## Continuous Simulation

## Announcements

- Tonight:
- PA 9
- Exam 2 Review Session
- Tomorrow:
- Lab
- Reading
- Thursday: Exam 2


## Example: Flu Virus Simulation

- Goal: Develop a simple simulation that shows how disease spreads through a population; provide graphic visualization.


## Modeling the Spread of Flu Virus

- Every person is either healthy, infected, contagious or immune. We assume that "infected" means infected but not contagious.
- Each day, a healthy person comes in contact with 4 random people. If any of those random people is contagious, then the healthy person becomes infected.
- It takes one day for the infected person to become contagious.
- After a person has been contagious for 4 days, then the person is non-contagious and cannot spread the virus nor can the person get the virus again due to immunity.


## Representing the Population

Each person uniquely identified by a row and column

Person identified by row $=5$, column = 7


## Displaying the Population

Color od each cell indicates the health state of the person corresponding to that cell


## Graphics



## Coordinates of each cell



## Graphical Simulation

Simulation captures the evolution of the health state of the population over time. It evolves in discrete steps: change occurs instantaneously as a new day begins.





## Overview of the code

$\square$ Constants used for representing health states of individuals

- Update function: Given the state of the population on some day (input matrix), calculates the state of the population for the next day (output newmatrix)
- Since we have a 2-dimensional input (matrix) a natural way to traverse the input structure for creating an output structure is a nested loop. We go over the input row by row, for each row column by column


## Health States

| 0 | white | healthy | HEALTHY $=0$ |
| :--- | :--- | :--- | :--- |
| 1 | pink | infected | INFECTED $=1$ |
| 2 | red | contagious (day 1) | DAY1 $=2$ <br> DAY2 $=3$ <br> 3 |
| red | contagious (day 2) | DAY3 $=4$ |  |
| 4 | red | contagious (day 3) | DAY4 $=5$ |
| 5 | red | Contagious (day 4) |  |
| 6 | purple | immune (non-contagious) |  |

The health state of the population will be represented using a 20 by 20 matrix where each entry has one of the values above.

## Checking Health State

```
def immune(matrix, i, j):
    return matrix[i][j] == IMMUNE
def contagious(matrix, i, j):
    return matrix[i][j] >= DAY1 and matrix[i][j] <= DAY4
def infected(matrix, i, j):
    return matrix[i][j] == INEECTED
```

def healthy(matrix, i, j):
return matrix[i][j] == HEALTHY

## Updating the matrix

```
def update(matrix):
    # create new matrix, initialized to all zeroes
    newmatrix = []
    for i in range(20):
    newmatrix.append([0] * 20)
# create next day
for i in range(20):
    for j in range(20):
            if immune(matrix, i, j):
                            newmatrix[i][j] = IMMUNE
        elif infected(matrix, i, j) or
                                    contagious(matrix, i, j):
            newmatrix[i][j] = matrix[i][j] + 1
        elif healthy(matrix, i, j):
            for k in range(4): # repeat 4 times
            if contagious(matrix,
                randrange(20),randrange(20)):
                    newmatrix[i][j] = INFECTED
```

    return newmatrix
    
## Updating the matrix

    return newmatrix
    ```
```

def update(matrix):

```
```

def update(matrix):

# create new matrix, initialized to all zeroes

# create new matrix, initialized to all zeroes

newmatrix = []
newmatrix = []
for i in range(20):
for i in range(20):
newmatrix.append([0] * 20)
newmatrix.append([0] * 20)

# create next day

# create next day

for i in range(20):
for i in range(20):
for j in range(20):
for j in range(20):
if immune(matrix, i, j):
if immune(matrix, i, j):
newmatrix[i][j] = IMMUNE
newmatrix[i][j] = IMMUNE
elif infected(matrix, i, j) or
elif infected(matrix, i, j) or
contagious(matrix, i, j):
contagious(matrix, i, j):
newmatrix[i][j] = matrix[i][j] + 1
newmatrix[i][j] = matrix[i][j] + 1
elif healthy(matrix, i, j):
elif healthy(matrix, i, j):
for k in range(4): \# repeat 4 times
for k in range(4): \# repeat 4 times
if contagious(matrix,
if contagious(matrix,
randrange(20), randrange(20)):
randrange(20), randrange(20)):
newmatrix[i][j] = INFECTED

```
                newmatrix[i][j] = INFECTED
```

```
Note the programming idiom.
```

Note the programming idiom.

```
Note the programming idiom.
We use an expression
We use an expression
We use an expression
that already has a Boolean value
that already has a Boolean value
that already has a Boolean value
instead of
instead of
instead of
    immune(matrix, i, j) == True
```

```
    immune(matrix, i, j) == True
```

```
    immune(matrix, i, j) == True
```

```

\section*{Displaying the matrix}
```

def display(matrix,c):
for row in range(len(matrix)):
for col in range(len(matrix[0])):
person = matrix[row][col]
if person == HEALTHY:
color = "white"
elif person == INFECTED:
color = "pink"
elif person >= DAY1 and person <= DAY4:
color = "red"
else: \# non-contagious or wrong input
color = "purple"
{C.create_rectangle(col*10, row*10, col*10 + 10,
row*10 + 10, fill = color)

```

Create_rectangle (topleft_x, topleft_y, bottomright_x, bottomright_y, optional params)

\section*{Testing display}
```

def test_display():
window = tkinter.Tk()
\# create a canvas of size 200 X 200
c = Canvas(window,width=200,height=200)
c.pack()
matrix = []
\# create a randomly filled matrix
for i in range(20):
row = []
for j in range(20):
row.append(randrange(7))
matrix.append(row)
\# display the matrix using your display function
display(matrix,c)

```
```

def test_update():
window = tkinter.Tk()
\# create a canvas of size 200 X 200
c = Canvas(window,width=200,height=200)
c.pack()
\# initialize matrix to all healthy individuals
matrix= []
for i in range(20):
matrix.append([0] * 20)
\# infect one random person
matrix[randrange(20)][randrange(20)] = INFECTED
display(matrix,c)
\# Canvas.delay = 3
sleep(0.3)
\# run the simulation for 10 "days
for day in range(0, 10):
c.delete(tkinter.ALL)
matrix = update(matrix)
display(matrix,c)
sleep(0.3)
c.update() \#force new pixels to display

```

\section*{Running the Code}
```

import tkinter
from tkinter import Canvas
from random import randrange
from time import sleep

# Constants for health states of an individual

HEALTHY = 0
INFECTED = 1
DAY1 = 2
DAY2 = 3
DAY3 = 4
DAY4 = 5
IMMUNE = 6

```

\section*{What if Our Model Changes?}
- If a healthy person contacts a contagious person, she gets sick \(40 \%\) of the time.
if contagious(matrix,randrange(20),randrange(20)) and randrange (100) <40: newmatrix[i][j] = INFECTED

\section*{What if Our Model Changes? (cont'd)}
- The current model does not capture neighbor relationship. The adjacency of 2 cells does not indicate that they are neighbors.
- What if we used to grid to capture neighbor relationship and assumed that a healthy person gets infected if they have at least one contagious neighbor.

\section*{Neighbors}
```

cell = matrix[i][j]
north = matrix[i-1][j] NO!
if i == 0:
YES!
north = None
else:
north = matrix[i-1][j]

```

Continuous Simulation

\author{
N-Body Problem
}

\section*{Continuous-Time Simulations}
- Often used to model physical phenomena involving forces acting on objects.
- Is "time" really continuous?
- Philosophical question. No one knows.
- Just pretend it is.
- Is simulated time continuous?
- No. It's divided into discrete time steps.
- But they can be as small as we like.

\section*{N-Body Problem}
- Newton's theory: Planets and other bodies move according to the gravitational effects of the objects around them
- N-body problem: Predicting the individual motions of a group of objects interacting with each other gravitationally
- With just two bodies, we can write a simple formula to calculate their positions at any future time, given their starting positions.
- But with 3 or more bodies, no formula exists for this, because the system is highly nonlinear, and potentially chaotic.
\(\square\) Our only recourse is simulation.

\section*{N-Body Simulation}
- Using simulation to predict future locations of bodies
- Astronomers use simulations to predict locations of satellites, plan space travel, track dangerous asteroids etc.
- Main idea of the simulation: Start with the current location and heading of each planet. Then repeatedly
- Determine where the planets would be a short time later if they move according to a straight line
- Calculate adjustments to headings

\section*{Simulating Gravitational Attraction}

Newton's law of universal gravitation:
\[
F=G \cdot m_{1} \cdot m_{2} / d^{2}
\]
where \(G=\) gravitational constant, \(m_{1}\) and \(m_{2}\) are the masses, and \(d\) is the distance between them.

\section*{Force and Acceleration}
- Newton's second law: if some external force is applied to a body then the body accelerates (its velocity changes)
\[
\mathrm{F}=\mathrm{ma}
\]
mass
acceleration

\section*{Moving A Single Body}
- Calculate the force and acceleration influencing the body at a given time
- Suppose that acceleration is constant for a given interval of time and calculate the velocity and distance moved

\section*{Velocity versus Time graph}

a lines represent the values for acceleration at different points along the curve and the yellow area under the curve represents displacement \(\boldsymbol{s}\)

Source: Wikipedia

\section*{Integrating Acceleration}
- When an object accelerates, its velocity \(v(\dagger)\) changes. How can we model this?
\(\square\) Divide time into tiny steps \(\Delta t\).
- Re-calculate the velocity at each time step.
\[
v(t+\Delta t)=v(t)+a(t) \cdot \Delta t
\]
- Smaller \(\Delta \dagger\) brings greater accuracy. Why?

\section*{Velocity Is Rate of Change of Position}
- If an object has non-zero velocity, its position is changing.
\(\square\) We can use the same integration trick to update the body's position based on velocity.
\[
x(t+\Delta t)=x(t)+v(t) \cdot \Delta t
\]

\section*{Force Vectors}
\(\square\) We can use vectors to keep track of positions, velocities, and accelerations: ( \(x, y, z\) ) coordinates
\(\square\) Forces are additive and vector addition performs ordinary addition on each component:
\[
(x 1, y 1, z 1)+(x 2, y 2, z 2)=(x 1+x 2, y 1+y 2, z 1+z 2)
\]


The vectors in this example has 0 for the \(z\) coordinate.

The north and south vectors cancel out each other

The east vectors add up

\section*{Force Action on a Single Body}
- Calculate all the force vectors influencing the body
\(\square\) Add the vectors together to determine the cumulative force

\section*{Moving Multiple Bodies}
- At each time step move each body by calculating the force vectors in each direction
- Suppose we are given a method interaction(a,b) that calculates the gravitational force between the bodies a and b
- We need to compute all pairwise interactions.
- How many force calculations are there?
- For the first body interactions with each of the remaining \(\mathrm{N}-1\) bodies, for the second one interactions with each of the remaining N -2 bodies because we already took into account its interaction with the first one etc.
- \(\mathrm{N}-1+\mathrm{N}-2+\ldots 1=\mathrm{N} \times(\mathrm{N}-1) / 2=\mathrm{O}\left(\mathrm{N}^{2}\right)\)

\section*{Paths of Voyager 1 and 2}


\section*{Simulation A† Extreme Scales}
- Cosmologists use simulations to study the formation of galaxies (clusters of stars), and even clusters of galaxies.
- At the other extreme, physicists simulate individual atoms and molecules, e.g., to model chemical reactions.```

