
The Internet: Protocols and Security

Exam 2

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Exam 1

Exa m 2

Exam 2

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Exam 1 v Exam 2

Exa m 1 Exa m 2

Announcements

¤ PS 10 – 11 out today

¤ Note: removing question from PS 10

¤ Monday: Lab Exam 2

¤ Missing Grades/Submissions?

¤ Monday – Thursday: Tom Cortina

¤ Friday: Exam 3

4

Lab Exam

¤ Bring your laptops

¤ 4 questions + Reference Sheet

¤ tkinter
¤ Graphics
¤ Including geometry

¤ 2 dimensional data collections

¤ Recursive functions

¤ Random functions

5

On Wednesday:

¤ Protocols

¤ History

6

packet switching
getting from here to there: basic transportation mechanism

7

The path from “here” to “there”

¤ For now, think of sending a message (group of bits) from
one machine to another through the Internet

¤ We attach the source and destination IP addresses to the
message

¤ “The Internet” gets it from source to destination
¤ but how? using packet switching

8

Design Decisions

¤No limit on message size

¤Flexible and robust delivery mechanism

9

Circuit Switching
the road not taken

¤Two network nodes (e.g. phones) establish a
dedicated connection via one or more
switching stations.

10

Circuit switching

¤Advantages
¤reliable
¤uninterruptible
¤simple to

understand

¤Disadvantages
¤costly
¤ inflexible
¤wasteful
¤hard to expand

11

Packet Switching

¤ Two network nodes (e.g. computers) communicate by
breaking the message up into small packets
¤ each packet sent separately
¤ with a serial number and a destination address.

¤ Routers forward packets toward destination
¤ table stored in router tells it which neighbor to send packet

to, based on IP address of destination

¤ Packets may be received at the destination in any order
¤ may get lost (and retransmitted)
¤ serial numbers used to put packets back into order at the

destination

12

Packet Switching

15110 Princ ip les o f C om p uting , C a rneg ie
M e llon Un ive rsity 13

ISP

ISP

Router

Router

Router

Router

Router

1 2 3

1 1

1

1

1

1

1

2

2 2

2

2

3

3

3

3

3

3

3
2

2 3

2

Routing and Internet structure

¤Core provides transport services to edges
¤ routers and gateways forward packets
¤ Internet Service Providers (ISPs) provide data

transmission media (fiber optic etc.)
¤ domain name servers (DNS) provide directory of host

names (more on this next time)

¤ Edges provide the services we humans use
¤ individual users, “hosts”
¤ private networks (corporate, educational,

government…)
¤ business, government, nonprofit services

14

end-to-end principle
Internet article of faith

15

Core architectural guideline

¤ Idea: routers should stick to getting data quickly
from its source to its destination!
¤ they can be fast and stupid

¤ Everything else is responsibility of edges, e.g.
¤ error detection and recovery
¤ confidentiality via encryption
¤ …

16

Benefits of End-to-end

¤ Speed and flexibility

¤ Support for innovation: routers need know nothing about
apps using their services

¤ Equality of uses: routers can’t discriminate based on type
of communication (net neutrality)

17

Governing the Internet

¤ Internet Society: a range of partners from non-
profit agencies, local and global NGOs,
academia, technologists, local councils,
federal policy and decision makers, business
(www.isoc.org)

¤ Internet Service Providers (ISPs) regulated in the
USA by the Federal Communications
Commission (FCC)

18

http://www.isoc.org/

The Internet and Python

Sending email

20

mail (run where there is a local mail server)

import smtplib
from email.mime.text import MIMEText

def mail_demo() :
msg = MIMEText('Give me an A!')
msg['Subject'] = 'My grade'
msg['From'] = 'student@example.org'
msg['To'] = ’jmfrye@andrew.cmu.edu'
server = smtplib.SMTP('localhost')
server.send_message(msg)
server.quit()

Fetching a web page

21

web (run this wherever)

from urllib.request import urlopen

def web_demo() :
page = urlopen('http://www.cs.cmu.edu/~15110')
print("Opened URL ", page.geturl())
print("Contents:")
for line in page :

print(line.decode('ISO-8859-1'))

Higher Protocols

“Higher” and “lower” level protocols

¤ Network protocols are organized in layers

¤ IP packet delivery is the lowest layer of the Internet protocol
stack

¤ “Higher” layers use services provided by “lower” layers

¤ Each layer is responsible for a type of service

23

Layers of the Internet
(“higher” to “lower”)

¤ Application Layer provides services to human beings
• e.g. browser, email client, Skype

¤ Transport Layer provides services to applications
• converts between application messages and IP packets
• figures out which application to deliver a message to

• possibly detects and corrects delivery errors

¤ Internet Layer provides services to transport layer
• determines next “hop” for a packet and sends it there

¤ Link Layer provides services to internet layer
• physically converts between signals and bits

24

Example: Layering the Web

CLIENT MACHINE

ask for a web page

request connection

best-effort packets

physical data transport

SERVER MACHINE

send a web page

acknowledge request

best-effort packets

physical data transport

25

Transport Layer
from IP packets to application messages

26

Transport Layer

¤ Splits application messages into IP packets and maps
applications to port number
• IP address identifies machine, but port number identifies an

application operating on that machine (web, email, etc.)

¤ Transport Control Protocol (TCP)
• Creates a reliable bi-directional stream (source address/port

and destination address/port)

¤ User Datagram Protocol (UDP)
• Creates a single one-way message to a remote application

(destination address/port)
¤ used for voice, video, DNS lookup, …

27

host 1 host 2

Transport Layer

28

Program
1

Progra
m 2

Reliable TCP connection

router

routerunreliable network delivery

router

Reliable Communication with
TCP

¤ Suppose A and B are the TCP programs of two computers.
¤ An application asks A to send a message to an application at B.
¤ A breaks the message into several packets.

¤ Each packet includes parity information, so B can check it for
accuracy.

¤ Packets are sent via IP.
¤ B receives the packets.

¤ If B is missing a packet or receives a corrupt packet, it can request
retransmission.

¤ If the packet is OK, B sends an acknowledgement.
¤ If A doesn’t get an acknowledgement, it will retransmit.
¤ B assembles the incoming packets in order and provides the

message to the appropriate application.

29

Network Address Translation (NAT)

30

ISP

Router

Gateway

Network Address Translation (NAT)

• Used to accommodate more users on the Internet,
security, and administration.

• The gateway assigns an additional code called a port for
each user. Packets are tagged with the port.

• The gateway knows where to route the messages on the
private network, but all messages from that private
network share the same single IP address.

31

Domain names
from 98.139.183.24 to yahoo.com

32

From names to IP addresses

¤ URL:
http://www.andrew.cmu.edu/user/nbier/15110/index.html

¤ Email address: nbier@andrew.cmu.edu

¤ We don’t want IP addresses in our URLs or email addresses—
why not?

¤ Domain Name Service (DNS) translates names to addresses

33

DNS design

¤ Problem: so many names! How to make lookup
fast?

¤ Solution: hierarchy of name servers
¤ Each machine knows a name server, which knows how to

find a root name server
¤ root name servers know DNS servers for each top-level

domain (e.g., "edu”, “com”, “net”, “uk”, “ru”)
¤ top-level domain servers know DNS servers for each

second-level domain (e.g., "cmu.edu”, “co.uk”)
¤ second-level domain servers know each host directly in

their domain (e.g., "www.cmu.edu") and DNS servers for
each third-level domain (e.g., "andrew.cmu.edu")

34

DNS Hierarchy (fragment)

35

com

ROOT

edu

cmu

andrew cs

linux

ruorg

msf ccrjustice

DNS Lookup

36

Image:
Wikipedia

?
!

Client-server architectures
web, mail, streaming video, and more

37

Client-server Architectures

38

SERVER (e.g.
www.google.com)

CLIENTS

Client-server Architectures

¤ Architecture: an organizing principle for a computing system

¤ Most common architecture for Internet applications: client-server

¤ Server is always on, waiting for requests
¤ server software (e.g. Apache) tells TCP (transport layer software) on its

own machine “please listen for messages with port number 80”
¤ client software (e.g. Chrome) tells TCP “please send this message to

machine xxx.xxx.xxx.xxx with port number 80”
¤ TCP gives message to IP, which sends it through internet to server

machine; IP at server machine delivers to TCP at server machine
¤ TCP at the server machine delivers the message to Apache

39

The Web

¤ World Wide Web = html + http

¤ html = HyperText Markup Language, an encoding
¤ tells what a page should look like and

¤ what other pages it links to

¤ http = HyperText Transfer Protocol
¤ agreement on how client and server interact

40

HTML: an encoding

¤ Example: using your favorite plain-text editor create the
following text file:

¤ In a browser type its name in the address bar, e.g.

41

<html><head>
<title>15110, Summer ‘17,
Example web page</title>
</head>
<body>
<h1>Hello World!</h1>
</body></html>

file:///Users/pennyanderson/CMU/110/week11/example1.html

HTML: networked hypertext

¤ Now add

¤ save as example2.html

and load

42

Hello World!

http://en.wikipedia.org/wiki/Hello_world_program

HTTP: hypertext transfer protocol

¤ Protocol for communication between web client
application (e.g. Chrome, Safare, IE, Firefox) and web
server application (e.g. Apache)

¤ Agreement on how to ask for a web page, how to send
data entered into a form, how to report errors (codes like
404 not found), etc.

43

Uniform Resource Locators

• A Web page is identified by a Uniform Resource Locator
(URL)

protocol://host address/page

• A URL

http://www.cs.cmu.edu/~15110/index.html

44

Protocol to use

Overview of web page delivery
1. Web browser (client) translates name of the server to

an IP address (e.g. 128.2.217.13) (using DNS)

2. Establishes a TCP connection to 128.2.217.13 port 80

3. Constructs a message

GET /~15110/index.html HTTP/1.1

4. Sends the message using TCP/IP

5. Web server locates the page and sends it using services
of TCP/IP

6. The connection is terminated

45

Layers and Encapsulation
¤ Message:“GET /~15110/index.html

HTTP/1.1”

¤ TCP segment:
control information including sequence
number, so-called port number for web
server;
+ message

¤ IP packet:
control info including source address,
destination address, fragment
sequencing information + TCP segment

46

Summary

¤ Applications communicate on the Internet via application
protocols like
¤ HTTP for the web
¤ SMTP for email
¤ RTSP for streaming media

¤ Application protocols rely on
¤ Domain Name Servers for name translation, and
¤ transport protocols like

¤ TCP for reliable two-way connections
¤ UDP for one-way “datagrams”

¤ Transport protocols rely on IP for packet delivery

47

Security issues

48

Networking is a security issue

¤ Why?

¤ If you want a really secure machine, lock it in an electromagnetically
shielded room and don’t connect it to any networks or other sources
of data beyond your control.

¤ Not much fun, is it?

49

The Problem

¤ The Internet is public
¤ Messages sent pass through many machines and media

¤ Anyone intercepting a message might
¤ read it and/or
¤ replace it with a different message

¤ The Internet is anonymous
¤ IP addresses don’t establish identity

¤ Anyone may send messages under a false identity

50

A Shady Example
¤ I want to make a purchase online and click a link that takes me to

http://www.sketchystore.com/checkout.jsp

¤ What I see in my browser:

51

A Shady Example (cont�d)
¤ When I press SUBMIT, my browser sends this:

POST /purchase.jsp HTTP/1.1

Host: www.sketchystore.com

User-Agent: Mozilla/4.0

Content-Length: 48

Content-Type: application/x-www-form-urlencoded

userid=rbd&creditcard=2837283726495601&
exp=01/09

52

A Shady Example (cont�d)

¤ If this information is sent unencrypted, who has
access to my credit card number?
¤ Other people who can connect to my wireless ethernet
¤ Other people physically connected to my wired ethernet
¤ …

¤ Packets are passed from router to router.
¤ All those routers have access to my data.

53

A caveat
cryptography is not security

54

55

Encryption and cryptanalysis
basic concepts

56

Encryption

¤ We encrypt (encode) our data so others can’t understand it
(easily) except for the person who is supposed to receive it.

¤ We call the data to encode plaintext and the encoded data the
ciphertext.

¤ Encoding and decoding are inverse functions of each other

57

ATTACKATDAWN
Encryption
algorithm AGSTRMBNDO

ATTACKATDAWN

plaintext

ciphertext

secret key

secret key

Decryption
algorithm

Encryption/decryption

ATTACKATDAWN AGSTRMBNDO

ATTACKATDAWN

ciphertext

Mathematical,
logical, empirical

analysis

secret key

plaintext

Encryption
algorithm

Cryptanalysis

Encryption techniques
substitution and transposition

60

Two basic ways of altering text to
encrypt/decrypt

¤ Substitute one letter for another using some kind of rule

¤ Scramble the order of the letters using some kind of rule

61

Substitution Ciphers

¤Simple encryption scheme using a substitution
cipher:
¤ Shift every letter forward by 1:

A → B, B → C, ..., Z → A

¤Example:
MESSAGE → NFTTBHF

¤Can you decrypt TFDSFU?

62

Substitution Ciphers

¤Simple encryption scheme using a substitution
cipher:
¤ Shift every letter forward by 1:

A → B, B → C, ..., Z → A

¤Example:
MESSAGE → NFTTBHF

¤Can you decrypt TFDSFU? SECRET

63

Caesar Cipher

¤ Shift forward n letters; n is the secret key

¤ For example, shift forward 3 letters:
A → D, B → E, ..., Z → C
¤ This is a Caesar cipher using a key of 3.

¤ MESSAGE → PHVVDJH

¤ How can we crack this encrypted message if we don’t know the key?
DEEDUSEKBTFEIIYRBOTUSETUJXYI

64

Caesar Cipher (cont�d)

¤How long would it take a computer to try all 25 shifts?

65

DEEDUSEKBTFEIIYRBOTUSETUJXYI
EFFEVTFLCUGFJJZSCPUVTFUVKYZJ
FGGFWUGMDVHGKKATDQVWUGVWLZAK
GHHGXVHNEWIHLLBUERWXVHWXMABL
HIIHYWIOFXJIMMCVFSXYWIXYNBCM
IJJIZXJPGYKJNNDWGTYZXJYZOCDN
JKKJAYKQHZLKOOEXHUZAYKZAPDEO
KLLKBZLRIAMLPPFYIVABZLABQEFP
LMMLCAMSJBNMQQGZJWBCAMBCRFGQ
MNNMDBNTKCONRRHAKXCDBNCDSGHR
NOONECOULDPOSSIBLYDECODETHIS
OPPOFDPVMEQPTTJCMZEFDPEFUIJT
PQQPGEQWNFRQUUKDNAFGEQFGVJKU

QRRQHFRXOGSRVVLEOBGHFRGHWKLV
RSSRIGSYPHTSWWMFPCHIGSHIXLMW
STTSJHTZQIUTXXNGQDIJHTIJYMNX
TUUTKIUARJVUYYOHREJKIUJKZNOY
UVVULJVBSKWVZZPISFKLJVKLAOPZ
VWWVMKWCTLXWAAQJTGLMKWLMBPQA
WXXWNLXDUMYXBBRKUHMNLXMNCQRB
XYYXOMYEVNZYCCSLVINOMYNODRSC
YZZYPNZFWOAZDDTMWJOPNZOPESTD
ZAAZQOAGXPBAEEUNXKPQOAPQFTUE
ABBARPBHYQCBFFVOYLQRPBQRGUVF
BCCBSQCIZRDCGGWPZMRSQCRSHVWG
CDDCTRDJASEDHHXQANSTRDSTIWXH

Vigenère Cipher

¤ Shift different amount for each letter. Use a key word; each letter in the key
determines how many shifts we do for the corresponding letter in the
message.

¤ Example: key word “cmu”: shift by 2, 12, 20

¤ Message “pittsburgh”

cmucmucmuc

encrypted: runvevwdaj

¤ Try it yourself at
http://www.simonsingh.net/The_Black_Chamber/v_square.html

66

http://www.simonsingh.net/The_Black_Chamber/v_square.html

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A ABCDEFGHIJKLMNOPQRSTUVWXYZ no shift

B BCDEFGHIJKLMNOPQRSTUVWXYZA shift by 1

C CDEFGHIJKLMNOPQRSTUVWXYZAB shift by 2

D DEFGHIJKLMNOPQRSTUVWXYZABC shift by 3

E EFGHIJKLMNOPQRSTUVWXYZABCD etc.

F FGHIJKLMNOPQRSTUVWXYZABCDE

...

¤Message: ATTACKATDAWN

¤ Pick a secret key DECAFDECAFDE

¤ Encrypted: D
1st letter in the message is shifted by 3, 2nd letter is shifted by 4, …

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A ABCDEFGHIJKLMNOPQRSTUVWXYZ

B BCDEFGHIJKLMNOPQRSTUVWXYZA

C CDEFGHIJKLMNOPQRSTUVWXYZAB

D DEFGHIJKLMNOPQRSTUVWXYZABC

E EFGHIJKLMNOPQRSTUVWXYZABCD

F FGHIJKLMNOPQRSTUVWXYZABCDE

...

¤Message: ATTACKATDAWN

¤ Pick a secret key DECAFDECAFDE

¤ Encrypted: DX
1st letter in the message is shifted by 3, 2nd letter is shifted by 4, …

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A ABCDEFGHIJKLMNOPQRSTUVWXYZ

B BCDEFGHIJKLMNOPQRSTUVWXYZA

C CDEFGHIJKLMNOPQRSTUVWXYZAB

D DEFGHIJKLMNOPQRSTUVWXYZABC

E EFGHIJKLMNOPQRSTUVWXYZABCD

F FGHIJKLMNOPQRSTUVWXYZABCDE

...

¤Message: ATTACKATDAWN

¤ Pick a secret key DECAFDECAFDE

¤ Encrypted: DXV
1st letter in the message is shifted by 3, 2nd letter is shifted by 4, …

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A ABCDEFGHIJKLMNOPQRSTUVWXYZ

B BCDEFGHIJKLMNOPQRSTUVWXYZA

C CDEFGHIJKLMNOPQRSTUVWXYZAB

D DEFGHIJKLMNOPQRSTUVWXYZABC

E EFGHIJKLMNOPQRSTUVWXYZABCD

F FGHIJKLMNOPQRSTUVWXYZABCDE

...

¤Message: ATTACKATDAWN

¤ Pick a secret key DECAFDECAFDE

¤ Encrypted: DXVAHNEVDFZR
1st letter in the message is shifted by 3, 2nd letter is shifted by 4, …

Vernam Cipher

¤ Vigenère cipher was broken by Charles Babbage in the mid 1800s by
exploiting the repeated key
¤ The length of the key determines the cycle in which the cipher is repeated.

¤ Vernam cipher: make the key the same length as the message; Babbage’s
analysis doesn’t work.

71

One-time Pads

¤ Vernam cipher is commonly referred to as a one-time pad.

¤ If random keys are used one-time pads are unbreakable in theory.

72

Alice and Bob have
identical “pads”
(shared keys)

Transposition ciphers

STSF…EROL...NOUA...DOTN…MPHK…OSEA…RTRN…EOND…

image:http://crypto.interactive-maths.com/simple-transposition-
ciphers.html

Encryption in computing
fast computation makes encryption usable by all of us

Encryption in computing

¤ One-time pads impractical on the net (why?)

¤ Basic assumption: the encryption/decryption algorithm is known;
only the key is secret (why?)

¤ Very complicated encryptions can be computed fast:
• typically, elaborate combinations of substitution and transposition

HTTPS

¤ Security protocol for the Web, the peoples’ encryption

¤ Purpose:
¤ confidentiality (prevent eavesdropping)

¤ message integrity and authentication (prevent “man in the middle”
attacks that could alter the messages being sent)

¤ Techniques:
¤ asymmetric encryption (“public key” encryption) to exchange secret key
¤ certificate authority to obtain public keys

¤ symmetric encryption to exchange actual messages

Symmetric vs. asymmetric encryption

¤ Symmetric (shared-key) encryption: commonly used for long
messages
• Often a complicated mix of substitution and transposition encipherment
• Reasonably fast to compute

• Requires a shared secret key usually communicated using (slower)
asymmetric encryption

¤ Asymmetric encryption: different keys are used to encrypt and to
decrypt

Keyspace

¤ Keyspace is jargon for the number of possible secret keys, for a
particular encryption/decryption algorithm

¤ Number of bits per key determines size of keyspace
• important because we want to make brute force attacks infeasible
• brute force attack: run the (known) decryption algorithm repeatedly with

every possible key until a sensible plaintext appears

¤ Typical key sizes: several hundred bits

78

Symmetric (Shared Key) Encryption

79

Ciphertext =
Enc(plaintext, key)

Bob uses the shared key to
decrypt the ciphertext to
recover the plaintext

Plaintext
Plaintext =
Dec(Ciphertext, key)

Encrypt using key
Decrypt using key

Alice uses the shared key to
encrypt the plaintext to
produce the ciphertext

Ciphertext

Establishing Shared Keys

¤ Problem: how can Alice and Bob secretly agree on a key, using a
public communication system?

¤ Solution: asymmetric encryption based on number theory
¤ Alice has one secret, Bob has a different secret; working together they

establish a shared secret
¤ Examples: Diffie-Hellman key exchange, RSA public key encryption

80

One type of asymmetric encryption: RSA

¤Common encryption technique for transmitting
symmetric keys on the Internet (https, ssl/tls)
¤Named after its inventors: Rivest, Shamir and

Adleman
¤Used in https (you know when you’re using it because

you see the URL in the address bar begins with
https://)

81

Asymmetric Public Key Encryption

82

ciphertext =
Enc(plaintext, pubB)

Bob’s
public key

pubB

plaintext plaintext = Dec(ciphertext,
privB

Encrypt using pubB Decrypt using privB

Bob uses his private key to
decrypt the ciphertext to
recover the plaintext

Alice uses Bob�s public key to
encrypt the plaintext to
produce the ciphertext

ciphertext

Bob’s private key
privB

How RSA works

¤ First, we must be able to represent any message as a single number
(it may already be a number as is usual for a symmetric key)

¤ For example:

A T T A C K A T D A W N

012020010311012004012314

83

Public and Private Keys

¤ Every receiver has a public key (e, n) and
a private key (d, n).

¤ The transmitter encrypts a (numerical) message M into
ciphertext C using the receiver’s public key:

M e modulo n → C (ciphertext)

¤ The receiver decodes the encrypted message C to get the
original message M using the private key (which no one else
knows).

C d modulo n → M (plaintext)

84

used for encryption

used for
decryption

RSA Example

¤Alice�s Public Key: (3, 33) (e = 3, n = 33)

¤Alice�s Private Key: (7, 33) (d = 7, n = 33)
¤ Usually these are really huge numbers with many hundreds of digits!

¤Bob wants to send the message 4
¤ Bob encrypts the message using e and n:

43 modulo 33 → 31 ... Bob sends 31

¤Alice receives the encoded message 31
¤ Alice decrypts the message using d and n:

317 modulo 33 → 4

85

Generating n, e and d

86

• p and q are (big)
random primes.

• n = p� q
• φ = (p - 1)(q - 1)
• e is small and

relatively prime to φ
• d, such that:
e� d mod φ = 1

p = 3, q = 11

n = 3 � 11 = 33
φ = 2 � 10 = 20
e = 3

3� d mod 20 = 1
d = 7

Usually the primes are huge numbers--hundreds of digits long.

Cracking RSA

¤ Everyone knows (e, n). Only Alice knows d.

¤ If we know e and n, can we figure out d?
¤ If so, we can read secret messages to Alice.

¤ We can determine d from e and n.
¤ Factor n into p and q.

n = p × q
φ = (p - 1)(q - 1)
e × d = 1 (mod φ)

¤ We know e (which is public), so we can solve for d.

¤ But only if we can factor n

87

RSA is safe (for now)
¤ Suppose someone can factor my 5-digit n in 1 ms,

¤ At this rate, to factor a 10-digit number
would take 2 minutes.

¤ … to factor a 15-digit number
would take 4 months.

¤ … 20-digit number … 30,000 years.

¤ … 25-digit number… 3 billion years.

¤ We're safe with RSA! (at least, from factoring with digital computers)

88

Certificate Authorities

¤ How do we know we have the right public key for someone?

¤ Certificate Authorities sign digital certificates indicating authenticity of a
sender who they have checked out in the real world.

¤ Senders provide copies of their certificates along with their message or
software.

¤ But can we trust the certificate authorities? (only some)

89

Encryption is not security!
It’s just a set of techniques

90

How (in)secure is the Internet?
¤The NSA has a budget of $11B; we know from Edward Snowden how some
of it is used

¤Corporations and criminals also spy on us

¤What can go wrong?
¤ Insecure pseudo-random number generators
¤ Untrustworthy certificate authorities
¤ Malware
¤ “Social engineering” attacks like phishing
¤ Deliberately built-in insecurity in crypto products
¤ Physical tapping of Internet routers

91

Security is an unsolved problem

Your cyber systems continue to function and
serve you not due to the expertise of your
security staff but solely due to the sufferance of
your opponents.

– former NSA Information Assurance Director Brian Snow (quoted by Bruce

Schneier,

https://www.schneier.com/blog/archives/2013/03/phishing_has_go.html)

92

Summary

¤ Cryptography is cool mathematics and protocol design

¤ But cryptography is not security, only a set of techniques

¤ Security is a broader issue involving
¤ Other technology
¤ Social and legal factors

93

“Only amateurs attack
machines; professionals
target people” –Bruce
Schneier

Two closing thoughts

Use Signal…

