1. Encryption \& Security
2. Concurrency

Encryption and Security

Overview

\square Security issues

Encryption and cryptanalysis
\square Encryption in the digital age

- Symmetric encryption
- Asymmetric encryption
\square Applications of encryption
\square Encryption is not security!

Security issues

Networking is a security issue

Why?

If you want a really secure machine, lock it in an electromagnetically shielded room and don't connect it to any networks or other sources of data beyond your control.

- Not much fun, is it?

The Problem

The Internet is public- Messages sent pass through many machines and media
\square Anyone intercepting a message might
- read it and/or
- replace it with a different message
- The Internet is anonymous
- IP addresses don't establish identity

> Cryptography offers partial solutions to all of these problems

- Anyone may send messages under a false identity

A Shady Example

■ I want to make a purchase online and click a link that takes me to http://www.sketchystore.com/checkout.jsp

- What I see in my browser:

Enter your credit card number: 2837283726495601
Enter your expiration date: 0109

Submit

A Shady Example (cont' d)

\square When I press SUBMIT, my browser sends this:

POST /purchase.jsp HTTP/1.1
Host: www.sketchystore.com
User-Agent: Mozilla/4.0
Content-Length: 48
Content-Type: application/x-www-form-urlencoded
userid=rbd\&creditcard=2837283726495601\& exp=01/09

A Shady Example (cont' d)

\square If this information is sent unencrypted, who has access to my credit card number?

- Other people who can connect to my wireless ethernet
- Other people physically connected to my wired ethernet
- ...
\square Packets are passed from router to router.
- All those routers have access to my data.

A caveat

cryptography is not security

WHAT WOULD ACTUALLY HAPPEN:
HIS LAPTOP'S ENCRYPTED. DRUG HIM AND HIT HIM WITH THIS \$5 WRENCH UNTLL HE TEUS US THE PASSWORD.

Encryption and cryptanalysis

basic concepts

Encryption

\square We encrypt (encode) our data so others can't understand it (easily) except for the person who is supposed to receive it.
\square We call the data to encode plaintext and the encoded data the ciphertext.
\square Encoding and decoding are inverse functions of each other

Encryption/decryption

Cryptanalysis

Encryption techniques

substitution and transposition

Two basic ways of altering text to encrypt/decrypt

\square Substitute one letter for another using some kind of rule

Substitution cipher

\square Scramble the order of the letters using some kind of rule

Transposition cipher

Substitution Ciphers

\square Simple encryption scheme using a substitution cipher:

- Shift every letter forward by 1 :

$$
\mathrm{A} \rightarrow \mathrm{~B}, \mathrm{~B} \rightarrow \mathrm{C}, \ldots, \mathrm{Z} \rightarrow \mathrm{~A}
$$

\square Example:
MESSAGE \rightarrow NFTTBHF
\square Can you decrypt TFDSFU?

Substitution Ciphers

\square Simple encryption scheme using a substitution cipher:
\square Shift every letter forward by 1 :

$$
\mathrm{A} \rightarrow \mathrm{~B}, \mathrm{~B} \rightarrow \mathrm{C}, \ldots, \mathrm{Z} \rightarrow \mathrm{~A}
$$

\square Example:
MESSAGE \rightarrow NFTTBHF
\square Can you decrypt TFDSFU? SECRET

Caesar Cipher

\square Shift forward n letters; n is the secret key
\square For example, shift forward 3 letters:
$\mathrm{A} \rightarrow \mathrm{D}, \mathrm{B} \rightarrow \mathrm{E}, \ldots, \mathrm{Z} \rightarrow \mathrm{C}$

- This is a Caesar cipher using a key of 3 .
\square MESSAGE \rightarrow PHVVDJH
How can we crack this encrypted message if we don't know the key? DEEDUSEKBTFEIIYRBOTUSETUJXYI

Caesar Cipher (cont' d)

DEEDUSEKBTFEIIYRBOTUSETUJXYI EFFEVTFLCUGFJJZSCPUVTFUVKYZJ FGGFWUGMDVHGKKATDQVWUGVWLZAK GHHGXVHNEWIHLLBUERWXVHWXMABL HIIHYWIOFXJIMMCVFSXYWIXYNBCM IJJIZXJPGYKJNNDWGTYZXJYZOCDN JKKJAYKQHZLKOOEXHUZAYKZAPDEO KLLKBZLRIAMLPPFYIVABZLABQEFP LMMLCAMS JBNMQQGZ JWBCAMBCRFGQ MNNMDBNTKCONRRHAKXCDBNCDSGHR

NOONECOULDPOSSIBLYDECODETHIS
UREUFDEVIVHQELIUCIVEHDEHEULUL PQQPGEQWNFRQUUKDNAFGEQFGVJKU

QRRQHFRXOGSRVVLEOBGHFRGHWKLV RSSRIGSYPHTSWWMFPCHIGSHIXLMW STTS JHTZQIUTXXNGQDIJHTIJYMNX TUUTKIUARJVUYYOHREJKIUJKZNOY UVVULJVBSKWVZZPISFKLJVKLAOPZ VWWVMKWCTLXWAAQJTGLMKWLMBPQA WXXWNLXDUMYXBBRKUHMNLXMNCQRB XYYXOMYEVNZYCCSLVINOMYNODRSC YZZYPNZFWOAZDDTMWJOPNZOPESTD ZAAZQOAGXPBAEEUNXKPQOAPQFTUE ABBARPBHYQCBFFVOYLQRPBQRGUVF BCCBSQCIZRDCGGWP ZMRSQCRSHVWG CDDCTRDJASEDHHXQANSTRDSTIWXH

How long would it take a computer to try all 25 shifts?

Vigenère Cipher

\square Shift different amount for each letter. Use a key word; each letter in the key determines how many shifts we do for the corresponding letter in the message.

- Example: key word "cmu": shift by 2, 12, 20
- Message "pittsburgh"
cmucmucmuc
encrypted: runvevwdaj
\square Try it yourself at htto://www.simonsingh.net/The Black Chamber/v sauare.html

ABCDEFGHIJKLMNOPQRSTUVWXYZ

 BCDEFGHIJKLMNOPQRSTUVWXYZA shift by 1 CDEFGHIJKLMNOPQRSTUVWXYZAB shift by 2 DEFGHIJKLMNOPQRSTUVWXYZABC shift by 3 PFGHIJKLMNOPQRSTUVWXYZABCD etc. FGHIJKLMNOPQRSTUVWXYZABCDE- Message:
- Pick a secret key
- Encrypted:

层TTACKATDAWN
 DECAFDECAFDE

D

1 st letter in the message is shifted by $3,2^{\text {nd }}$ letter is shifted by $4, \ldots$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD FGHIJKLMNOPQRSTUVWX ZABCDE

- Message:
- Pick a secret key
- Encrypted:

ATTACKATDAWN
 DECAFDECAFDE

DX

1 st letter in the message is shifted by $3,2^{\text {nd }}$ letter is shifted by $4, \ldots$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVVJXYZABC EFGHIJKLMNOPQRSTUVWZYZABCD FGHIJKLMNOPQRSTUVWXYZAECDE

- Message:
- Pick a secret key
- Encrypted:

1 st letter in the message is shifted by $3,2^{\text {nd }}$ letter is shifted by $4, \ldots$

ABCDEFGHIJKLMNOPQRSTUVWXYZ

CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE

- Message:
- Pick a secret key
- Encrypted:

ATTACKATDAWN
DECAFDECAFDE
DXVAHNEVDFZR

1 st letter in the message is shifted by $3,2^{\text {nd }}$ letter is shifted by $4, \ldots$

Vernam Cipher

\square Vigenère cipher was broken by Charles Babbage in the mid 1800s by exploiting the repeated key

- The length of the key determines the cycle in which the cipher is repeated.
\square Vernam cipher: make the key the same length as the message; Babbage's analysis doesn't work.

One-time Pads

\square Vernam cipher is commonly referred to as a one-time pad.

Alice and Bob have identical "pads" (shared keys)

If random keys are used one-time pads are unbreakable in theory.

Transposition ciphers

STSF...EROL...NOUA...DOTN...MPHK...OSEA...RTRN...EOND...

Encryption in computing

fast computation makes encryption usable by all of us

Encryption in computing

- One-time pads impractical on the net (why?)
\square Basic assumption: the encryption/decryption algorithm is known; only the key is secret (why?)
\square Very complicated encryptions can be computed fast:
- typically, elaborate combinations of substitution and transposition

HTTPS

\square Security protocol for the Web, the peoples' encryption
\square Purpose:

- confidentiality (prevent eavesdropping)
- message integrity and authentication (prevent "man in the middle" attacks that could alter the messages being sent)
\square Techniques:
■ asymmetric encryption ("public key" encryption) to exchange secret key
- certificate authority to obtain public keys
- symmetric encryption to exchange actual messages

Symmetric vs. asymmetric encryption

\square Symmetric (shared-key) encryption: commonly used for long messages

- Often a complicated mix of substitution and transposition encipherment
- Reasonably fast to compute
- Requires a shared secret key usually communicated using (slower) asymmetric encryption
\square Asymmetric encryption: different keys are used to encrypt and to decrypt

Keyspace

\square Keyspace is jargon for the number of possible secret keys, for a particular encryption/decryption algorithm
\square Number of bits per key determines size of keyspace

- important because we want to make brute force attacks infeasible
- brute force attack: run the (known) decryption algorithm repeatedly with every possible key until a sensible plaintext appears
\square Typical key sizes: several hundred bits

Symmetric (Shared Key) Encryption

Ciphertext = Enc(plaintext, key)

Plaintext

Alice uses the shared key to encrypt the plaintext to produce the ciphertext

Ciphertext

Decrypt using key

Plaintext =
Dec(Ciphertext, key)

Bob uses the shared key to decrypt the ciphertext to recover the plaintext

Establishing Shared Keys

- Problem: how can Alice and Bob secretly agree on a key, using a public communication system?
- Solution: asymmetric encryption based on number theory
- Alice has one secret, Bob has a different secret; working together they establish a shared secret
- Examples: Diffie-Hellman key exchange, RSA public key encryption

One type of asymmetric encryption:

 RSA\square Common encryption technique for transmitting symmetric keys on the Internet (https, ssl/tls)

- Named after its inventors: Rivest, Shamir and Adleman
- Used in https (you know when you're using it because you see the URL in the address bar begins with https://)

Asymmetric Public Key Encryption

How RSA works

\square First, we must be able to represent any message as a single number (it may already be a number as is usual for a symmetric key)

- For example:

$$
\begin{gathered}
\text { A T T A C K A T D A W N } \\
012020010311012004012314
\end{gathered}
$$

Public and Private Keys

used for encryption

\square Every receiver has a public key (e, n) and a private key (d, n). \square
\square The transmitter encrypts a (numerical) message M into ciphertext C using the receiver's public key:

$$
M^{e} \text { modulo } n \rightarrow C \text { (ciphertext) }
$$

\square The receiver decodes the encrypted message C to get the original message M using the private key (which no one else knows).
C^{d} modulo $n \rightarrow M$ (plaintext)

RSA Example

\square Alice's s Public Key: $(3,33) \quad(e=3, n=33)$
\square Alice' s Private Key: $(7,33)$

$$
(\mathrm{d}=7, \mathrm{n}=33)
$$

- Usually these are really huge numbers with many hundreds of digits!
\square Bob wants to send the message 4
\square Bob encrypts the message using e and n :
4^{3} modulo $33 \rightarrow 31$
... Bob sends 31
\square Alice receives the encoded message 31
- Alice decrypts the message using d and n :

$$
31^{7} \text { modulo } 33 \rightarrow 4
$$

Generating n, e and d

- p and q are (big) random primes.
- $n=p \times q$
- $\varphi=(p-1)(q-1)$
- e is small and relatively prime to φ
- d, such that:
$e \times d \bmod \varphi=1$
$p=3, q=11$
$n=3 \times 11=33$
$\varphi=2 \times 10=20$
$e=3$
$3 \times d \bmod 20=1$
$d=7$

Usually the primes are huge numbers--hundreds of digits long.

Cracking RSA

\square Everyone knows (e, n). Only Alice knows d.

- If we know e and n, can we figure out d ?

■ If so, we can read secret messages to Alice.
\square We can determine d from e and n.
\square Factor n into p and q.

$$
\begin{aligned}
& n=p \times q \\
& \varphi=(p-1)(q-1) \\
& e \times d=1(\bmod \varphi)
\end{aligned}
$$

\square We know e (which is public), so we can solve for d.
\square But only if we can factor n

RSA is safe (for now)

\square Suppose someone can factor my 5-digit n in 1 ms ,
\square At this rate, to factor a 10-digit number would take 2 minutes.

- ... to factor a 15 -digit number would take 4 months.
- ... 20-digit number ... 30,000 years.
- ... 25-digit number... 3 billion years.

We're safe with RSA! (at least, from factoring with digital computers)

Certificate Authorities

\square How do we know we have the right public key for someone?

- Certificate Authorities sign digital certificates indicating authenticity of a sender who they have checked out in the real world.
\square Senders provide copies of their certificates along with their message or software.
\square But can we trust the certificate authorities? (only some)

Encryption is not security!

It's just a set of techniques

How (in)secure is the Internet?

-The NSA has a budget of \$11B; we know from Edward Snowden how some of it is used
\square Corporations and criminals also spy on us
\square What can go wrong?
\square Insecure pseudo-random number generators

- Untrustworthy certificate authorities
- Malware
- "Social engineering" attacks like phishing
\square Deliberately built-in insecurity in crypto products
- Physical tapping of Internet routers

Security is an unsolved problem

Your cyber systems continue to function and serve you not due to the expertise of your security staff but solely due to the sufferance of your opponents.

- former NSA Information Assurance Director Brian Snow (quoted by Bruce Schneier,
https://www.schneier.com/blog/archives/2013/03/phishing_has_go.ht ml)

Summary

\square Cryptography is cool mathematics and protocol design
\square But cryptography is not security, only a set of techniques
\square Security is a broader issue involving

- Other technology
- Social and legal factors
"Only amateurs attack
machines; professionals
target people" -Bruce
Schneier

Two closing thoughts

Use Signal...

