edu/66intractability/

Decision Problems Vs.
Optimization Problems

¤We can usually cast a given optimization
problem as a related decision problem by
imposing a bound on the value to be optimized
¤ Optimization version of Traveling Salesperson: What is

the shortest route that goes through every city?

¤ We can show an optimization problem to be hard by
using its relationship to the decision problem, because
a decision problem is “no harder” than the
optimization problem.

Coping with Intractability

¤ Designing algorithms that run quickly on some instances,
but take a prohibitive amount of time on others. For
example, SAT solvers.

¤ Sacrifice the guarantee on an optimal solution and
design approximation algorithms.

57

What’s Next?

¤ Are all computational problems solvable by computer?
¤ NO!

There are some that we can’t solve no matter how much
time we give the computer, no matter how powerful the
computer is.

58

Computability

¤ A problem is computable (i.e. decidable, solveable) if
there is a mechanical procedure that
1. Always terminates.
2. Always gives the correct answer.

59

Program Termination
¤ Can we determine if a program will

terminate given a valid input?

¤ Example:

def mystery1(x):

while (x != 1):

x = x - 2

¤ Does this algorithm terminate when x = 15?
¤ Does this algorithm terminate when x = 110?

60

Another Example
def mystery2(x):

while (x != 1):

if x % 2 == 0:

x = x // 2

else:

x = (3 * x) + 1
¤ Does this algorithm terminate when x = 15?
¤ Does this algorithm terminate when x = 110?
¤ Does this algorithm terminate for any positive x?

61

If you test this program, it seems to
terminate even though it sometimes
reaches unpredictable values for x. In
the absence of a proof of why
it works this way, we cannot be sure

whether there is any x for which it
won’t terminate.

Halting Problem
• Alan Turing proved that noncomputable functions exist by

finding an noncomputable function, known as the Halting
Problem.

• Halting Problem: Does a universal program H exist that can
take any program P and any input I for program P and
determine if P terminates/halts when run with input I?

62

Halting Problem Cast in Python

• Input: A string representing a
Python program and an input to
that program

• Output:
– True, if evaluating the input

program would ever finish
– False, otherwise

63

Example
¤ Suppose we had a function halts that solves the Halting

Problem

¤ Given the functions below

halts(`add(10,15)’) halts(`loop()’)

returns True returns False

64

def add(x, y):
return x + y

def loop():
while True:

pass

halts on
all inputs

loops
indefinitely

Implement a Halt Checker?�

¤How could we implement such a halts
function? What is wrong with running
the program given in the input string?

¤We will show that halts is
noncomputable -- halts function
cannot exist.

65

Proving Uncomputability
¤To prove the Python function halts does

not exist, we will show that if it exists it
leads to a contradiction.

def paradox():

if halts(`paradox()’):

while True:

pass

66

Infinite
loop

Proving Uncomputability
def paradox():

if halts(`paradox()’):

while True:

pass

67

If halts(`paradox()’) returns True,
paradox() never halts

If halts(`paradox()’) returns False,
paradox() halts.

Contradiction!

Turing-Complete Languagues
¤We proved that a Python function halts cannot

exist. How can we turn this into a general statement
about any halts function?
¤ We can use a Universal Turing Machine in reasoning about

it rather than a Python interpreter.

¤ In fact, Python is a Turing-complete language: It
can simulate a Universal Turing Machine. If halts
cannot be computed by Python it cannot be
computed by a Universal Turing Machine.

68

Telling the Story in a
Python-independent Way

Proof by Contradiction (first step)
Assume a program Hexists that requires a program Pand an input I.

– H determines if program P will halt when
P is executed using input I.

We will show that H cannot exist by showing that if it did exist we would get a
logical contradiction.

70

H outputs YES
if P halts when run
with input I

H outputs NO
if P does not halt
when run with
input I

H
Halt checking

Program

YES

NO

Program P

Program’s
input I

Proof by contradiction (first step)
• Construct a new Program D that takes as

input any program P

• D asks the halt checker H what happens
if P runs with its own copy as input?

• If H answers that P will halt if it runs with
itself as input, then D goes into an infinite
loop (and does not halt).

• If H answers that P will not halt if it runs
with itself as input, then D halts.

71

New Program D

72

H
Halt Checking

Program

YES

NO

Program P

Program P
as input to

P

Program
P

as input
to D YES

D asks H what happens if we run program P on P.
Loops if it says YES.
Stops and returns YES if it says no.

Program D

D testing itself

73

H
Halt checking

Program

YES

NO

Program D

Program D
as input to

D

Program
D

as input
to D YES

If H answers yes (D halts),
then D goes into an infinite loop and does not halt.

Program D

Proof by contradiction (last step)

74

H
Halt Checking

Program

YES

NO

Program
D

Program D
as input to

D

Program
D

as input
to D OK

Program D

What happens if D tests itself?
If D does not halt on D, then D halts on D.
If D halts on D, then D does not halt on D.

CONTRADICTION!

Contradiction

¤ No matter what H answers about D, D does the opposite, so
H can never answer the halting problem for the specific
program D.

¤ Therefore, a universal halting checker H cannot exist.

¤ We can never write a computer program that determines if
ANY program halts with ANY input.

¤ It doesn’t matter how powerful the computer is.

¤ It doesn’t matter how much time we devote to the
computation.

75

Why Is Halting Problem Special?
• One of the first problems to be shown to be noncomputable.

(i.e. undecidable, unsolveable)

• A problem can be shown to be noncomputable by reducing
the halting problem into that problem.

• Examples of other nonsolveable problems: Software
verification, Hilbert’s tenth problem, tiling problem

76

Virus Detection (due to Dave
Evans)

If we could write a function that can always
determine whether an expressions contains a virus
that will infect other files, then we could solve the
halting problem (which we know is impossible to solve)

def halts(p):

return isVirus(p+`infectFiles()�)

Some sequence of steps that infects files

If isVirus existed it would return True when p halts and False otherwise
(assuming p does not infect files.) But we know halts does not exist
so isVirus cannot exist either.

Living with Noncomputable Functions

• Noncomputable (undecidable, unsolveable)
means there is no procedure (algorithm) that
1. Always terminates

2. Always give the correct answer

• We should give up either one of these
conditions
– We usually prefer to give up 2 (correctness in all cases)
– For example, a virus detection software cannot detect if a

program is a virus for all possible programs. To be
computable, they need to give up correctness for some
cases.

78

What Should You Know?
• The fact that there are limits to what we can compute and

what we can compute efficiently all using a mechanical
procedure (algorithm) .
– What do we mean when we call a problem

tractable/intractable?
– What do we mean when we call a problem solveable (i.e.

computable, decidable) vs. unsolveable (noncomputable,
undecidable)?

• What the question P vs. NP is about.

• Names of Some NP-complete problems and amount of work
needed to solve them using brute-force algorithms.

• The fact that Halting Problem is unsolveable and that there
are many others that are unsolveable.

79

CONCLUDING REMARKS

80

Course Objectives

Programming
skills

Exposure to selected
topics of current
interest and classic big
ideas

Computational
thinking

81

Course Coverage

Program m ing in
Python

D ebugg ing sm a ll
p rogram s

Lim its o f com puting

A rtific ia l in te lligence
C oncurrency

Security

C om putationa l
com plexity

A lgorithm s and data
structures

82

Where to Go From Here
¤Done with computer science. You will be involved

in computing only as needed in your own
discipline?
¤ We believe you are leaving this course with useful skills.

¤Grew an interest in computing. You want to explore
more?
¤ 15-112 is taken by many who feel this way. It primarily

focuses on software construction.

¤Considering adding computer science as a minor
or major?
¤ Great! We are happy to have been instrumental in this

decision.

83

