Randomness in Computing: Applying Random Numbers

Announcements

- PS9 Due today
- PA due Sunday 11:59
- PS10 Due Monday Morning

Yesterday:

- Randomness is hard to define
\square Randomness is harder to achieve
- Define tests for acceptable randomness
\square Often Pseudo Random is random enough:

Yesterday

- Linear Congruential Generators (LCGs)
\square We can generate a series of numbers, all different, that looks random even though it isn' \dagger
- If we choose appropriate constants for our LCG, then we can generate a very long sequence before numbers begin to repeat. The length of the sequence is its period
- To generate random numbers in Python we can use randint(x, y), which generates a random integer between x and y.

Today: Monte Carlo methods

Idea: run many experiments with random inputs to approximate an answer to a question.

We might be unable to answer the question any other way, or an analytical (logical, mathematical, exact) solution might be too expensive.

Some Applications

The Monte Carlo Integral

http://marcoagd.usuarios.rdc.puc-
rio.brfquasi_me.html

Monte Carlo Simulation

Food Intake x Contaminant Level $=$ Exposure

Dr.-Ing. Matthias Westhäuser. Statistical Analysis of Fiber Optical Systems using Multicanonical Monte Carlo Methods (http://www.hft.e-technik.tu-
dortmund.de/forschung/projekt.php?id=18\&lang=en)

US Food and Drug Administration

Monte Carlo methods

\square The hungry dice player
\square The clueless student*

- The umbrella quandary*
- A survey of applications
* Source: Digital Dice by Paul J. Nahin

What is a Monte Carlo method?

\square An algorithm that uses a source of (pseudo) random numbers
\square Repeats an "experiment" many times and calculates a statistic, often an average
\square Estimates a value (often a probability)
\square... usually a value that is hard or impossible to calculate analytically

A simple Monte Carlo method

(no computer needed!)

Simple example: dice statistics

\square We can analyze throwing a pair of dice and get the following probabilities for the sum of the two dice:

Total number of states: 36
image source: http://hyperphysics.phy-
astr.gsu.edu/hbase/math/dice.html via
http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/

Simple example: dice statistics

- ... or we can throw a pair of dice 100 times and record what happens,
- or 10000 times for a more accurate estimate.

image source:
http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/

Simple example: dice statistics

- ... or we can throw a pair of dice 100 times and record what happens,
- or 10000 times for a more accurate estimate.

Total number of states: 36

image source:
http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/

The Hungry Dice Player

estimating the expected value of a simple game

A game of dice

```
def dice_game():
    strikes = 0
    winnings \(=0\)
    while strikes < 3: \# 3 strikes and you're out
        \# get 2 random numbers (1..6)
        die1 = roll()
        die2 = roll()
        \# strike or win?
        if die1 == die2:
        strikes = strikes + 1
        else:
            winnings = winnings + die1 + die2
return winnings \# in cents
```


The Hungry Dice Player

\square In our simple game of dice:
Can I expect to make enough money playing it to buy lunch?
\square That is, what is the expected (average) value won in the game?
\square We could figure it out by applying laws of probability
...or use a Monte Carlo method

Monte Carlo method for the hungry dice player

```
def average_winnings(samples) :
    # samples is the number of experiments to run
    total = 0
    for n in range(samples) :
    total = total + dice_game()
    return total / samples
>>> [round(average_winnings(10),2) for i in range(5)]
[85.8, 94.8, 120.7, 123.3, 90.0]
>>> [round(average_winnings(100),2) for i in range(5)]
[105.97, 102.95, 107.74, 134.4, 114.54]
>>> [round(average_winnings(1000),2) for i in range(5)]
[106.84, 107.11, 105.59, 104.28, 106.41]
>>> [round(average_winnings(10000),2) for i in range(5)]
[104.94, 105.71, 105.81, 105.74, 104.62]
```


The Clueless Student

a famous matching problem

The Clueless Student

A clueless student faced a pop quiz:
> a list of the 24 Presidents of the $19^{\text {th }}$ century and another list of their terms in office, but scrambled.

The object was to match the President with the term.

If the student guesses a random one-to-one matching, how many matches will be right out of the 24 , on average?

The quiz

1. Monroe	a. 1801 -1809
2. Jackson	b. 1869-1877
3. Arthur	c. 1885-1889
4. Madison	d. 1850-1853
5. Cleveland	e. 1889 -1893
6. Jefferson	f. 1845-1849
7. Lincoln	g. 1837-1841
8. Van Buren	h. 1853-1857
9. Adams	i. 1809-1817
etc.	etc.

Solving the problem

- The problem (1710, Pierre de Montmort) was important in development of probability theory
- The mathematical analysis is, um, interesting
(see http://www.math.uah.edu/stat/urn/Matching.html)
\square But we're not that smart. Let's just simulate the situation, randomly selecting guesses and checking to see how many correct match-ups they contain.

Representing a guess

values

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{\ldots}$
Jefferso n	Madiso n	Monroe	Adams	Jackson	Van Buren	Harrison	Tyler	Polk	\ldots

Representing a guess

\square What is a guess?
E.g., $[0,1,2,3,4,5, \ldots, 23$] represents a completely correct guess
$[1,0,2,3,4,5, \ldots, 23$] represents a guess that is correct
except that it gets the first two presidents wrong.

- A guess is just a permutation (shuffling) of the numbers 0 ... 23.
\square Let's define a match in a guess to be any number k that occurs in position k. (E.g., 0 in position 0,10 in position 10)
\square With this representation, our question becomes:
if I pick a random shuffling of the numbers $0 . . .23$, how many (on average) matches occur?

Randomly permuting a list

To get a random shuffling of the numbers 0 to 23 we use the shuffle function from module random:
>>> nums = list(range(10))
>>> nums
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> shuffle(nums)
>>> nums
$[4,5,3,2,0,9,6,1,8,7]$
>>> shuffle(nums)
>>> nums
$[3,6,1,4,5,8,2,9,0,7]$

Algorithm

\square Input:

- pairs (number of things to be matched),
- samples (number of experiments to run)
\square Output: average number of correct matches per sample
\square Method:

1. Set num_correct $=0$
2. Do the following samples times:
a. Set matching to a random permutation of the numbers 0...pairs-1
b. For k in $0 . .$. pairs, if matching $[k]=k$ add one to num_correct
3. The result is num_correct / samples

Code for the clueless student

from random import shuffle
\# pairs is the number of pairs to be guessed
\# samples is the number of experiments to run
def student(pairs, samples):
num_correct $=0$
matching = list(range(pairs))
for i in range(samples): \# experiment samples
times

> shuffle(matching) \# generate a guess
\# count matches
for k in range(pairs):
if matching[k] == k :
num_correct $=$ num_correct +1
return num_correct / samples \# average correct

Running the code

\square The mathematical analysis says the expected value is exactly 1 (no matter how many matches are to be guessed).

More samples - smaller error

>>> 1 - student(5, 1000)
0.03600000000000003
>>> 1 - student(5, 10000)
0.005900000000000016
>>> 1 - student(5, 100000)
0.0014100000000000223
>>> 1 - student(5, 1000000)
-0.0006679999999998909

The Umbrella Quandary

simulating a system

The Umbrella Quandary

- Mr. X walks between home and work every day
- He likes to keep an umbrella at each location
\square But he always forgets to carry one if it's not raining
- If the probability of rain is p, how many trips can he expect to make before he gets caught in the rain because all his umbrellas are at the other location?
(Assuming that if it's not raining when he starts a trip, it doesn't rain during the trip.)

The trivial cases

\square What if it always rains?
\square What if it never rains (ok, that was too easy)
\square So we only need to think about a probability of rain greater than zero and less than one

Solving the umbrella quandary

\square Analysis of the problem can be done with Markov chains

- But we're just humble programmers;
we'll simulate and measure

Simulating an event with a given probability

\square In contrast to the clueless student problem we're given a probability of an event
\square We want to simulate that the event rain happens, with the given probability p (where p is a number between 0 and 1)

Technique: Get a random float between 0 and 1;
If it's less than p simulate that the event happened
if random() < p:
raining $=$ True

Representing home, work, and umbrellas

\square Use 0 for home,
1 for work
\square A list for the number of umbrellas at each location (2 locations)
\square How should we initialize?

$$
\begin{aligned}
& \text { location }=0 \# \text { start at home } \\
& \text { umbrellas }=[1,1]
\end{aligned}
$$

Recall: he likes to keep an umbrella at each location

Figuring out when to stop

- We want to count the number of trips before Mr. X gets wet, so we want to keep simulating trips until he does.
- To keep track:

$$
\begin{aligned}
& \text { wet }=\text { False } \\
& \text { trips }=0 \\
& \text { while (not wet) : }
\end{aligned}
$$

$$
\bullet \bullet \bullet
$$

Changing locations

Mr. X walks between home (0) and work (1)
\square To keep track of where he is: location $=0$ \# start at home
\square To move to the other location:
location $=1$ - location
To find how many umbrellas at current location:
umbrellas[location]

Putting it together

```
from random import random
```

```
def umbrella(p): # p is the probability of rain
    wet = False
    trips = 0
    location = 0
    umbrellas = [1, 1] # index 0 stands for home, 1 stands for work
    while (not wet):
        if random() < p: # it's raining
        if umbrellas[location] == 0: # no umbrella
            wet = True
        else:
            trips = trips + 1
            umbrellas[location] -= 1 # take an umbrella
            location = 1 - location # switch locations
            umbrellas[location] += 1 # put umbrella
    else: # it's not raining, leave umbrellas where they are
        trips = trips + 1
        location = 1 - location
    return trips
```


Running simulations

```
>>> umbrella(.5)
22
>>> umbrella(.5)
4
>>> umbrella(.5)
1 3
>>> umbrella(.5)
2
>>> umbrella(.5)
2
```


Great, but we want averages

\square One experiment doesn't tell us much-we want to know, on average, if the probability of rain is p, how many trips can Mr. X make without getting wet?

- We add code to run umbrella (p) 10,000 times for different probabilities of rain, from $p=.01$ to .99 in increments of .01
\square We accumulate the results in a list that will show us how the average number of trips is related to the probability of rain.

Running the experiments

\# 10,000 experiments for each probability . 01 to . 99 \# Accumulate averages in a list def test() :

$$
\begin{aligned}
& \text { results }=\text { [None]*99 \# Initialize: } 99 \text { probabilities } \\
& \mathrm{p}=0.01 \quad \text { \# probability starts at .01 } \\
& \text { for i in range(99) : } \\
& \text { trips }=0 \\
& \text { \# find average of } 10000 \text { experiments } \\
& \text { for } k \text { in range(10000) : } \\
& \text { trips }=\text { trips }+ \text { umbrellas(p) } \\
& \text { results[i] }=\text { trips/10000 } \\
& p=p+.01 \quad \# \text { next probability }
\end{aligned}
$$

return results

Crude plot of results

Applications

many, many, many

Finance

-Investment portfolio analysis

\square Stock option analysis
\square Personal financial planning

Engineering

- Reliability engineering
- Wireless network design
\square Wind farm yield prediction
\square Fluid dynamics
- Robotics

Mathematics and physics

\square Multi-dimensional partial differentiation and integration
\square Optimization
\square Simulating quantum systems (pioneered by Fermi in 1930)

Many others

\square Computational biology
\square Physical chemistry
\square Applied statistics where data distributions are difficult to analyze
\square Game playing

Graphics: path tracing

image: http://2.bp.blogspot.com/-
cUQu1ym3krA/UPYw6qhsZPI/AAAAAAAADeU/YnqtyJjBJJc/s1600/cubecity9b.pn

Summary

\square Monte Carlo methods use random number generator to "run experiments" in software
\square Operations we used:
\square get random integer in a given range
\square get a random permutation of a list
\square use random float between 0 and 1 to decide if an event with probability p happens
if random() < p : \# event happened

Next time: Simulation

Image: Wikipedia

